12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514 |
- """ Test cases for time series specific (freq conversion, etc) """
- from datetime import (
- date,
- datetime,
- time,
- timedelta,
- )
- import pickle
- import numpy as np
- import pytest
- from pandas._libs.tslibs import (
- BaseOffset,
- to_offset,
- )
- import pandas.util._test_decorators as td
- from pandas import (
- DataFrame,
- Index,
- NaT,
- Series,
- concat,
- isna,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.core.indexes.datetimes import (
- DatetimeIndex,
- bdate_range,
- date_range,
- )
- from pandas.core.indexes.period import (
- Period,
- PeriodIndex,
- period_range,
- )
- from pandas.core.indexes.timedeltas import timedelta_range
- from pandas.tests.plotting.common import TestPlotBase
- from pandas.tseries.offsets import WeekOfMonth
- @td.skip_if_no_mpl
- class TestTSPlot(TestPlotBase):
- @pytest.mark.filterwarnings("ignore::UserWarning")
- def test_ts_plot_with_tz(self, tz_aware_fixture):
- # GH2877, GH17173, GH31205, GH31580
- tz = tz_aware_fixture
- index = date_range("1/1/2011", periods=2, freq="H", tz=tz)
- ts = Series([188.5, 328.25], index=index)
- _check_plot_works(ts.plot)
- ax = ts.plot()
- xdata = list(ax.get_lines())[0].get_xdata()
- # Check first and last points' labels are correct
- assert (xdata[0].hour, xdata[0].minute) == (0, 0)
- assert (xdata[-1].hour, xdata[-1].minute) == (1, 0)
- def test_fontsize_set_correctly(self):
- # For issue #8765
- df = DataFrame(np.random.randn(10, 9), index=range(10))
- fig, ax = self.plt.subplots()
- df.plot(fontsize=2, ax=ax)
- for label in ax.get_xticklabels() + ax.get_yticklabels():
- assert label.get_fontsize() == 2
- def test_frame_inferred(self):
- # inferred freq
- idx = date_range("1/1/1987", freq="MS", periods=100)
- idx = DatetimeIndex(idx.values, freq=None)
- df = DataFrame(np.random.randn(len(idx), 3), index=idx)
- _check_plot_works(df.plot)
- # axes freq
- idx = idx[0:40].union(idx[45:99])
- df2 = DataFrame(np.random.randn(len(idx), 3), index=idx)
- _check_plot_works(df2.plot)
- # N > 1
- idx = date_range("2008-1-1 00:15:00", freq="15T", periods=10)
- idx = DatetimeIndex(idx.values, freq=None)
- df = DataFrame(np.random.randn(len(idx), 3), index=idx)
- _check_plot_works(df.plot)
- def test_is_error_nozeroindex(self):
- # GH11858
- i = np.array([1, 2, 3])
- a = DataFrame(i, index=i)
- _check_plot_works(a.plot, xerr=a)
- _check_plot_works(a.plot, yerr=a)
- def test_nonnumeric_exclude(self):
- idx = date_range("1/1/1987", freq="A", periods=3)
- df = DataFrame({"A": ["x", "y", "z"], "B": [1, 2, 3]}, idx)
- fig, ax = self.plt.subplots()
- df.plot(ax=ax) # it works
- assert len(ax.get_lines()) == 1 # B was plotted
- self.plt.close(fig)
- msg = "no numeric data to plot"
- with pytest.raises(TypeError, match=msg):
- df["A"].plot()
- @pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
- def test_tsplot_period(self, freq):
- idx = period_range("12/31/1999", freq=freq, periods=100)
- ser = Series(np.random.randn(len(idx)), idx)
- _, ax = self.plt.subplots()
- _check_plot_works(ser.plot, ax=ax)
- @pytest.mark.parametrize(
- "freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
- )
- def test_tsplot_datetime(self, freq):
- idx = date_range("12/31/1999", freq=freq, periods=100)
- ser = Series(np.random.randn(len(idx)), idx)
- _, ax = self.plt.subplots()
- _check_plot_works(ser.plot, ax=ax)
- def test_tsplot(self):
- ts = tm.makeTimeSeries()
- _, ax = self.plt.subplots()
- ts.plot(style="k", ax=ax)
- color = (0.0, 0.0, 0.0, 1)
- assert color == ax.get_lines()[0].get_color()
- def test_both_style_and_color(self):
- ts = tm.makeTimeSeries()
- msg = (
- "Cannot pass 'style' string with a color symbol and 'color' "
- "keyword argument. Please use one or the other or pass 'style' "
- "without a color symbol"
- )
- with pytest.raises(ValueError, match=msg):
- ts.plot(style="b-", color="#000099")
- s = ts.reset_index(drop=True)
- with pytest.raises(ValueError, match=msg):
- s.plot(style="b-", color="#000099")
- @pytest.mark.parametrize("freq", ["ms", "us"])
- def test_high_freq(self, freq):
- _, ax = self.plt.subplots()
- rng = date_range("1/1/2012", periods=100, freq=freq)
- ser = Series(np.random.randn(len(rng)), rng)
- _check_plot_works(ser.plot, ax=ax)
- def test_get_datevalue(self):
- from pandas.plotting._matplotlib.converter import get_datevalue
- assert get_datevalue(None, "D") is None
- assert get_datevalue(1987, "A") == 1987
- assert get_datevalue(Period(1987, "A"), "M") == Period("1987-12", "M").ordinal
- assert get_datevalue("1/1/1987", "D") == Period("1987-1-1", "D").ordinal
- def test_ts_plot_format_coord(self):
- def check_format_of_first_point(ax, expected_string):
- first_line = ax.get_lines()[0]
- first_x = first_line.get_xdata()[0].ordinal
- first_y = first_line.get_ydata()[0]
- assert expected_string == ax.format_coord(first_x, first_y)
- annual = Series(1, index=date_range("2014-01-01", periods=3, freq="A-DEC"))
- _, ax = self.plt.subplots()
- annual.plot(ax=ax)
- check_format_of_first_point(ax, "t = 2014 y = 1.000000")
- # note this is added to the annual plot already in existence, and
- # changes its freq field
- daily = Series(1, index=date_range("2014-01-01", periods=3, freq="D"))
- daily.plot(ax=ax)
- check_format_of_first_point(ax, "t = 2014-01-01 y = 1.000000")
- tm.close()
- @pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
- def test_line_plot_period_series(self, freq):
- idx = period_range("12/31/1999", freq=freq, periods=100)
- ser = Series(np.random.randn(len(idx)), idx)
- _check_plot_works(ser.plot, ser.index.freq)
- @pytest.mark.parametrize(
- "frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
- )
- def test_line_plot_period_mlt_series(self, frqncy):
- # test period index line plot for series with multiples (`mlt`) of the
- # frequency (`frqncy`) rule code. tests resolution of issue #14763
- idx = period_range("12/31/1999", freq=frqncy, periods=100)
- s = Series(np.random.randn(len(idx)), idx)
- _check_plot_works(s.plot, s.index.freq.rule_code)
- @pytest.mark.parametrize(
- "freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
- )
- def test_line_plot_datetime_series(self, freq):
- idx = date_range("12/31/1999", freq=freq, periods=100)
- ser = Series(np.random.randn(len(idx)), idx)
- _check_plot_works(ser.plot, ser.index.freq.rule_code)
- @pytest.mark.parametrize("freq", ["S", "T", "H", "D", "W", "M", "Q", "A"])
- def test_line_plot_period_frame(self, freq):
- idx = date_range("12/31/1999", freq=freq, periods=100)
- df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
- _check_plot_works(df.plot, df.index.freq)
- @pytest.mark.parametrize(
- "frqncy", ["1S", "3S", "5T", "7H", "4D", "8W", "11M", "3A"]
- )
- def test_line_plot_period_mlt_frame(self, frqncy):
- # test period index line plot for DataFrames with multiples (`mlt`)
- # of the frequency (`frqncy`) rule code. tests resolution of issue
- # #14763
- idx = period_range("12/31/1999", freq=frqncy, periods=100)
- df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
- freq = df.index.asfreq(df.index.freq.rule_code).freq
- _check_plot_works(df.plot, freq)
- @pytest.mark.parametrize(
- "freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
- )
- def test_line_plot_datetime_frame(self, freq):
- idx = date_range("12/31/1999", freq=freq, periods=100)
- df = DataFrame(np.random.randn(len(idx), 3), index=idx, columns=["A", "B", "C"])
- freq = df.index.to_period(df.index.freq.rule_code).freq
- _check_plot_works(df.plot, freq)
- @pytest.mark.parametrize(
- "freq", ["S", "T", "H", "D", "W", "M", "Q-DEC", "A", "1B30Min"]
- )
- def test_line_plot_inferred_freq(self, freq):
- idx = date_range("12/31/1999", freq=freq, periods=100)
- ser = Series(np.random.randn(len(idx)), idx)
- ser = Series(ser.values, Index(np.asarray(ser.index)))
- _check_plot_works(ser.plot, ser.index.inferred_freq)
- ser = ser[[0, 3, 5, 6]]
- _check_plot_works(ser.plot)
- def test_fake_inferred_business(self):
- _, ax = self.plt.subplots()
- rng = date_range("2001-1-1", "2001-1-10")
- ts = Series(range(len(rng)), index=rng)
- ts = concat([ts[:3], ts[5:]])
- ts.plot(ax=ax)
- assert not hasattr(ax, "freq")
- def test_plot_offset_freq(self):
- ser = tm.makeTimeSeries()
- _check_plot_works(ser.plot)
- dr = date_range(ser.index[0], freq="BQS", periods=10)
- ser = Series(np.random.randn(len(dr)), index=dr)
- _check_plot_works(ser.plot)
- def test_plot_multiple_inferred_freq(self):
- dr = Index([datetime(2000, 1, 1), datetime(2000, 1, 6), datetime(2000, 1, 11)])
- ser = Series(np.random.randn(len(dr)), index=dr)
- _check_plot_works(ser.plot)
- @pytest.mark.xfail(reason="Api changed in 3.6.0")
- def test_uhf(self):
- import pandas.plotting._matplotlib.converter as conv
- idx = date_range("2012-6-22 21:59:51.960928", freq="L", periods=500)
- df = DataFrame(np.random.randn(len(idx), 2), index=idx)
- _, ax = self.plt.subplots()
- df.plot(ax=ax)
- axis = ax.get_xaxis()
- tlocs = axis.get_ticklocs()
- tlabels = axis.get_ticklabels()
- for loc, label in zip(tlocs, tlabels):
- xp = conv._from_ordinal(loc).strftime("%H:%M:%S.%f")
- rs = str(label.get_text())
- if len(rs):
- assert xp == rs
- def test_irreg_hf(self):
- idx = date_range("2012-6-22 21:59:51", freq="S", periods=100)
- df = DataFrame(np.random.randn(len(idx), 2), index=idx)
- irreg = df.iloc[[0, 1, 3, 4]]
- _, ax = self.plt.subplots()
- irreg.plot(ax=ax)
- diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
- sec = 1.0 / 24 / 60 / 60
- assert (np.fabs(diffs[1:] - [sec, sec * 2, sec]) < 1e-8).all()
- _, ax = self.plt.subplots()
- df2 = df.copy()
- df2.index = df.index.astype(object)
- df2.plot(ax=ax)
- diffs = Series(ax.get_lines()[0].get_xydata()[:, 0]).diff()
- assert (np.fabs(diffs[1:] - sec) < 1e-8).all()
- def test_irregular_datetime64_repr_bug(self):
- ser = tm.makeTimeSeries()
- ser = ser[[0, 1, 2, 7]]
- _, ax = self.plt.subplots()
- ret = ser.plot(ax=ax)
- assert ret is not None
- for rs, xp in zip(ax.get_lines()[0].get_xdata(), ser.index):
- assert rs == xp
- def test_business_freq(self):
- bts = tm.makePeriodSeries()
- _, ax = self.plt.subplots()
- bts.plot(ax=ax)
- assert ax.get_lines()[0].get_xydata()[0, 0] == bts.index[0].ordinal
- idx = ax.get_lines()[0].get_xdata()
- assert PeriodIndex(data=idx).freqstr == "B"
- def test_business_freq_convert(self):
- bts = tm.makeTimeSeries(300).asfreq("BM")
- ts = bts.to_period("M")
- _, ax = self.plt.subplots()
- bts.plot(ax=ax)
- assert ax.get_lines()[0].get_xydata()[0, 0] == ts.index[0].ordinal
- idx = ax.get_lines()[0].get_xdata()
- assert PeriodIndex(data=idx).freqstr == "M"
- def test_freq_with_no_period_alias(self):
- # GH34487
- freq = WeekOfMonth()
- bts = tm.makeTimeSeries(5).asfreq(freq)
- _, ax = self.plt.subplots()
- bts.plot(ax=ax)
- idx = ax.get_lines()[0].get_xdata()
- msg = "freq not specified and cannot be inferred"
- with pytest.raises(ValueError, match=msg):
- PeriodIndex(data=idx)
- def test_nonzero_base(self):
- # GH2571
- idx = date_range("2012-12-20", periods=24, freq="H") + timedelta(minutes=30)
- df = DataFrame(np.arange(24), index=idx)
- _, ax = self.plt.subplots()
- df.plot(ax=ax)
- rs = ax.get_lines()[0].get_xdata()
- assert not Index(rs).is_normalized
- def test_dataframe(self):
- bts = DataFrame({"a": tm.makeTimeSeries()})
- _, ax = self.plt.subplots()
- bts.plot(ax=ax)
- idx = ax.get_lines()[0].get_xdata()
- tm.assert_index_equal(bts.index.to_period(), PeriodIndex(idx))
- def test_axis_limits(self):
- def _test(ax):
- xlim = ax.get_xlim()
- ax.set_xlim(xlim[0] - 5, xlim[1] + 10)
- result = ax.get_xlim()
- assert result[0] == xlim[0] - 5
- assert result[1] == xlim[1] + 10
- # string
- expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
- ax.set_xlim("1/1/2000", "4/1/2000")
- result = ax.get_xlim()
- assert int(result[0]) == expected[0].ordinal
- assert int(result[1]) == expected[1].ordinal
- # datetime
- expected = (Period("1/1/2000", ax.freq), Period("4/1/2000", ax.freq))
- ax.set_xlim(datetime(2000, 1, 1), datetime(2000, 4, 1))
- result = ax.get_xlim()
- assert int(result[0]) == expected[0].ordinal
- assert int(result[1]) == expected[1].ordinal
- fig = ax.get_figure()
- self.plt.close(fig)
- ser = tm.makeTimeSeries()
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- _test(ax)
- _, ax = self.plt.subplots()
- df = DataFrame({"a": ser, "b": ser + 1})
- df.plot(ax=ax)
- _test(ax)
- df = DataFrame({"a": ser, "b": ser + 1})
- axes = df.plot(subplots=True)
- for ax in axes:
- _test(ax)
- def test_get_finder(self):
- import pandas.plotting._matplotlib.converter as conv
- assert conv.get_finder(to_offset("B")) == conv._daily_finder
- assert conv.get_finder(to_offset("D")) == conv._daily_finder
- assert conv.get_finder(to_offset("M")) == conv._monthly_finder
- assert conv.get_finder(to_offset("Q")) == conv._quarterly_finder
- assert conv.get_finder(to_offset("A")) == conv._annual_finder
- assert conv.get_finder(to_offset("W")) == conv._daily_finder
- def test_finder_daily(self):
- day_lst = [10, 40, 252, 400, 950, 2750, 10000]
- xpl1 = xpl2 = [Period("1999-1-1", freq="B").ordinal] * len(day_lst)
- rs1 = []
- rs2 = []
- for n in day_lst:
- rng = bdate_range("1999-1-1", periods=n)
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs1.append(xaxis.get_majorticklocs()[0])
- vmin, vmax = ax.get_xlim()
- ax.set_xlim(vmin + 0.9, vmax)
- rs2.append(xaxis.get_majorticklocs()[0])
- self.plt.close(ax.get_figure())
- assert rs1 == xpl1
- assert rs2 == xpl2
- def test_finder_quarterly(self):
- yrs = [3.5, 11]
- xpl1 = xpl2 = [Period("1988Q1").ordinal] * len(yrs)
- rs1 = []
- rs2 = []
- for n in yrs:
- rng = period_range("1987Q2", periods=int(n * 4), freq="Q")
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs1.append(xaxis.get_majorticklocs()[0])
- (vmin, vmax) = ax.get_xlim()
- ax.set_xlim(vmin + 0.9, vmax)
- rs2.append(xaxis.get_majorticklocs()[0])
- self.plt.close(ax.get_figure())
- assert rs1 == xpl1
- assert rs2 == xpl2
- def test_finder_monthly(self):
- yrs = [1.15, 2.5, 4, 11]
- xpl1 = xpl2 = [Period("Jan 1988").ordinal] * len(yrs)
- rs1 = []
- rs2 = []
- for n in yrs:
- rng = period_range("1987Q2", periods=int(n * 12), freq="M")
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs1.append(xaxis.get_majorticklocs()[0])
- vmin, vmax = ax.get_xlim()
- ax.set_xlim(vmin + 0.9, vmax)
- rs2.append(xaxis.get_majorticklocs()[0])
- self.plt.close(ax.get_figure())
- assert rs1 == xpl1
- assert rs2 == xpl2
- def test_finder_monthly_long(self):
- rng = period_range("1988Q1", periods=24 * 12, freq="M")
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs = xaxis.get_majorticklocs()[0]
- xp = Period("1989Q1", "M").ordinal
- assert rs == xp
- def test_finder_annual(self):
- xp = [1987, 1988, 1990, 1990, 1995, 2020, 2070, 2170]
- xp = [Period(x, freq="A").ordinal for x in xp]
- rs = []
- for nyears in [5, 10, 19, 49, 99, 199, 599, 1001]:
- rng = period_range("1987", periods=nyears, freq="A")
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs.append(xaxis.get_majorticklocs()[0])
- self.plt.close(ax.get_figure())
- assert rs == xp
- @pytest.mark.slow
- def test_finder_minutely(self):
- nminutes = 50 * 24 * 60
- rng = date_range("1/1/1999", freq="Min", periods=nminutes)
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs = xaxis.get_majorticklocs()[0]
- xp = Period("1/1/1999", freq="Min").ordinal
- assert rs == xp
- def test_finder_hourly(self):
- nhours = 23
- rng = date_range("1/1/1999", freq="H", periods=nhours)
- ser = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- xaxis = ax.get_xaxis()
- rs = xaxis.get_majorticklocs()[0]
- xp = Period("1/1/1999", freq="H").ordinal
- assert rs == xp
- def test_gaps(self):
- ts = tm.makeTimeSeries()
- ts.iloc[5:25] = np.nan
- _, ax = self.plt.subplots()
- ts.plot(ax=ax)
- lines = ax.get_lines()
- assert len(lines) == 1
- line = lines[0]
- data = line.get_xydata()
- data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
- assert isinstance(data, np.ma.core.MaskedArray)
- mask = data.mask
- assert mask[5:25, 1].all()
- self.plt.close(ax.get_figure())
- # irregular
- ts = tm.makeTimeSeries()
- ts = ts[[0, 1, 2, 5, 7, 9, 12, 15, 20]]
- ts.iloc[2:5] = np.nan
- _, ax = self.plt.subplots()
- ax = ts.plot(ax=ax)
- lines = ax.get_lines()
- assert len(lines) == 1
- line = lines[0]
- data = line.get_xydata()
- data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
- assert isinstance(data, np.ma.core.MaskedArray)
- mask = data.mask
- assert mask[2:5, 1].all()
- self.plt.close(ax.get_figure())
- # non-ts
- idx = [0, 1, 2, 5, 7, 9, 12, 15, 20]
- ser = Series(np.random.randn(len(idx)), idx)
- ser.iloc[2:5] = np.nan
- _, ax = self.plt.subplots()
- ser.plot(ax=ax)
- lines = ax.get_lines()
- assert len(lines) == 1
- line = lines[0]
- data = line.get_xydata()
- data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
- assert isinstance(data, np.ma.core.MaskedArray)
- mask = data.mask
- assert mask[2:5, 1].all()
- def test_gap_upsample(self):
- low = tm.makeTimeSeries()
- low.iloc[5:25] = np.nan
- _, ax = self.plt.subplots()
- low.plot(ax=ax)
- idxh = date_range(low.index[0], low.index[-1], freq="12h")
- s = Series(np.random.randn(len(idxh)), idxh)
- s.plot(secondary_y=True)
- lines = ax.get_lines()
- assert len(lines) == 1
- assert len(ax.right_ax.get_lines()) == 1
- line = lines[0]
- data = line.get_xydata()
- data = np.ma.MaskedArray(data, mask=isna(data), fill_value=np.nan)
- assert isinstance(data, np.ma.core.MaskedArray)
- mask = data.mask
- assert mask[5:25, 1].all()
- def test_secondary_y(self):
- ser = Series(np.random.randn(10))
- ser2 = Series(np.random.randn(10))
- fig, _ = self.plt.subplots()
- ax = ser.plot(secondary_y=True)
- assert hasattr(ax, "left_ax")
- assert not hasattr(ax, "right_ax")
- axes = fig.get_axes()
- line = ax.get_lines()[0]
- xp = Series(line.get_ydata(), line.get_xdata())
- tm.assert_series_equal(ser, xp)
- assert ax.get_yaxis().get_ticks_position() == "right"
- assert not axes[0].get_yaxis().get_visible()
- self.plt.close(fig)
- _, ax2 = self.plt.subplots()
- ser2.plot(ax=ax2)
- assert ax2.get_yaxis().get_ticks_position() == "left"
- self.plt.close(ax2.get_figure())
- ax = ser2.plot()
- ax2 = ser.plot(secondary_y=True)
- assert ax.get_yaxis().get_visible()
- assert not hasattr(ax, "left_ax")
- assert hasattr(ax, "right_ax")
- assert hasattr(ax2, "left_ax")
- assert not hasattr(ax2, "right_ax")
- def test_secondary_y_ts(self):
- idx = date_range("1/1/2000", periods=10)
- ser = Series(np.random.randn(10), idx)
- ser2 = Series(np.random.randn(10), idx)
- fig, _ = self.plt.subplots()
- ax = ser.plot(secondary_y=True)
- assert hasattr(ax, "left_ax")
- assert not hasattr(ax, "right_ax")
- axes = fig.get_axes()
- line = ax.get_lines()[0]
- xp = Series(line.get_ydata(), line.get_xdata()).to_timestamp()
- tm.assert_series_equal(ser, xp)
- assert ax.get_yaxis().get_ticks_position() == "right"
- assert not axes[0].get_yaxis().get_visible()
- self.plt.close(fig)
- _, ax2 = self.plt.subplots()
- ser2.plot(ax=ax2)
- assert ax2.get_yaxis().get_ticks_position() == "left"
- self.plt.close(ax2.get_figure())
- ax = ser2.plot()
- ax2 = ser.plot(secondary_y=True)
- assert ax.get_yaxis().get_visible()
- @td.skip_if_no_scipy
- def test_secondary_kde(self):
- ser = Series(np.random.randn(10))
- fig, ax = self.plt.subplots()
- ax = ser.plot(secondary_y=True, kind="density", ax=ax)
- assert hasattr(ax, "left_ax")
- assert not hasattr(ax, "right_ax")
- axes = fig.get_axes()
- assert axes[1].get_yaxis().get_ticks_position() == "right"
- def test_secondary_bar(self):
- ser = Series(np.random.randn(10))
- fig, ax = self.plt.subplots()
- ser.plot(secondary_y=True, kind="bar", ax=ax)
- axes = fig.get_axes()
- assert axes[1].get_yaxis().get_ticks_position() == "right"
- def test_secondary_frame(self):
- df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
- axes = df.plot(secondary_y=["a", "c"], subplots=True)
- assert axes[0].get_yaxis().get_ticks_position() == "right"
- assert axes[1].get_yaxis().get_ticks_position() == "left"
- assert axes[2].get_yaxis().get_ticks_position() == "right"
- def test_secondary_bar_frame(self):
- df = DataFrame(np.random.randn(5, 3), columns=["a", "b", "c"])
- axes = df.plot(kind="bar", secondary_y=["a", "c"], subplots=True)
- assert axes[0].get_yaxis().get_ticks_position() == "right"
- assert axes[1].get_yaxis().get_ticks_position() == "left"
- assert axes[2].get_yaxis().get_ticks_position() == "right"
- def test_mixed_freq_regular_first(self):
- # TODO
- s1 = tm.makeTimeSeries()
- s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
- # it works!
- _, ax = self.plt.subplots()
- s1.plot(ax=ax)
- ax2 = s2.plot(style="g", ax=ax)
- lines = ax2.get_lines()
- idx1 = PeriodIndex(lines[0].get_xdata())
- idx2 = PeriodIndex(lines[1].get_xdata())
- tm.assert_index_equal(idx1, s1.index.to_period("B"))
- tm.assert_index_equal(idx2, s2.index.to_period("B"))
- left, right = ax2.get_xlim()
- pidx = s1.index.to_period()
- assert left <= pidx[0].ordinal
- assert right >= pidx[-1].ordinal
- def test_mixed_freq_irregular_first(self):
- s1 = tm.makeTimeSeries()
- s2 = s1[[0, 5, 10, 11, 12, 13, 14, 15]]
- _, ax = self.plt.subplots()
- s2.plot(style="g", ax=ax)
- s1.plot(ax=ax)
- assert not hasattr(ax, "freq")
- lines = ax.get_lines()
- x1 = lines[0].get_xdata()
- tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
- x2 = lines[1].get_xdata()
- tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
- def test_mixed_freq_regular_first_df(self):
- # GH 9852
- s1 = tm.makeTimeSeries().to_frame()
- s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
- _, ax = self.plt.subplots()
- s1.plot(ax=ax)
- ax2 = s2.plot(style="g", ax=ax)
- lines = ax2.get_lines()
- idx1 = PeriodIndex(lines[0].get_xdata())
- idx2 = PeriodIndex(lines[1].get_xdata())
- assert idx1.equals(s1.index.to_period("B"))
- assert idx2.equals(s2.index.to_period("B"))
- left, right = ax2.get_xlim()
- pidx = s1.index.to_period()
- assert left <= pidx[0].ordinal
- assert right >= pidx[-1].ordinal
- def test_mixed_freq_irregular_first_df(self):
- # GH 9852
- s1 = tm.makeTimeSeries().to_frame()
- s2 = s1.iloc[[0, 5, 10, 11, 12, 13, 14, 15], :]
- _, ax = self.plt.subplots()
- s2.plot(style="g", ax=ax)
- s1.plot(ax=ax)
- assert not hasattr(ax, "freq")
- lines = ax.get_lines()
- x1 = lines[0].get_xdata()
- tm.assert_numpy_array_equal(x1, s2.index.astype(object).values)
- x2 = lines[1].get_xdata()
- tm.assert_numpy_array_equal(x2, s1.index.astype(object).values)
- def test_mixed_freq_hf_first(self):
- idxh = date_range("1/1/1999", periods=365, freq="D")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- high.plot(ax=ax)
- low.plot(ax=ax)
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == "D"
- def test_mixed_freq_alignment(self):
- ts_ind = date_range("2012-01-01 13:00", "2012-01-02", freq="H")
- ts_data = np.random.randn(12)
- ts = Series(ts_data, index=ts_ind)
- ts2 = ts.asfreq("T").interpolate()
- _, ax = self.plt.subplots()
- ax = ts.plot(ax=ax)
- ts2.plot(style="r", ax=ax)
- assert ax.lines[0].get_xdata()[0] == ax.lines[1].get_xdata()[0]
- def test_mixed_freq_lf_first(self):
- idxh = date_range("1/1/1999", periods=365, freq="D")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- low.plot(legend=True, ax=ax)
- high.plot(legend=True, ax=ax)
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == "D"
- leg = ax.get_legend()
- assert len(leg.texts) == 2
- self.plt.close(ax.get_figure())
- idxh = date_range("1/1/1999", periods=240, freq="T")
- idxl = date_range("1/1/1999", periods=4, freq="H")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- low.plot(ax=ax)
- high.plot(ax=ax)
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == "T"
- def test_mixed_freq_irreg_period(self):
- ts = tm.makeTimeSeries()
- irreg = ts[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 29]]
- rng = period_range("1/3/2000", periods=30, freq="B")
- ps = Series(np.random.randn(len(rng)), rng)
- _, ax = self.plt.subplots()
- irreg.plot(ax=ax)
- ps.plot(ax=ax)
- def test_mixed_freq_shared_ax(self):
- # GH13341, using sharex=True
- idx1 = date_range("2015-01-01", periods=3, freq="M")
- idx2 = idx1[:1].union(idx1[2:])
- s1 = Series(range(len(idx1)), idx1)
- s2 = Series(range(len(idx2)), idx2)
- fig, (ax1, ax2) = self.plt.subplots(nrows=2, sharex=True)
- s1.plot(ax=ax1)
- s2.plot(ax=ax2)
- assert ax1.freq == "M"
- assert ax2.freq == "M"
- assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
- # using twinx
- fig, ax1 = self.plt.subplots()
- ax2 = ax1.twinx()
- s1.plot(ax=ax1)
- s2.plot(ax=ax2)
- assert ax1.lines[0].get_xydata()[0, 0] == ax2.lines[0].get_xydata()[0, 0]
- # TODO (GH14330, GH14322)
- # plotting the irregular first does not yet work
- # fig, ax1 = plt.subplots()
- # ax2 = ax1.twinx()
- # s2.plot(ax=ax1)
- # s1.plot(ax=ax2)
- # assert (ax1.lines[0].get_xydata()[0, 0] ==
- # ax2.lines[0].get_xydata()[0, 0])
- def test_nat_handling(self):
- _, ax = self.plt.subplots()
- dti = DatetimeIndex(["2015-01-01", NaT, "2015-01-03"])
- s = Series(range(len(dti)), dti)
- s.plot(ax=ax)
- xdata = ax.get_lines()[0].get_xdata()
- # plot x data is bounded by index values
- assert s.index.min() <= Series(xdata).min()
- assert Series(xdata).max() <= s.index.max()
- def test_to_weekly_resampling(self):
- idxh = date_range("1/1/1999", periods=52, freq="W")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- high.plot(ax=ax)
- low.plot(ax=ax)
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
- def test_from_weekly_resampling(self):
- idxh = date_range("1/1/1999", periods=52, freq="W")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- low.plot(ax=ax)
- high.plot(ax=ax)
- expected_h = idxh.to_period().asi8.astype(np.float64)
- expected_l = np.array(
- [1514, 1519, 1523, 1527, 1531, 1536, 1540, 1544, 1549, 1553, 1558, 1562],
- dtype=np.float64,
- )
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
- xdata = line.get_xdata(orig=False)
- if len(xdata) == 12: # idxl lines
- tm.assert_numpy_array_equal(xdata, expected_l)
- else:
- tm.assert_numpy_array_equal(xdata, expected_h)
- tm.close()
- def test_from_resampling_area_line_mixed(self):
- idxh = date_range("1/1/1999", periods=52, freq="W")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = DataFrame(np.random.rand(len(idxh), 3), index=idxh, columns=[0, 1, 2])
- low = DataFrame(np.random.rand(len(idxl), 3), index=idxl, columns=[0, 1, 2])
- # low to high
- for kind1, kind2 in [("line", "area"), ("area", "line")]:
- _, ax = self.plt.subplots()
- low.plot(kind=kind1, stacked=True, ax=ax)
- high.plot(kind=kind2, stacked=True, ax=ax)
- # check low dataframe result
- expected_x = np.array(
- [
- 1514,
- 1519,
- 1523,
- 1527,
- 1531,
- 1536,
- 1540,
- 1544,
- 1549,
- 1553,
- 1558,
- 1562,
- ],
- dtype=np.float64,
- )
- expected_y = np.zeros(len(expected_x), dtype=np.float64)
- for i in range(3):
- line = ax.lines[i]
- assert PeriodIndex(line.get_xdata()).freq == idxh.freq
- tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
- # check stacked values are correct
- expected_y += low[i].values
- tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
- # check high dataframe result
- expected_x = idxh.to_period().asi8.astype(np.float64)
- expected_y = np.zeros(len(expected_x), dtype=np.float64)
- for i in range(3):
- line = ax.lines[3 + i]
- assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
- tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
- expected_y += high[i].values
- tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
- # high to low
- for kind1, kind2 in [("line", "area"), ("area", "line")]:
- _, ax = self.plt.subplots()
- high.plot(kind=kind1, stacked=True, ax=ax)
- low.plot(kind=kind2, stacked=True, ax=ax)
- # check high dataframe result
- expected_x = idxh.to_period().asi8.astype(np.float64)
- expected_y = np.zeros(len(expected_x), dtype=np.float64)
- for i in range(3):
- line = ax.lines[i]
- assert PeriodIndex(data=line.get_xdata()).freq == idxh.freq
- tm.assert_numpy_array_equal(line.get_xdata(orig=False), expected_x)
- expected_y += high[i].values
- tm.assert_numpy_array_equal(line.get_ydata(orig=False), expected_y)
- # check low dataframe result
- expected_x = np.array(
- [
- 1514,
- 1519,
- 1523,
- 1527,
- 1531,
- 1536,
- 1540,
- 1544,
- 1549,
- 1553,
- 1558,
- 1562,
- ],
- dtype=np.float64,
- )
- expected_y = np.zeros(len(expected_x), dtype=np.float64)
- for i in range(3):
- lines = ax.lines[3 + i]
- assert PeriodIndex(data=lines.get_xdata()).freq == idxh.freq
- tm.assert_numpy_array_equal(lines.get_xdata(orig=False), expected_x)
- expected_y += low[i].values
- tm.assert_numpy_array_equal(lines.get_ydata(orig=False), expected_y)
- def test_mixed_freq_second_millisecond(self):
- # GH 7772, GH 7760
- idxh = date_range("2014-07-01 09:00", freq="S", periods=50)
- idxl = date_range("2014-07-01 09:00", freq="100L", periods=500)
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- # high to low
- _, ax = self.plt.subplots()
- high.plot(ax=ax)
- low.plot(ax=ax)
- assert len(ax.get_lines()) == 2
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == "L"
- tm.close()
- # low to high
- _, ax = self.plt.subplots()
- low.plot(ax=ax)
- high.plot(ax=ax)
- assert len(ax.get_lines()) == 2
- for line in ax.get_lines():
- assert PeriodIndex(data=line.get_xdata()).freq == "L"
- def test_irreg_dtypes(self):
- # date
- idx = [date(2000, 1, 1), date(2000, 1, 5), date(2000, 1, 20)]
- df = DataFrame(np.random.randn(len(idx), 3), Index(idx, dtype=object))
- _check_plot_works(df.plot)
- # np.datetime64
- idx = date_range("1/1/2000", periods=10)
- idx = idx[[0, 2, 5, 9]].astype(object)
- df = DataFrame(np.random.randn(len(idx), 3), idx)
- _, ax = self.plt.subplots()
- _check_plot_works(df.plot, ax=ax)
- def test_time(self):
- t = datetime(1, 1, 1, 3, 30, 0)
- deltas = np.random.randint(1, 20, 3).cumsum()
- ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
- df = DataFrame(
- {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
- )
- fig, ax = self.plt.subplots()
- df.plot(ax=ax)
- # verify tick labels
- ticks = ax.get_xticks()
- labels = ax.get_xticklabels()
- for _tick, _label in zip(ticks, labels):
- m, s = divmod(int(_tick), 60)
- h, m = divmod(m, 60)
- rs = _label.get_text()
- if len(rs) > 0:
- if s != 0:
- xp = time(h, m, s).strftime("%H:%M:%S")
- else:
- xp = time(h, m, s).strftime("%H:%M")
- assert xp == rs
- def test_time_change_xlim(self):
- t = datetime(1, 1, 1, 3, 30, 0)
- deltas = np.random.randint(1, 20, 3).cumsum()
- ts = np.array([(t + timedelta(minutes=int(x))).time() for x in deltas])
- df = DataFrame(
- {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
- )
- fig, ax = self.plt.subplots()
- df.plot(ax=ax)
- # verify tick labels
- ticks = ax.get_xticks()
- labels = ax.get_xticklabels()
- for _tick, _label in zip(ticks, labels):
- m, s = divmod(int(_tick), 60)
- h, m = divmod(m, 60)
- rs = _label.get_text()
- if len(rs) > 0:
- if s != 0:
- xp = time(h, m, s).strftime("%H:%M:%S")
- else:
- xp = time(h, m, s).strftime("%H:%M")
- assert xp == rs
- # change xlim
- ax.set_xlim("1:30", "5:00")
- # check tick labels again
- ticks = ax.get_xticks()
- labels = ax.get_xticklabels()
- for _tick, _label in zip(ticks, labels):
- m, s = divmod(int(_tick), 60)
- h, m = divmod(m, 60)
- rs = _label.get_text()
- if len(rs) > 0:
- if s != 0:
- xp = time(h, m, s).strftime("%H:%M:%S")
- else:
- xp = time(h, m, s).strftime("%H:%M")
- assert xp == rs
- def test_time_musec(self):
- t = datetime(1, 1, 1, 3, 30, 0)
- deltas = np.random.randint(1, 20, 3).cumsum()
- ts = np.array([(t + timedelta(microseconds=int(x))).time() for x in deltas])
- df = DataFrame(
- {"a": np.random.randn(len(ts)), "b": np.random.randn(len(ts))}, index=ts
- )
- fig, ax = self.plt.subplots()
- ax = df.plot(ax=ax)
- # verify tick labels
- ticks = ax.get_xticks()
- labels = ax.get_xticklabels()
- for _tick, _label in zip(ticks, labels):
- m, s = divmod(int(_tick), 60)
- us = round((_tick - int(_tick)) * 1e6)
- h, m = divmod(m, 60)
- rs = _label.get_text()
- if len(rs) > 0:
- if (us % 1000) != 0:
- xp = time(h, m, s, us).strftime("%H:%M:%S.%f")
- elif (us // 1000) != 0:
- xp = time(h, m, s, us).strftime("%H:%M:%S.%f")[:-3]
- elif s != 0:
- xp = time(h, m, s, us).strftime("%H:%M:%S")
- else:
- xp = time(h, m, s, us).strftime("%H:%M")
- assert xp == rs
- def test_secondary_upsample(self):
- idxh = date_range("1/1/1999", periods=365, freq="D")
- idxl = date_range("1/1/1999", periods=12, freq="M")
- high = Series(np.random.randn(len(idxh)), idxh)
- low = Series(np.random.randn(len(idxl)), idxl)
- _, ax = self.plt.subplots()
- low.plot(ax=ax)
- ax = high.plot(secondary_y=True, ax=ax)
- for line in ax.get_lines():
- assert PeriodIndex(line.get_xdata()).freq == "D"
- assert hasattr(ax, "left_ax")
- assert not hasattr(ax, "right_ax")
- for line in ax.left_ax.get_lines():
- assert PeriodIndex(line.get_xdata()).freq == "D"
- def test_secondary_legend(self):
- fig = self.plt.figure()
- ax = fig.add_subplot(211)
- # ts
- df = tm.makeTimeDataFrame()
- df.plot(secondary_y=["A", "B"], ax=ax)
- leg = ax.get_legend()
- assert len(leg.get_lines()) == 4
- assert leg.get_texts()[0].get_text() == "A (right)"
- assert leg.get_texts()[1].get_text() == "B (right)"
- assert leg.get_texts()[2].get_text() == "C"
- assert leg.get_texts()[3].get_text() == "D"
- assert ax.right_ax.get_legend() is None
- colors = set()
- for line in leg.get_lines():
- colors.add(line.get_color())
- # TODO: color cycle problems
- assert len(colors) == 4
- self.plt.close(fig)
- fig = self.plt.figure()
- ax = fig.add_subplot(211)
- df.plot(secondary_y=["A", "C"], mark_right=False, ax=ax)
- leg = ax.get_legend()
- assert len(leg.get_lines()) == 4
- assert leg.get_texts()[0].get_text() == "A"
- assert leg.get_texts()[1].get_text() == "B"
- assert leg.get_texts()[2].get_text() == "C"
- assert leg.get_texts()[3].get_text() == "D"
- self.plt.close(fig)
- fig, ax = self.plt.subplots()
- df.plot(kind="bar", secondary_y=["A"], ax=ax)
- leg = ax.get_legend()
- assert leg.get_texts()[0].get_text() == "A (right)"
- assert leg.get_texts()[1].get_text() == "B"
- self.plt.close(fig)
- fig, ax = self.plt.subplots()
- df.plot(kind="bar", secondary_y=["A"], mark_right=False, ax=ax)
- leg = ax.get_legend()
- assert leg.get_texts()[0].get_text() == "A"
- assert leg.get_texts()[1].get_text() == "B"
- self.plt.close(fig)
- fig = self.plt.figure()
- ax = fig.add_subplot(211)
- df = tm.makeTimeDataFrame()
- ax = df.plot(secondary_y=["C", "D"], ax=ax)
- leg = ax.get_legend()
- assert len(leg.get_lines()) == 4
- assert ax.right_ax.get_legend() is None
- colors = set()
- for line in leg.get_lines():
- colors.add(line.get_color())
- # TODO: color cycle problems
- assert len(colors) == 4
- self.plt.close(fig)
- # non-ts
- df = tm.makeDataFrame()
- fig = self.plt.figure()
- ax = fig.add_subplot(211)
- ax = df.plot(secondary_y=["A", "B"], ax=ax)
- leg = ax.get_legend()
- assert len(leg.get_lines()) == 4
- assert ax.right_ax.get_legend() is None
- colors = set()
- for line in leg.get_lines():
- colors.add(line.get_color())
- # TODO: color cycle problems
- assert len(colors) == 4
- self.plt.close()
- fig = self.plt.figure()
- ax = fig.add_subplot(211)
- ax = df.plot(secondary_y=["C", "D"], ax=ax)
- leg = ax.get_legend()
- assert len(leg.get_lines()) == 4
- assert ax.right_ax.get_legend() is None
- colors = set()
- for line in leg.get_lines():
- colors.add(line.get_color())
- # TODO: color cycle problems
- assert len(colors) == 4
- @pytest.mark.xfail(reason="Api changed in 3.6.0")
- def test_format_date_axis(self):
- rng = date_range("1/1/2012", periods=12, freq="M")
- df = DataFrame(np.random.randn(len(rng), 3), rng)
- _, ax = self.plt.subplots()
- ax = df.plot(ax=ax)
- xaxis = ax.get_xaxis()
- for line in xaxis.get_ticklabels():
- if len(line.get_text()) > 0:
- assert line.get_rotation() == 30
- def test_ax_plot(self):
- x = date_range(start="2012-01-02", periods=10, freq="D")
- y = list(range(len(x)))
- _, ax = self.plt.subplots()
- lines = ax.plot(x, y, label="Y")
- tm.assert_index_equal(DatetimeIndex(lines[0].get_xdata()), x)
- def test_mpl_nopandas(self):
- dates = [date(2008, 12, 31), date(2009, 1, 31)]
- values1 = np.arange(10.0, 11.0, 0.5)
- values2 = np.arange(11.0, 12.0, 0.5)
- kw = {"fmt": "-", "lw": 4}
- _, ax = self.plt.subplots()
- ax.plot_date([x.toordinal() for x in dates], values1, **kw)
- ax.plot_date([x.toordinal() for x in dates], values2, **kw)
- line1, line2 = ax.get_lines()
- exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
- tm.assert_numpy_array_equal(line1.get_xydata()[:, 0], exp)
- exp = np.array([x.toordinal() for x in dates], dtype=np.float64)
- tm.assert_numpy_array_equal(line2.get_xydata()[:, 0], exp)
- def test_irregular_ts_shared_ax_xlim(self):
- # GH 2960
- from pandas.plotting._matplotlib.converter import DatetimeConverter
- ts = tm.makeTimeSeries()[:20]
- ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
- # plot the left section of the irregular series, then the right section
- _, ax = self.plt.subplots()
- ts_irregular[:5].plot(ax=ax)
- ts_irregular[5:].plot(ax=ax)
- # check that axis limits are correct
- left, right = ax.get_xlim()
- assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
- assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
- def test_secondary_y_non_ts_xlim(self):
- # GH 3490 - non-timeseries with secondary y
- index_1 = [1, 2, 3, 4]
- index_2 = [5, 6, 7, 8]
- s1 = Series(1, index=index_1)
- s2 = Series(2, index=index_2)
- _, ax = self.plt.subplots()
- s1.plot(ax=ax)
- left_before, right_before = ax.get_xlim()
- s2.plot(secondary_y=True, ax=ax)
- left_after, right_after = ax.get_xlim()
- assert left_before >= left_after
- assert right_before < right_after
- def test_secondary_y_regular_ts_xlim(self):
- # GH 3490 - regular-timeseries with secondary y
- index_1 = date_range(start="2000-01-01", periods=4, freq="D")
- index_2 = date_range(start="2000-01-05", periods=4, freq="D")
- s1 = Series(1, index=index_1)
- s2 = Series(2, index=index_2)
- _, ax = self.plt.subplots()
- s1.plot(ax=ax)
- left_before, right_before = ax.get_xlim()
- s2.plot(secondary_y=True, ax=ax)
- left_after, right_after = ax.get_xlim()
- assert left_before >= left_after
- assert right_before < right_after
- def test_secondary_y_mixed_freq_ts_xlim(self):
- # GH 3490 - mixed frequency timeseries with secondary y
- rng = date_range("2000-01-01", periods=10000, freq="min")
- ts = Series(1, index=rng)
- _, ax = self.plt.subplots()
- ts.plot(ax=ax)
- left_before, right_before = ax.get_xlim()
- ts.resample("D").mean().plot(secondary_y=True, ax=ax)
- left_after, right_after = ax.get_xlim()
- # a downsample should not have changed either limit
- assert left_before == left_after
- assert right_before == right_after
- def test_secondary_y_irregular_ts_xlim(self):
- # GH 3490 - irregular-timeseries with secondary y
- from pandas.plotting._matplotlib.converter import DatetimeConverter
- ts = tm.makeTimeSeries()[:20]
- ts_irregular = ts[[1, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 17, 18]]
- _, ax = self.plt.subplots()
- ts_irregular[:5].plot(ax=ax)
- # plot higher-x values on secondary axis
- ts_irregular[5:].plot(secondary_y=True, ax=ax)
- # ensure secondary limits aren't overwritten by plot on primary
- ts_irregular[:5].plot(ax=ax)
- left, right = ax.get_xlim()
- assert left <= DatetimeConverter.convert(ts_irregular.index.min(), "", ax)
- assert right >= DatetimeConverter.convert(ts_irregular.index.max(), "", ax)
- def test_plot_outofbounds_datetime(self):
- # 2579 - checking this does not raise
- values = [date(1677, 1, 1), date(1677, 1, 2)]
- _, ax = self.plt.subplots()
- ax.plot(values)
- values = [datetime(1677, 1, 1, 12), datetime(1677, 1, 2, 12)]
- ax.plot(values)
- def test_format_timedelta_ticks_narrow(self):
- expected_labels = [f"00:00:00.0000000{i:0>2d}" for i in np.arange(10)]
- rng = timedelta_range("0", periods=10, freq="ns")
- df = DataFrame(np.random.randn(len(rng), 3), rng)
- fig, ax = self.plt.subplots()
- df.plot(fontsize=2, ax=ax)
- self.plt.draw()
- labels = ax.get_xticklabels()
- result_labels = [x.get_text() for x in labels]
- assert len(result_labels) == len(expected_labels)
- assert result_labels == expected_labels
- def test_format_timedelta_ticks_wide(self):
- expected_labels = [
- "00:00:00",
- "1 days 03:46:40",
- "2 days 07:33:20",
- "3 days 11:20:00",
- "4 days 15:06:40",
- "5 days 18:53:20",
- "6 days 22:40:00",
- "8 days 02:26:40",
- "9 days 06:13:20",
- ]
- rng = timedelta_range("0", periods=10, freq="1 d")
- df = DataFrame(np.random.randn(len(rng), 3), rng)
- fig, ax = self.plt.subplots()
- ax = df.plot(fontsize=2, ax=ax)
- self.plt.draw()
- labels = ax.get_xticklabels()
- result_labels = [x.get_text() for x in labels]
- assert len(result_labels) == len(expected_labels)
- assert result_labels == expected_labels
- def test_timedelta_plot(self):
- # test issue #8711
- s = Series(range(5), timedelta_range("1day", periods=5))
- _, ax = self.plt.subplots()
- _check_plot_works(s.plot, ax=ax)
- # test long period
- index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 d")
- s = Series(np.random.randn(len(index)), index)
- _, ax = self.plt.subplots()
- _check_plot_works(s.plot, ax=ax)
- # test short period
- index = timedelta_range("1 day 2 hr 30 min 10 s", periods=10, freq="1 ns")
- s = Series(np.random.randn(len(index)), index)
- _, ax = self.plt.subplots()
- _check_plot_works(s.plot, ax=ax)
- def test_hist(self):
- # https://github.com/matplotlib/matplotlib/issues/8459
- rng = date_range("1/1/2011", periods=10, freq="H")
- x = rng
- w1 = np.arange(0, 1, 0.1)
- w2 = np.arange(0, 1, 0.1)[::-1]
- _, ax = self.plt.subplots()
- ax.hist([x, x], weights=[w1, w2])
- def test_overlapping_datetime(self):
- # GB 6608
- s1 = Series(
- [1, 2, 3],
- index=[
- datetime(1995, 12, 31),
- datetime(2000, 12, 31),
- datetime(2005, 12, 31),
- ],
- )
- s2 = Series(
- [1, 2, 3],
- index=[
- datetime(1997, 12, 31),
- datetime(2003, 12, 31),
- datetime(2008, 12, 31),
- ],
- )
- # plot first series, then add the second series to those axes,
- # then try adding the first series again
- _, ax = self.plt.subplots()
- s1.plot(ax=ax)
- s2.plot(ax=ax)
- s1.plot(ax=ax)
- @pytest.mark.xfail(reason="GH9053 matplotlib does not use ax.xaxis.converter")
- def test_add_matplotlib_datetime64(self):
- # GH9053 - ensure that a plot with PeriodConverter still understands
- # datetime64 data. This still fails because matplotlib overrides the
- # ax.xaxis.converter with a DatetimeConverter
- s = Series(np.random.randn(10), index=date_range("1970-01-02", periods=10))
- ax = s.plot()
- with tm.assert_produces_warning(DeprecationWarning):
- # multi-dimensional indexing
- ax.plot(s.index, s.values, color="g")
- l1, l2 = ax.lines
- tm.assert_numpy_array_equal(l1.get_xydata(), l2.get_xydata())
- def test_matplotlib_scatter_datetime64(self):
- # https://github.com/matplotlib/matplotlib/issues/11391
- df = DataFrame(np.random.RandomState(0).rand(10, 2), columns=["x", "y"])
- df["time"] = date_range("2018-01-01", periods=10, freq="D")
- fig, ax = self.plt.subplots()
- ax.scatter(x="time", y="y", data=df)
- self.plt.draw()
- label = ax.get_xticklabels()[0]
- expected = "2018-01-01"
- assert label.get_text() == expected
- def test_check_xticks_rot(self):
- # https://github.com/pandas-dev/pandas/issues/29460
- # regular time series
- x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-03"])
- df = DataFrame({"x": x, "y": [1, 2, 3]})
- axes = df.plot(x="x", y="y")
- self._check_ticks_props(axes, xrot=0)
- # irregular time series
- x = to_datetime(["2020-05-01", "2020-05-02", "2020-05-04"])
- df = DataFrame({"x": x, "y": [1, 2, 3]})
- axes = df.plot(x="x", y="y")
- self._check_ticks_props(axes, xrot=30)
- # use timeseries index or not
- axes = df.set_index("x").plot(y="y", use_index=True)
- self._check_ticks_props(axes, xrot=30)
- axes = df.set_index("x").plot(y="y", use_index=False)
- self._check_ticks_props(axes, xrot=0)
- # separate subplots
- axes = df.plot(x="x", y="y", subplots=True, sharex=True)
- self._check_ticks_props(axes, xrot=30)
- axes = df.plot(x="x", y="y", subplots=True, sharex=False)
- self._check_ticks_props(axes, xrot=0)
- def _check_plot_works(f, freq=None, series=None, *args, **kwargs):
- import matplotlib.pyplot as plt
- fig = plt.gcf()
- try:
- plt.clf()
- ax = fig.add_subplot(211)
- orig_ax = kwargs.pop("ax", plt.gca())
- orig_axfreq = getattr(orig_ax, "freq", None)
- ret = f(*args, **kwargs)
- assert ret is not None # do something more intelligent
- ax = kwargs.pop("ax", plt.gca())
- if series is not None:
- dfreq = series.index.freq
- if isinstance(dfreq, BaseOffset):
- dfreq = dfreq.rule_code
- if orig_axfreq is None:
- assert ax.freq == dfreq
- if freq is not None and orig_axfreq is None:
- assert ax.freq == freq
- ax = fig.add_subplot(212)
- kwargs["ax"] = ax
- ret = f(*args, **kwargs)
- assert ret is not None # TODO: do something more intelligent
- with tm.ensure_clean(return_filelike=True) as path:
- plt.savefig(path)
- # GH18439, GH#24088, statsmodels#4772
- with tm.ensure_clean(return_filelike=True) as path:
- pickle.dump(fig, path)
- finally:
- plt.close(fig)
|