123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- from contextlib import closing
- from pathlib import Path
- import re
- import numpy as np
- import pytest
- from pandas._libs.tslibs import Timestamp
- from pandas.compat import is_platform_windows
- import pandas as pd
- from pandas import (
- DataFrame,
- HDFStore,
- Index,
- Series,
- _testing as tm,
- read_hdf,
- )
- from pandas.tests.io.pytables.common import (
- _maybe_remove,
- ensure_clean_store,
- )
- from pandas.util import _test_decorators as td
- from pandas.io.pytables import TableIterator
- pytestmark = pytest.mark.single_cpu
- def test_read_missing_key_close_store(tmp_path, setup_path):
- # GH 25766
- path = tmp_path / setup_path
- df = DataFrame({"a": range(2), "b": range(2)})
- df.to_hdf(path, "k1")
- with pytest.raises(KeyError, match="'No object named k2 in the file'"):
- read_hdf(path, "k2")
- # smoke test to test that file is properly closed after
- # read with KeyError before another write
- df.to_hdf(path, "k2")
- def test_read_missing_key_opened_store(tmp_path, setup_path):
- # GH 28699
- path = tmp_path / setup_path
- df = DataFrame({"a": range(2), "b": range(2)})
- df.to_hdf(path, "k1")
- with HDFStore(path, "r") as store:
- with pytest.raises(KeyError, match="'No object named k2 in the file'"):
- read_hdf(store, "k2")
- # Test that the file is still open after a KeyError and that we can
- # still read from it.
- read_hdf(store, "k1")
- def test_read_column(setup_path):
- df = tm.makeTimeDataFrame()
- with ensure_clean_store(setup_path) as store:
- _maybe_remove(store, "df")
- # GH 17912
- # HDFStore.select_column should raise a KeyError
- # exception if the key is not a valid store
- with pytest.raises(KeyError, match="No object named df in the file"):
- store.select_column("df", "index")
- store.append("df", df)
- # error
- with pytest.raises(
- KeyError, match=re.escape("'column [foo] not found in the table'")
- ):
- store.select_column("df", "foo")
- msg = re.escape("select_column() got an unexpected keyword argument 'where'")
- with pytest.raises(TypeError, match=msg):
- store.select_column("df", "index", where=["index>5"])
- # valid
- result = store.select_column("df", "index")
- tm.assert_almost_equal(result.values, Series(df.index).values)
- assert isinstance(result, Series)
- # not a data indexable column
- msg = re.escape(
- "column [values_block_0] can not be extracted individually; "
- "it is not data indexable"
- )
- with pytest.raises(ValueError, match=msg):
- store.select_column("df", "values_block_0")
- # a data column
- df2 = df.copy()
- df2["string"] = "foo"
- store.append("df2", df2, data_columns=["string"])
- result = store.select_column("df2", "string")
- tm.assert_almost_equal(result.values, df2["string"].values)
- # a data column with NaNs, result excludes the NaNs
- df3 = df.copy()
- df3["string"] = "foo"
- df3.loc[df3.index[4:6], "string"] = np.nan
- store.append("df3", df3, data_columns=["string"])
- result = store.select_column("df3", "string")
- tm.assert_almost_equal(result.values, df3["string"].values)
- # start/stop
- result = store.select_column("df3", "string", start=2)
- tm.assert_almost_equal(result.values, df3["string"].values[2:])
- result = store.select_column("df3", "string", start=-2)
- tm.assert_almost_equal(result.values, df3["string"].values[-2:])
- result = store.select_column("df3", "string", stop=2)
- tm.assert_almost_equal(result.values, df3["string"].values[:2])
- result = store.select_column("df3", "string", stop=-2)
- tm.assert_almost_equal(result.values, df3["string"].values[:-2])
- result = store.select_column("df3", "string", start=2, stop=-2)
- tm.assert_almost_equal(result.values, df3["string"].values[2:-2])
- result = store.select_column("df3", "string", start=-2, stop=2)
- tm.assert_almost_equal(result.values, df3["string"].values[-2:2])
- # GH 10392 - make sure column name is preserved
- df4 = DataFrame({"A": np.random.randn(10), "B": "foo"})
- store.append("df4", df4, data_columns=True)
- expected = df4["B"]
- result = store.select_column("df4", "B")
- tm.assert_series_equal(result, expected)
- def test_pytables_native_read(datapath):
- with ensure_clean_store(
- datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r"
- ) as store:
- d2 = store["detector/readout"]
- assert isinstance(d2, DataFrame)
- @pytest.mark.skipif(is_platform_windows(), reason="native2 read fails oddly on windows")
- def test_pytables_native2_read(datapath):
- with ensure_clean_store(
- datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r"
- ) as store:
- str(store)
- d1 = store["detector"]
- assert isinstance(d1, DataFrame)
- def test_legacy_table_fixed_format_read_py2(datapath):
- # GH 24510
- # legacy table with fixed format written in Python 2
- with ensure_clean_store(
- datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r"
- ) as store:
- result = store.select("df")
- expected = DataFrame(
- [[1, 2, 3, "D"]],
- columns=["A", "B", "C", "D"],
- index=Index(["ABC"], name="INDEX_NAME"),
- )
- tm.assert_frame_equal(expected, result)
- def test_legacy_table_fixed_format_read_datetime_py2(datapath):
- # GH 31750
- # legacy table with fixed format and datetime64 column written in Python 2
- with ensure_clean_store(
- datapath("io", "data", "legacy_hdf", "legacy_table_fixed_datetime_py2.h5"),
- mode="r",
- ) as store:
- result = store.select("df")
- expected = DataFrame(
- [[Timestamp("2020-02-06T18:00")]],
- columns=["A"],
- index=Index(["date"]),
- )
- tm.assert_frame_equal(expected, result)
- def test_legacy_table_read_py2(datapath):
- # issue: 24925
- # legacy table written in Python 2
- with ensure_clean_store(
- datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r"
- ) as store:
- result = store.select("table")
- expected = DataFrame({"a": ["a", "b"], "b": [2, 3]})
- tm.assert_frame_equal(expected, result)
- def test_read_hdf_open_store(tmp_path, setup_path):
- # GH10330
- # No check for non-string path_or-buf, and no test of open store
- df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
- df.index.name = "letters"
- df = df.set_index(keys="E", append=True)
- path = tmp_path / setup_path
- df.to_hdf(path, "df", mode="w")
- direct = read_hdf(path, "df")
- with HDFStore(path, mode="r") as store:
- indirect = read_hdf(store, "df")
- tm.assert_frame_equal(direct, indirect)
- assert store.is_open
- def test_read_hdf_index_not_view(tmp_path, setup_path):
- # GH 37441
- # Ensure that the index of the DataFrame is not a view
- # into the original recarray that pytables reads in
- df = DataFrame(np.random.rand(4, 5), index=[0, 1, 2, 3], columns=list("ABCDE"))
- path = tmp_path / setup_path
- df.to_hdf(path, "df", mode="w", format="table")
- df2 = read_hdf(path, "df")
- assert df2.index._data.base is None
- tm.assert_frame_equal(df, df2)
- def test_read_hdf_iterator(tmp_path, setup_path):
- df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
- df.index.name = "letters"
- df = df.set_index(keys="E", append=True)
- path = tmp_path / setup_path
- df.to_hdf(path, "df", mode="w", format="t")
- direct = read_hdf(path, "df")
- iterator = read_hdf(path, "df", iterator=True)
- with closing(iterator.store):
- assert isinstance(iterator, TableIterator)
- indirect = next(iterator.__iter__())
- tm.assert_frame_equal(direct, indirect)
- def test_read_nokey(tmp_path, setup_path):
- # GH10443
- df = DataFrame(np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE"))
- # Categorical dtype not supported for "fixed" format. So no need
- # to test with that dtype in the dataframe here.
- path = tmp_path / setup_path
- df.to_hdf(path, "df", mode="a")
- reread = read_hdf(path)
- tm.assert_frame_equal(df, reread)
- df.to_hdf(path, "df2", mode="a")
- msg = "key must be provided when HDF5 file contains multiple datasets."
- with pytest.raises(ValueError, match=msg):
- read_hdf(path)
- def test_read_nokey_table(tmp_path, setup_path):
- # GH13231
- df = DataFrame({"i": range(5), "c": Series(list("abacd"), dtype="category")})
- path = tmp_path / setup_path
- df.to_hdf(path, "df", mode="a", format="table")
- reread = read_hdf(path)
- tm.assert_frame_equal(df, reread)
- df.to_hdf(path, "df2", mode="a", format="table")
- msg = "key must be provided when HDF5 file contains multiple datasets."
- with pytest.raises(ValueError, match=msg):
- read_hdf(path)
- def test_read_nokey_empty(tmp_path, setup_path):
- path = tmp_path / setup_path
- store = HDFStore(path)
- store.close()
- msg = re.escape(
- "Dataset(s) incompatible with Pandas data types, not table, or no "
- "datasets found in HDF5 file."
- )
- with pytest.raises(ValueError, match=msg):
- read_hdf(path)
- def test_read_from_pathlib_path(tmp_path, setup_path):
- # GH11773
- expected = DataFrame(
- np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE")
- )
- filename = tmp_path / setup_path
- path_obj = Path(filename)
- expected.to_hdf(path_obj, "df", mode="a")
- actual = read_hdf(path_obj, "df")
- tm.assert_frame_equal(expected, actual)
- @td.skip_if_no("py.path")
- def test_read_from_py_localpath(tmp_path, setup_path):
- # GH11773
- from py.path import local as LocalPath
- expected = DataFrame(
- np.random.rand(4, 5), index=list("abcd"), columns=list("ABCDE")
- )
- filename = tmp_path / setup_path
- path_obj = LocalPath(filename)
- expected.to_hdf(path_obj, "df", mode="a")
- actual = read_hdf(path_obj, "df")
- tm.assert_frame_equal(expected, actual)
- @pytest.mark.parametrize("format", ["fixed", "table"])
- def test_read_hdf_series_mode_r(tmp_path, format, setup_path):
- # GH 16583
- # Tests that reading a Series saved to an HDF file
- # still works if a mode='r' argument is supplied
- series = tm.makeFloatSeries()
- path = tmp_path / setup_path
- series.to_hdf(path, key="data", format=format)
- result = read_hdf(path, key="data", mode="r")
- tm.assert_series_equal(result, series)
- def test_read_py2_hdf_file_in_py3(datapath):
- # GH 16781
- # tests reading a PeriodIndex DataFrame written in Python2 in Python3
- # the file was generated in Python 2.7 like so:
- #
- # df = DataFrame([1.,2,3], index=pd.PeriodIndex(
- # ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
- # df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p')
- expected = DataFrame(
- [1.0, 2, 3],
- index=pd.PeriodIndex(["2015-01-01", "2015-01-02", "2015-01-05"], freq="B"),
- )
- with ensure_clean_store(
- datapath(
- "io", "data", "legacy_hdf", "periodindex_0.20.1_x86_64_darwin_2.7.13.h5"
- ),
- mode="r",
- ) as store:
- result = store["p"]
- tm.assert_frame_equal(result, expected)
|