123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904 |
- from __future__ import annotations
- from datetime import (
- datetime,
- timedelta,
- )
- import itertools
- import numpy as np
- import pytest
- from pandas.compat import (
- IS64,
- is_platform_windows,
- )
- import pandas as pd
- import pandas._testing as tm
- ###############################################################
- # Index / Series common tests which may trigger dtype coercions
- ###############################################################
- @pytest.fixture(autouse=True, scope="class")
- def check_comprehensiveness(request):
- # Iterate over combination of dtype, method and klass
- # and ensure that each are contained within a collected test
- cls = request.cls
- combos = itertools.product(cls.klasses, cls.dtypes, [cls.method])
- def has_test(combo):
- klass, dtype, method = combo
- cls_funcs = request.node.session.items
- return any(
- klass in x.name and dtype in x.name and method in x.name for x in cls_funcs
- )
- opts = request.config.option
- if opts.lf or opts.keyword:
- # If we are running with "last-failed" or -k foo, we expect to only
- # run a subset of tests.
- yield
- else:
- for combo in combos:
- if not has_test(combo):
- raise AssertionError(
- f"test method is not defined: {cls.__name__}, {combo}"
- )
- yield
- class CoercionBase:
- klasses = ["index", "series"]
- dtypes = [
- "object",
- "int64",
- "float64",
- "complex128",
- "bool",
- "datetime64",
- "datetime64tz",
- "timedelta64",
- "period",
- ]
- @property
- def method(self):
- raise NotImplementedError(self)
- class TestSetitemCoercion(CoercionBase):
- method = "setitem"
- # disable comprehensiveness tests, as most of these have been moved to
- # tests.series.indexing.test_setitem in SetitemCastingEquivalents subclasses.
- klasses: list[str] = []
- def test_setitem_series_no_coercion_from_values_list(self):
- # GH35865 - int casted to str when internally calling np.array(ser.values)
- ser = pd.Series(["a", 1])
- ser[:] = list(ser.values)
- expected = pd.Series(["a", 1])
- tm.assert_series_equal(ser, expected)
- def _assert_setitem_index_conversion(
- self, original_series, loc_key, expected_index, expected_dtype
- ):
- """test index's coercion triggered by assign key"""
- temp = original_series.copy()
- # GH#33469 pre-2.0 with int loc_key and temp.index.dtype == np.float64
- # `temp[loc_key] = 5` treated loc_key as positional
- temp[loc_key] = 5
- exp = pd.Series([1, 2, 3, 4, 5], index=expected_index)
- tm.assert_series_equal(temp, exp)
- # check dtype explicitly for sure
- assert temp.index.dtype == expected_dtype
- temp = original_series.copy()
- temp.loc[loc_key] = 5
- exp = pd.Series([1, 2, 3, 4, 5], index=expected_index)
- tm.assert_series_equal(temp, exp)
- # check dtype explicitly for sure
- assert temp.index.dtype == expected_dtype
- @pytest.mark.parametrize(
- "val,exp_dtype", [("x", object), (5, IndexError), (1.1, object)]
- )
- def test_setitem_index_object(self, val, exp_dtype):
- obj = pd.Series([1, 2, 3, 4], index=list("abcd"))
- assert obj.index.dtype == object
- if exp_dtype is IndexError:
- temp = obj.copy()
- msg = "index 5 is out of bounds for axis 0 with size 4"
- with pytest.raises(exp_dtype, match=msg):
- temp[5] = 5
- else:
- exp_index = pd.Index(list("abcd") + [val])
- self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
- @pytest.mark.parametrize(
- "val,exp_dtype", [(5, np.int64), (1.1, np.float64), ("x", object)]
- )
- def test_setitem_index_int64(self, val, exp_dtype):
- obj = pd.Series([1, 2, 3, 4])
- assert obj.index.dtype == np.int64
- exp_index = pd.Index([0, 1, 2, 3, val])
- self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
- @pytest.mark.parametrize(
- "val,exp_dtype", [(5, np.float64), (5.1, np.float64), ("x", object)]
- )
- def test_setitem_index_float64(self, val, exp_dtype, request):
- obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1])
- assert obj.index.dtype == np.float64
- exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, val])
- self._assert_setitem_index_conversion(obj, val, exp_index, exp_dtype)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_series_period(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_complex128(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_bool(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_datetime64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_datetime64tz(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_timedelta64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_setitem_index_period(self):
- raise NotImplementedError
- class TestInsertIndexCoercion(CoercionBase):
- klasses = ["index"]
- method = "insert"
- def _assert_insert_conversion(self, original, value, expected, expected_dtype):
- """test coercion triggered by insert"""
- target = original.copy()
- res = target.insert(1, value)
- tm.assert_index_equal(res, expected)
- assert res.dtype == expected_dtype
- @pytest.mark.parametrize(
- "insert, coerced_val, coerced_dtype",
- [
- (1, 1, object),
- (1.1, 1.1, object),
- (False, False, object),
- ("x", "x", object),
- ],
- )
- def test_insert_index_object(self, insert, coerced_val, coerced_dtype):
- obj = pd.Index(list("abcd"))
- assert obj.dtype == object
- exp = pd.Index(["a", coerced_val, "b", "c", "d"])
- self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
- @pytest.mark.parametrize(
- "insert, coerced_val, coerced_dtype",
- [
- (1, 1, None),
- (1.1, 1.1, np.float64),
- (False, False, object), # GH#36319
- ("x", "x", object),
- ],
- )
- def test_insert_int_index(
- self, any_int_numpy_dtype, insert, coerced_val, coerced_dtype
- ):
- dtype = any_int_numpy_dtype
- obj = pd.Index([1, 2, 3, 4], dtype=dtype)
- coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype
- exp = pd.Index([1, coerced_val, 2, 3, 4], dtype=coerced_dtype)
- self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
- @pytest.mark.parametrize(
- "insert, coerced_val, coerced_dtype",
- [
- (1, 1.0, None),
- (1.1, 1.1, np.float64),
- (False, False, object), # GH#36319
- ("x", "x", object),
- ],
- )
- def test_insert_float_index(
- self, float_numpy_dtype, insert, coerced_val, coerced_dtype
- ):
- dtype = float_numpy_dtype
- obj = pd.Index([1.0, 2.0, 3.0, 4.0], dtype=dtype)
- coerced_dtype = coerced_dtype if coerced_dtype is not None else dtype
- exp = pd.Index([1.0, coerced_val, 2.0, 3.0, 4.0], dtype=coerced_dtype)
- self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [
- (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
- (pd.Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]"),
- ],
- ids=["datetime64", "datetime64tz"],
- )
- @pytest.mark.parametrize(
- "insert_value",
- [pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-01", tz="Asia/Tokyo"), 1],
- )
- def test_insert_index_datetimes(self, fill_val, exp_dtype, insert_value):
- obj = pd.DatetimeIndex(
- ["2011-01-01", "2011-01-02", "2011-01-03", "2011-01-04"], tz=fill_val.tz
- )
- assert obj.dtype == exp_dtype
- exp = pd.DatetimeIndex(
- ["2011-01-01", fill_val.date(), "2011-01-02", "2011-01-03", "2011-01-04"],
- tz=fill_val.tz,
- )
- self._assert_insert_conversion(obj, fill_val, exp, exp_dtype)
- if fill_val.tz:
- # mismatched tzawareness
- ts = pd.Timestamp("2012-01-01")
- result = obj.insert(1, ts)
- expected = obj.astype(object).insert(1, ts)
- assert expected.dtype == object
- tm.assert_index_equal(result, expected)
- ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo")
- result = obj.insert(1, ts)
- # once deprecation is enforced:
- expected = obj.insert(1, ts.tz_convert(obj.dtype.tz))
- assert expected.dtype == obj.dtype
- tm.assert_index_equal(result, expected)
- else:
- # mismatched tzawareness
- ts = pd.Timestamp("2012-01-01", tz="Asia/Tokyo")
- result = obj.insert(1, ts)
- expected = obj.astype(object).insert(1, ts)
- assert expected.dtype == object
- tm.assert_index_equal(result, expected)
- item = 1
- result = obj.insert(1, item)
- expected = obj.astype(object).insert(1, item)
- assert expected[1] == item
- assert expected.dtype == object
- tm.assert_index_equal(result, expected)
- def test_insert_index_timedelta64(self):
- obj = pd.TimedeltaIndex(["1 day", "2 day", "3 day", "4 day"])
- assert obj.dtype == "timedelta64[ns]"
- # timedelta64 + timedelta64 => timedelta64
- exp = pd.TimedeltaIndex(["1 day", "10 day", "2 day", "3 day", "4 day"])
- self._assert_insert_conversion(
- obj, pd.Timedelta("10 day"), exp, "timedelta64[ns]"
- )
- for item in [pd.Timestamp("2012-01-01"), 1]:
- result = obj.insert(1, item)
- expected = obj.astype(object).insert(1, item)
- assert expected.dtype == object
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize(
- "insert, coerced_val, coerced_dtype",
- [
- (pd.Period("2012-01", freq="M"), "2012-01", "period[M]"),
- (pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-01"), object),
- (1, 1, object),
- ("x", "x", object),
- ],
- )
- def test_insert_index_period(self, insert, coerced_val, coerced_dtype):
- obj = pd.PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq="M")
- assert obj.dtype == "period[M]"
- data = [
- pd.Period("2011-01", freq="M"),
- coerced_val,
- pd.Period("2011-02", freq="M"),
- pd.Period("2011-03", freq="M"),
- pd.Period("2011-04", freq="M"),
- ]
- if isinstance(insert, pd.Period):
- exp = pd.PeriodIndex(data, freq="M")
- self._assert_insert_conversion(obj, insert, exp, coerced_dtype)
- # string that can be parsed to appropriate PeriodDtype
- self._assert_insert_conversion(obj, str(insert), exp, coerced_dtype)
- else:
- result = obj.insert(0, insert)
- expected = obj.astype(object).insert(0, insert)
- tm.assert_index_equal(result, expected)
- # TODO: ATM inserting '2012-01-01 00:00:00' when we have obj.freq=="M"
- # casts that string to Period[M], not clear that is desirable
- if not isinstance(insert, pd.Timestamp):
- # non-castable string
- result = obj.insert(0, str(insert))
- expected = obj.astype(object).insert(0, str(insert))
- tm.assert_index_equal(result, expected)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_insert_index_complex128(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_insert_index_bool(self):
- raise NotImplementedError
- class TestWhereCoercion(CoercionBase):
- method = "where"
- _cond = np.array([True, False, True, False])
- def _assert_where_conversion(
- self, original, cond, values, expected, expected_dtype
- ):
- """test coercion triggered by where"""
- target = original.copy()
- res = target.where(cond, values)
- tm.assert_equal(res, expected)
- assert res.dtype == expected_dtype
- def _construct_exp(self, obj, klass, fill_val, exp_dtype):
- if fill_val is True:
- values = klass([True, False, True, True])
- elif isinstance(fill_val, (datetime, np.datetime64)):
- values = pd.date_range(fill_val, periods=4)
- else:
- values = klass(x * fill_val for x in [5, 6, 7, 8])
- exp = klass([obj[0], values[1], obj[2], values[3]], dtype=exp_dtype)
- return values, exp
- def _run_test(self, obj, fill_val, klass, exp_dtype):
- cond = klass(self._cond)
- exp = klass([obj[0], fill_val, obj[2], fill_val], dtype=exp_dtype)
- self._assert_where_conversion(obj, cond, fill_val, exp, exp_dtype)
- values, exp = self._construct_exp(obj, klass, fill_val, exp_dtype)
- self._assert_where_conversion(obj, cond, values, exp, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [(1, object), (1.1, object), (1 + 1j, object), (True, object)],
- )
- def test_where_object(self, index_or_series, fill_val, exp_dtype):
- klass = index_or_series
- obj = klass(list("abcd"))
- assert obj.dtype == object
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [(1, np.int64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
- )
- def test_where_int64(self, index_or_series, fill_val, exp_dtype, request):
- klass = index_or_series
- obj = klass([1, 2, 3, 4])
- assert obj.dtype == np.int64
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val, exp_dtype",
- [(1, np.float64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
- )
- def test_where_float64(self, index_or_series, fill_val, exp_dtype, request):
- klass = index_or_series
- obj = klass([1.1, 2.2, 3.3, 4.4])
- assert obj.dtype == np.float64
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [
- (1, np.complex128),
- (1.1, np.complex128),
- (1 + 1j, np.complex128),
- (True, object),
- ],
- )
- def test_where_complex128(self, index_or_series, fill_val, exp_dtype):
- klass = index_or_series
- obj = klass([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j], dtype=np.complex128)
- assert obj.dtype == np.complex128
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [(1, object), (1.1, object), (1 + 1j, object), (True, np.bool_)],
- )
- def test_where_series_bool(self, fill_val, exp_dtype):
- klass = pd.Series # TODO: use index_or_series once we have Index[bool]
- obj = klass([True, False, True, False])
- assert obj.dtype == np.bool_
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.parametrize(
- "fill_val,exp_dtype",
- [
- (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
- (pd.Timestamp("2012-01-01", tz="US/Eastern"), object),
- ],
- ids=["datetime64", "datetime64tz"],
- )
- def test_where_datetime64(self, index_or_series, fill_val, exp_dtype):
- klass = index_or_series
- obj = klass(pd.date_range("2011-01-01", periods=4, freq="D")._with_freq(None))
- assert obj.dtype == "datetime64[ns]"
- fv = fill_val
- # do the check with each of the available datetime scalars
- if exp_dtype == "datetime64[ns]":
- for scalar in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
- self._run_test(obj, scalar, klass, exp_dtype)
- else:
- for scalar in [fv, fv.to_pydatetime()]:
- self._run_test(obj, fill_val, klass, exp_dtype)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_where_index_complex128(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_where_index_bool(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_where_series_timedelta64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_where_series_period(self):
- raise NotImplementedError
- @pytest.mark.parametrize(
- "value", [pd.Timedelta(days=9), timedelta(days=9), np.timedelta64(9, "D")]
- )
- def test_where_index_timedelta64(self, value):
- tdi = pd.timedelta_range("1 Day", periods=4)
- cond = np.array([True, False, False, True])
- expected = pd.TimedeltaIndex(["1 Day", value, value, "4 Days"])
- result = tdi.where(cond, value)
- tm.assert_index_equal(result, expected)
- # wrong-dtyped NaT
- dtnat = np.datetime64("NaT", "ns")
- expected = pd.Index([tdi[0], dtnat, dtnat, tdi[3]], dtype=object)
- assert expected[1] is dtnat
- result = tdi.where(cond, dtnat)
- tm.assert_index_equal(result, expected)
- def test_where_index_period(self):
- dti = pd.date_range("2016-01-01", periods=3, freq="QS")
- pi = dti.to_period("Q")
- cond = np.array([False, True, False])
- # Passing a valid scalar
- value = pi[-1] + pi.freq * 10
- expected = pd.PeriodIndex([value, pi[1], value])
- result = pi.where(cond, value)
- tm.assert_index_equal(result, expected)
- # Case passing ndarray[object] of Periods
- other = np.asarray(pi + pi.freq * 10, dtype=object)
- result = pi.where(cond, other)
- expected = pd.PeriodIndex([other[0], pi[1], other[2]])
- tm.assert_index_equal(result, expected)
- # Passing a mismatched scalar -> casts to object
- td = pd.Timedelta(days=4)
- expected = pd.Index([td, pi[1], td], dtype=object)
- result = pi.where(cond, td)
- tm.assert_index_equal(result, expected)
- per = pd.Period("2020-04-21", "D")
- expected = pd.Index([per, pi[1], per], dtype=object)
- result = pi.where(cond, per)
- tm.assert_index_equal(result, expected)
- class TestFillnaSeriesCoercion(CoercionBase):
- # not indexing, but place here for consistency
- method = "fillna"
- @pytest.mark.xfail(reason="Test not implemented")
- def test_has_comprehensive_tests(self):
- raise NotImplementedError
- def _assert_fillna_conversion(self, original, value, expected, expected_dtype):
- """test coercion triggered by fillna"""
- target = original.copy()
- res = target.fillna(value)
- tm.assert_equal(res, expected)
- assert res.dtype == expected_dtype
- @pytest.mark.parametrize(
- "fill_val, fill_dtype",
- [(1, object), (1.1, object), (1 + 1j, object), (True, object)],
- )
- def test_fillna_object(self, index_or_series, fill_val, fill_dtype):
- klass = index_or_series
- obj = klass(["a", np.nan, "c", "d"])
- assert obj.dtype == object
- exp = klass(["a", fill_val, "c", "d"])
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.parametrize(
- "fill_val,fill_dtype",
- [(1, np.float64), (1.1, np.float64), (1 + 1j, np.complex128), (True, object)],
- )
- def test_fillna_float64(self, index_or_series, fill_val, fill_dtype):
- klass = index_or_series
- obj = klass([1.1, np.nan, 3.3, 4.4])
- assert obj.dtype == np.float64
- exp = klass([1.1, fill_val, 3.3, 4.4])
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.parametrize(
- "fill_val,fill_dtype",
- [
- (1, np.complex128),
- (1.1, np.complex128),
- (1 + 1j, np.complex128),
- (True, object),
- ],
- )
- def test_fillna_complex128(self, index_or_series, fill_val, fill_dtype):
- klass = index_or_series
- obj = klass([1 + 1j, np.nan, 3 + 3j, 4 + 4j], dtype=np.complex128)
- assert obj.dtype == np.complex128
- exp = klass([1 + 1j, fill_val, 3 + 3j, 4 + 4j])
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.parametrize(
- "fill_val,fill_dtype",
- [
- (pd.Timestamp("2012-01-01"), "datetime64[ns]"),
- (pd.Timestamp("2012-01-01", tz="US/Eastern"), object),
- (1, object),
- ("x", object),
- ],
- ids=["datetime64", "datetime64tz", "object", "object"],
- )
- def test_fillna_datetime(self, index_or_series, fill_val, fill_dtype):
- klass = index_or_series
- obj = klass(
- [
- pd.Timestamp("2011-01-01"),
- pd.NaT,
- pd.Timestamp("2011-01-03"),
- pd.Timestamp("2011-01-04"),
- ]
- )
- assert obj.dtype == "datetime64[ns]"
- exp = klass(
- [
- pd.Timestamp("2011-01-01"),
- fill_val,
- pd.Timestamp("2011-01-03"),
- pd.Timestamp("2011-01-04"),
- ]
- )
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.parametrize(
- "fill_val,fill_dtype",
- [
- (pd.Timestamp("2012-01-01", tz="US/Eastern"), "datetime64[ns, US/Eastern]"),
- (pd.Timestamp("2012-01-01"), object),
- # pre-2.0 with a mismatched tz we would get object result
- (pd.Timestamp("2012-01-01", tz="Asia/Tokyo"), "datetime64[ns, US/Eastern]"),
- (1, object),
- ("x", object),
- ],
- )
- def test_fillna_datetime64tz(self, index_or_series, fill_val, fill_dtype):
- klass = index_or_series
- tz = "US/Eastern"
- obj = klass(
- [
- pd.Timestamp("2011-01-01", tz=tz),
- pd.NaT,
- pd.Timestamp("2011-01-03", tz=tz),
- pd.Timestamp("2011-01-04", tz=tz),
- ]
- )
- assert obj.dtype == "datetime64[ns, US/Eastern]"
- if getattr(fill_val, "tz", None) is None:
- fv = fill_val
- else:
- fv = fill_val.tz_convert(tz)
- exp = klass(
- [
- pd.Timestamp("2011-01-01", tz=tz),
- fv,
- pd.Timestamp("2011-01-03", tz=tz),
- pd.Timestamp("2011-01-04", tz=tz),
- ]
- )
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.parametrize(
- "fill_val",
- [
- 1,
- 1.1,
- 1 + 1j,
- True,
- pd.Interval(1, 2, closed="left"),
- pd.Timestamp("2012-01-01", tz="US/Eastern"),
- pd.Timestamp("2012-01-01"),
- pd.Timedelta(days=1),
- pd.Period("2016-01-01", "D"),
- ],
- )
- def test_fillna_interval(self, index_or_series, fill_val):
- ii = pd.interval_range(1.0, 5.0, closed="right").insert(1, np.nan)
- assert isinstance(ii.dtype, pd.IntervalDtype)
- obj = index_or_series(ii)
- exp = index_or_series([ii[0], fill_val, ii[2], ii[3], ii[4]], dtype=object)
- fill_dtype = object
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_series_int64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_index_int64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_series_bool(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_index_bool(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_series_timedelta64(self):
- raise NotImplementedError
- @pytest.mark.parametrize(
- "fill_val",
- [
- 1,
- 1.1,
- 1 + 1j,
- True,
- pd.Interval(1, 2, closed="left"),
- pd.Timestamp("2012-01-01", tz="US/Eastern"),
- pd.Timestamp("2012-01-01"),
- pd.Timedelta(days=1),
- pd.Period("2016-01-01", "W"),
- ],
- )
- def test_fillna_series_period(self, index_or_series, fill_val):
- pi = pd.period_range("2016-01-01", periods=4, freq="D").insert(1, pd.NaT)
- assert isinstance(pi.dtype, pd.PeriodDtype)
- obj = index_or_series(pi)
- exp = index_or_series([pi[0], fill_val, pi[2], pi[3], pi[4]], dtype=object)
- fill_dtype = object
- self._assert_fillna_conversion(obj, fill_val, exp, fill_dtype)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_index_timedelta64(self):
- raise NotImplementedError
- @pytest.mark.xfail(reason="Test not implemented")
- def test_fillna_index_period(self):
- raise NotImplementedError
- class TestReplaceSeriesCoercion(CoercionBase):
- klasses = ["series"]
- method = "replace"
- rep: dict[str, list] = {}
- rep["object"] = ["a", "b"]
- rep["int64"] = [4, 5]
- rep["float64"] = [1.1, 2.2]
- rep["complex128"] = [1 + 1j, 2 + 2j]
- rep["bool"] = [True, False]
- rep["datetime64[ns]"] = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-03")]
- for tz in ["UTC", "US/Eastern"]:
- # to test tz => different tz replacement
- key = f"datetime64[ns, {tz}]"
- rep[key] = [
- pd.Timestamp("2011-01-01", tz=tz),
- pd.Timestamp("2011-01-03", tz=tz),
- ]
- rep["timedelta64[ns]"] = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
- @pytest.fixture(params=["dict", "series"])
- def how(self, request):
- return request.param
- @pytest.fixture(
- params=[
- "object",
- "int64",
- "float64",
- "complex128",
- "bool",
- "datetime64[ns]",
- "datetime64[ns, UTC]",
- "datetime64[ns, US/Eastern]",
- "timedelta64[ns]",
- ]
- )
- def from_key(self, request):
- return request.param
- @pytest.fixture(
- params=[
- "object",
- "int64",
- "float64",
- "complex128",
- "bool",
- "datetime64[ns]",
- "datetime64[ns, UTC]",
- "datetime64[ns, US/Eastern]",
- "timedelta64[ns]",
- ],
- ids=[
- "object",
- "int64",
- "float64",
- "complex128",
- "bool",
- "datetime64",
- "datetime64tz",
- "datetime64tz",
- "timedelta64",
- ],
- )
- def to_key(self, request):
- return request.param
- @pytest.fixture
- def replacer(self, how, from_key, to_key):
- """
- Object we will pass to `Series.replace`
- """
- if how == "dict":
- replacer = dict(zip(self.rep[from_key], self.rep[to_key]))
- elif how == "series":
- replacer = pd.Series(self.rep[to_key], index=self.rep[from_key])
- else:
- raise ValueError
- return replacer
- def test_replace_series(self, how, to_key, from_key, replacer):
- index = pd.Index([3, 4], name="xxx")
- obj = pd.Series(self.rep[from_key], index=index, name="yyy")
- assert obj.dtype == from_key
- if from_key.startswith("datetime") and to_key.startswith("datetime"):
- # tested below
- return
- elif from_key in ["datetime64[ns, US/Eastern]", "datetime64[ns, UTC]"]:
- # tested below
- return
- result = obj.replace(replacer)
- if (from_key == "float64" and to_key in ("int64")) or (
- from_key == "complex128" and to_key in ("int64", "float64")
- ):
- if not IS64 or is_platform_windows():
- pytest.skip(f"32-bit platform buggy: {from_key} -> {to_key}")
- # Expected: do not downcast by replacement
- exp = pd.Series(self.rep[to_key], index=index, name="yyy", dtype=from_key)
- else:
- exp = pd.Series(self.rep[to_key], index=index, name="yyy")
- assert exp.dtype == to_key
- tm.assert_series_equal(result, exp)
- @pytest.mark.parametrize(
- "to_key",
- ["timedelta64[ns]", "bool", "object", "complex128", "float64", "int64"],
- indirect=True,
- )
- @pytest.mark.parametrize(
- "from_key", ["datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"], indirect=True
- )
- def test_replace_series_datetime_tz(self, how, to_key, from_key, replacer):
- index = pd.Index([3, 4], name="xyz")
- obj = pd.Series(self.rep[from_key], index=index, name="yyy")
- assert obj.dtype == from_key
- result = obj.replace(replacer)
- exp = pd.Series(self.rep[to_key], index=index, name="yyy")
- assert exp.dtype == to_key
- tm.assert_series_equal(result, exp)
- @pytest.mark.parametrize(
- "to_key",
- ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"],
- indirect=True,
- )
- @pytest.mark.parametrize(
- "from_key",
- ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, US/Eastern]"],
- indirect=True,
- )
- def test_replace_series_datetime_datetime(self, how, to_key, from_key, replacer):
- index = pd.Index([3, 4], name="xyz")
- obj = pd.Series(self.rep[from_key], index=index, name="yyy")
- assert obj.dtype == from_key
- result = obj.replace(replacer)
- exp = pd.Series(self.rep[to_key], index=index, name="yyy")
- if isinstance(obj.dtype, pd.DatetimeTZDtype) and isinstance(
- exp.dtype, pd.DatetimeTZDtype
- ):
- # with mismatched tzs, we retain the original dtype as of 2.0
- exp = exp.astype(obj.dtype)
- else:
- assert exp.dtype == to_key
- tm.assert_series_equal(result, exp)
- @pytest.mark.xfail(reason="Test not implemented")
- def test_replace_series_period(self):
- raise NotImplementedError
|