123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- import pytest
- import pandas as pd
- import pandas._testing as tm
- @pytest.mark.parametrize(
- "values, dtype",
- [
- ([], "object"),
- ([1, 2, 3], "int64"),
- ([1.0, 2.0, 3.0], "float64"),
- (["a", "b", "c"], "object"),
- (["a", "b", "c"], "string"),
- ([1, 2, 3], "datetime64[ns]"),
- ([1, 2, 3], "datetime64[ns, CET]"),
- ([1, 2, 3], "timedelta64[ns]"),
- (["2000", "2001", "2002"], "Period[D]"),
- ([1, 0, 3], "Sparse"),
- ([pd.Interval(0, 1), pd.Interval(1, 2), pd.Interval(3, 4)], "interval"),
- ],
- )
- @pytest.mark.parametrize(
- "mask", [[True, False, False], [True, True, True], [False, False, False]]
- )
- @pytest.mark.parametrize("indexer_class", [list, pd.array, pd.Index, pd.Series])
- @pytest.mark.parametrize("frame", [True, False])
- def test_series_mask_boolean(values, dtype, mask, indexer_class, frame):
- # In case len(values) < 3
- index = ["a", "b", "c"][: len(values)]
- mask = mask[: len(values)]
- obj = pd.Series(values, dtype=dtype, index=index)
- if frame:
- if len(values) == 0:
- # Otherwise obj is an empty DataFrame with shape (0, 1)
- obj = pd.DataFrame(dtype=dtype, index=index)
- else:
- obj = obj.to_frame()
- if indexer_class is pd.array:
- mask = pd.array(mask, dtype="boolean")
- elif indexer_class is pd.Series:
- mask = pd.Series(mask, index=obj.index, dtype="boolean")
- else:
- mask = indexer_class(mask)
- expected = obj[mask]
- result = obj[mask]
- tm.assert_equal(result, expected)
- if indexer_class is pd.Series:
- msg = "iLocation based boolean indexing cannot use an indexable as a mask"
- with pytest.raises(ValueError, match=msg):
- result = obj.iloc[mask]
- tm.assert_equal(result, expected)
- else:
- result = obj.iloc[mask]
- tm.assert_equal(result, expected)
- result = obj.loc[mask]
- tm.assert_equal(result, expected)
- def test_na_treated_as_false(frame_or_series, indexer_sli):
- # https://github.com/pandas-dev/pandas/issues/31503
- obj = frame_or_series([1, 2, 3])
- mask = pd.array([True, False, None], dtype="boolean")
- result = indexer_sli(obj)[mask]
- expected = indexer_sli(obj)[mask.fillna(False)]
- tm.assert_equal(result, expected)
|