123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- from datetime import (
- datetime,
- timezone,
- )
- import numpy as np
- import pytest
- from pandas.errors import InvalidIndexError
- from pandas import (
- CategoricalDtype,
- CategoricalIndex,
- DataFrame,
- DatetimeIndex,
- MultiIndex,
- Series,
- Timestamp,
- )
- import pandas._testing as tm
- def test_at_timezone():
- # https://github.com/pandas-dev/pandas/issues/33544
- result = DataFrame({"foo": [datetime(2000, 1, 1)]})
- result.at[0, "foo"] = datetime(2000, 1, 2, tzinfo=timezone.utc)
- expected = DataFrame(
- {"foo": [datetime(2000, 1, 2, tzinfo=timezone.utc)]}, dtype=object
- )
- tm.assert_frame_equal(result, expected)
- def test_selection_methods_of_assigned_col():
- # GH 29282
- df = DataFrame(data={"a": [1, 2, 3], "b": [4, 5, 6]})
- df2 = DataFrame(data={"c": [7, 8, 9]}, index=[2, 1, 0])
- df["c"] = df2["c"]
- df.at[1, "c"] = 11
- result = df
- expected = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [9, 11, 7]})
- tm.assert_frame_equal(result, expected)
- result = df.at[1, "c"]
- assert result == 11
- result = df["c"]
- expected = Series([9, 11, 7], name="c")
- tm.assert_series_equal(result, expected)
- result = df[["c"]]
- expected = DataFrame({"c": [9, 11, 7]})
- tm.assert_frame_equal(result, expected)
- class TestAtSetItem:
- def test_at_setitem_item_cache_cleared(self):
- # GH#22372 Note the multi-step construction is necessary to trigger
- # the original bug. pandas/issues/22372#issuecomment-413345309
- df = DataFrame(index=[0])
- df["x"] = 1
- df["cost"] = 2
- # accessing df["cost"] adds "cost" to the _item_cache
- df["cost"]
- # This loc[[0]] lookup used to call _consolidate_inplace at the
- # BlockManager level, which failed to clear the _item_cache
- df.loc[[0]]
- df.at[0, "x"] = 4
- df.at[0, "cost"] = 789
- expected = DataFrame({"x": [4], "cost": 789}, index=[0])
- tm.assert_frame_equal(df, expected)
- # And in particular, check that the _item_cache has updated correctly.
- tm.assert_series_equal(df["cost"], expected["cost"])
- def test_at_setitem_mixed_index_assignment(self):
- # GH#19860
- ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
- ser.at["a"] = 11
- assert ser.iat[0] == 11
- ser.at[1] = 22
- assert ser.iat[3] == 22
- def test_at_setitem_categorical_missing(self):
- df = DataFrame(
- index=range(3), columns=range(3), dtype=CategoricalDtype(["foo", "bar"])
- )
- df.at[1, 1] = "foo"
- expected = DataFrame(
- [
- [np.nan, np.nan, np.nan],
- [np.nan, "foo", np.nan],
- [np.nan, np.nan, np.nan],
- ],
- dtype=CategoricalDtype(["foo", "bar"]),
- )
- tm.assert_frame_equal(df, expected)
- def test_at_setitem_multiindex(self):
- df = DataFrame(
- np.zeros((3, 2), dtype="int64"),
- columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
- )
- df.at[0, "a"] = 10
- expected = DataFrame(
- [[10, 10], [0, 0], [0, 0]],
- columns=MultiIndex.from_tuples([("a", 0), ("a", 1)]),
- )
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("row", (Timestamp("2019-01-01"), "2019-01-01"))
- def test_at_datetime_index(self, row):
- df = DataFrame(
- data=[[1] * 2], index=DatetimeIndex(data=["2019-01-01", "2019-01-02"])
- )
- expected = DataFrame(
- data=[[0.5, 1], [1.0, 1]],
- index=DatetimeIndex(data=["2019-01-01", "2019-01-02"]),
- )
- df.at[row, 0] = 0.5
- tm.assert_frame_equal(df, expected)
- class TestAtSetItemWithExpansion:
- def test_at_setitem_expansion_series_dt64tz_value(self, tz_naive_fixture):
- # GH#25506
- ts = Timestamp("2017-08-05 00:00:00+0100", tz=tz_naive_fixture)
- result = Series(ts)
- result.at[1] = ts
- expected = Series([ts, ts])
- tm.assert_series_equal(result, expected)
- class TestAtWithDuplicates:
- def test_at_with_duplicate_axes_requires_scalar_lookup(self):
- # GH#33041 check that falling back to loc doesn't allow non-scalar
- # args to slip in
- arr = np.random.randn(6).reshape(3, 2)
- df = DataFrame(arr, columns=["A", "A"])
- msg = "Invalid call for scalar access"
- with pytest.raises(ValueError, match=msg):
- df.at[[1, 2]]
- with pytest.raises(ValueError, match=msg):
- df.at[1, ["A"]]
- with pytest.raises(ValueError, match=msg):
- df.at[:, "A"]
- with pytest.raises(ValueError, match=msg):
- df.at[[1, 2]] = 1
- with pytest.raises(ValueError, match=msg):
- df.at[1, ["A"]] = 1
- with pytest.raises(ValueError, match=msg):
- df.at[:, "A"] = 1
- class TestAtErrors:
- # TODO: De-duplicate/parametrize
- # test_at_series_raises_key_error2, test_at_frame_raises_key_error2
- def test_at_series_raises_key_error(self, indexer_al):
- # GH#31724 .at should match .loc
- ser = Series([1, 2, 3], index=[3, 2, 1])
- result = indexer_al(ser)[1]
- assert result == 3
- with pytest.raises(KeyError, match="a"):
- indexer_al(ser)["a"]
- def test_at_frame_raises_key_error(self, indexer_al):
- # GH#31724 .at should match .loc
- df = DataFrame({0: [1, 2, 3]}, index=[3, 2, 1])
- result = indexer_al(df)[1, 0]
- assert result == 3
- with pytest.raises(KeyError, match="a"):
- indexer_al(df)["a", 0]
- with pytest.raises(KeyError, match="a"):
- indexer_al(df)[1, "a"]
- def test_at_series_raises_key_error2(self, indexer_al):
- # at should not fallback
- # GH#7814
- # GH#31724 .at should match .loc
- ser = Series([1, 2, 3], index=list("abc"))
- result = indexer_al(ser)["a"]
- assert result == 1
- with pytest.raises(KeyError, match="^0$"):
- indexer_al(ser)[0]
- def test_at_frame_raises_key_error2(self, indexer_al):
- # GH#31724 .at should match .loc
- df = DataFrame({"A": [1, 2, 3]}, index=list("abc"))
- result = indexer_al(df)["a", "A"]
- assert result == 1
- with pytest.raises(KeyError, match="^0$"):
- indexer_al(df)["a", 0]
- def test_at_frame_multiple_columns(self):
- # GH#48296 - at shouldn't modify multiple columns
- df = DataFrame({"a": [1, 2], "b": [3, 4]})
- new_row = [6, 7]
- with pytest.raises(
- InvalidIndexError,
- match=f"You can only assign a scalar value not a \\{type(new_row)}",
- ):
- df.at[5] = new_row
- def test_at_getitem_mixed_index_no_fallback(self):
- # GH#19860
- ser = Series([1, 2, 3, 4, 5], index=["a", "b", "c", 1, 2])
- with pytest.raises(KeyError, match="^0$"):
- ser.at[0]
- with pytest.raises(KeyError, match="^4$"):
- ser.at[4]
- def test_at_categorical_integers(self):
- # CategoricalIndex with integer categories that don't happen to match
- # the Categorical's codes
- ci = CategoricalIndex([3, 4])
- arr = np.arange(4).reshape(2, 2)
- frame = DataFrame(arr, index=ci)
- for df in [frame, frame.T]:
- for key in [0, 1]:
- with pytest.raises(KeyError, match=str(key)):
- df.at[key, key]
- def test_at_applied_for_rows(self):
- # GH#48729 .at should raise InvalidIndexError when assigning rows
- df = DataFrame(index=["a"], columns=["col1", "col2"])
- new_row = [123, 15]
- with pytest.raises(
- InvalidIndexError,
- match=f"You can only assign a scalar value not a \\{type(new_row)}",
- ):
- df.at["a"] = new_row
|