test_getitem.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. import numpy as np
  2. import pytest
  3. from pandas import (
  4. DataFrame,
  5. Index,
  6. MultiIndex,
  7. Series,
  8. )
  9. import pandas._testing as tm
  10. from pandas.core.indexing import IndexingError
  11. # ----------------------------------------------------------------------------
  12. # test indexing of Series with multi-level Index
  13. # ----------------------------------------------------------------------------
  14. @pytest.mark.parametrize(
  15. "access_method",
  16. [lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
  17. )
  18. @pytest.mark.parametrize(
  19. "level1_value, expected",
  20. [(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
  21. )
  22. def test_series_getitem_multiindex(access_method, level1_value, expected):
  23. # GH 6018
  24. # series regression getitem with a multi-index
  25. mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
  26. ser = Series([1, 2, 3], index=mi)
  27. expected.index.name = "A"
  28. result = access_method(ser, level1_value)
  29. tm.assert_series_equal(result, expected)
  30. @pytest.mark.parametrize("level0_value", ["D", "A"])
  31. def test_series_getitem_duplicates_multiindex(level0_value):
  32. # GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
  33. # the appropriate error, only in PY3 of course!
  34. index = MultiIndex(
  35. levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
  36. codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
  37. names=["tag", "day"],
  38. )
  39. arr = np.random.randn(len(index), 1)
  40. df = DataFrame(arr, index=index, columns=["val"])
  41. # confirm indexing on missing value raises KeyError
  42. if level0_value != "A":
  43. with pytest.raises(KeyError, match=r"^'A'$"):
  44. df.val["A"]
  45. with pytest.raises(KeyError, match=r"^'X'$"):
  46. df.val["X"]
  47. result = df.val[level0_value]
  48. expected = Series(
  49. arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
  50. )
  51. tm.assert_series_equal(result, expected)
  52. def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
  53. s = multiindex_year_month_day_dataframe_random_data["A"]
  54. expected = s.reindex(s.index[42:65])
  55. expected.index = expected.index.droplevel(0).droplevel(0)
  56. result = indexer_sl(s)[2000, 3]
  57. tm.assert_series_equal(result, expected)
  58. def test_series_getitem_returns_scalar(
  59. multiindex_year_month_day_dataframe_random_data, indexer_sl
  60. ):
  61. s = multiindex_year_month_day_dataframe_random_data["A"]
  62. expected = s.iloc[49]
  63. result = indexer_sl(s)[2000, 3, 10]
  64. assert result == expected
  65. @pytest.mark.parametrize(
  66. "indexer,expected_error,expected_error_msg",
  67. [
  68. (lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
  69. (lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
  70. (lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
  71. (lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
  72. (lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
  73. (lambda s: s[len(s)], KeyError, ""), # match should include len(s)
  74. (
  75. lambda s: s.iloc[len(s)],
  76. IndexError,
  77. "single positional indexer is out-of-bounds",
  78. ),
  79. ],
  80. )
  81. def test_series_getitem_indexing_errors(
  82. multiindex_year_month_day_dataframe_random_data,
  83. indexer,
  84. expected_error,
  85. expected_error_msg,
  86. ):
  87. s = multiindex_year_month_day_dataframe_random_data["A"]
  88. with pytest.raises(expected_error, match=expected_error_msg):
  89. indexer(s)
  90. def test_series_getitem_corner_generator(
  91. multiindex_year_month_day_dataframe_random_data,
  92. ):
  93. s = multiindex_year_month_day_dataframe_random_data["A"]
  94. result = s[(x > 0 for x in s)]
  95. expected = s[s > 0]
  96. tm.assert_series_equal(result, expected)
  97. # ----------------------------------------------------------------------------
  98. # test indexing of DataFrame with multi-level Index
  99. # ----------------------------------------------------------------------------
  100. def test_getitem_simple(multiindex_dataframe_random_data):
  101. df = multiindex_dataframe_random_data.T
  102. expected = df.values[:, 0]
  103. result = df["foo", "one"].values
  104. tm.assert_almost_equal(result, expected)
  105. @pytest.mark.parametrize(
  106. "indexer,expected_error_msg",
  107. [
  108. (lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
  109. (lambda df: df["foobar"], r"^'foobar'$"),
  110. ],
  111. )
  112. def test_frame_getitem_simple_key_error(
  113. multiindex_dataframe_random_data, indexer, expected_error_msg
  114. ):
  115. df = multiindex_dataframe_random_data.T
  116. with pytest.raises(KeyError, match=expected_error_msg):
  117. indexer(df)
  118. def test_frame_getitem_multicolumn_empty_level():
  119. df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
  120. df.columns = [
  121. ["level1 item1", "level1 item2"],
  122. ["", "level2 item2"],
  123. ["level3 item1", "level3 item2"],
  124. ]
  125. result = df["level1 item1"]
  126. expected = DataFrame(
  127. [["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
  128. )
  129. tm.assert_frame_equal(result, expected)
  130. @pytest.mark.parametrize(
  131. "indexer,expected_slice",
  132. [
  133. (lambda df: df["foo"], slice(3)),
  134. (lambda df: df["bar"], slice(3, 5)),
  135. (lambda df: df.loc[:, "bar"], slice(3, 5)),
  136. ],
  137. )
  138. def test_frame_getitem_toplevel(
  139. multiindex_dataframe_random_data, indexer, expected_slice
  140. ):
  141. df = multiindex_dataframe_random_data.T
  142. expected = df.reindex(columns=df.columns[expected_slice])
  143. expected.columns = expected.columns.droplevel(0)
  144. result = indexer(df)
  145. tm.assert_frame_equal(result, expected)
  146. def test_frame_mixed_depth_get():
  147. arrays = [
  148. ["a", "top", "top", "routine1", "routine1", "routine2"],
  149. ["", "OD", "OD", "result1", "result2", "result1"],
  150. ["", "wx", "wy", "", "", ""],
  151. ]
  152. tuples = sorted(zip(*arrays))
  153. index = MultiIndex.from_tuples(tuples)
  154. df = DataFrame(np.random.randn(4, 6), columns=index)
  155. result = df["a"]
  156. expected = df["a", "", ""].rename("a")
  157. tm.assert_series_equal(result, expected)
  158. result = df["routine1", "result1"]
  159. expected = df["routine1", "result1", ""]
  160. expected = expected.rename(("routine1", "result1"))
  161. tm.assert_series_equal(result, expected)
  162. def test_frame_getitem_nan_multiindex(nulls_fixture):
  163. # GH#29751
  164. # loc on a multiindex containing nan values
  165. n = nulls_fixture # for code readability
  166. cols = ["a", "b", "c"]
  167. df = DataFrame(
  168. [[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
  169. columns=cols,
  170. ).set_index(["a", "b"])
  171. df["c"] = df["c"].astype("int64")
  172. idx = (21, n)
  173. result = df.loc[:idx]
  174. expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
  175. expected["c"] = expected["c"].astype("int64")
  176. tm.assert_frame_equal(result, expected)
  177. result = df.loc[idx:]
  178. expected = DataFrame(
  179. [[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
  180. ).set_index(["a", "b"])
  181. expected["c"] = expected["c"].astype("int64")
  182. tm.assert_frame_equal(result, expected)
  183. idx1, idx2 = (21, n), (31, n)
  184. result = df.loc[idx1:idx2]
  185. expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
  186. expected["c"] = expected["c"].astype("int64")
  187. tm.assert_frame_equal(result, expected)
  188. @pytest.mark.parametrize(
  189. "indexer,expected",
  190. [
  191. (
  192. (["b"], ["bar", np.nan]),
  193. (
  194. DataFrame(
  195. [[2, 3], [5, 6]],
  196. columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
  197. dtype="int64",
  198. )
  199. ),
  200. ),
  201. (
  202. (["a", "b"]),
  203. (
  204. DataFrame(
  205. [[1, 2, 3], [4, 5, 6]],
  206. columns=MultiIndex.from_tuples(
  207. [("a", "foo"), ("b", "bar"), ("b", np.nan)]
  208. ),
  209. dtype="int64",
  210. )
  211. ),
  212. ),
  213. (
  214. (["b"]),
  215. (
  216. DataFrame(
  217. [[2, 3], [5, 6]],
  218. columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
  219. dtype="int64",
  220. )
  221. ),
  222. ),
  223. (
  224. (["b"], ["bar"]),
  225. (
  226. DataFrame(
  227. [[2], [5]],
  228. columns=MultiIndex.from_tuples([("b", "bar")]),
  229. dtype="int64",
  230. )
  231. ),
  232. ),
  233. (
  234. (["b"], [np.nan]),
  235. (
  236. DataFrame(
  237. [[3], [6]],
  238. columns=MultiIndex(
  239. codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
  240. ),
  241. dtype="int64",
  242. )
  243. ),
  244. ),
  245. (("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
  246. ],
  247. )
  248. def test_frame_getitem_nan_cols_multiindex(
  249. indexer,
  250. expected,
  251. nulls_fixture,
  252. ):
  253. # Slicing MultiIndex including levels with nan values, for more information
  254. # see GH#25154
  255. df = DataFrame(
  256. [[1, 2, 3], [4, 5, 6]],
  257. columns=MultiIndex.from_tuples(
  258. [("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
  259. ),
  260. dtype="int64",
  261. )
  262. result = df.loc[:, indexer]
  263. tm.assert_equal(result, expected)
  264. # ----------------------------------------------------------------------------
  265. # test indexing of DataFrame with multi-level Index with duplicates
  266. # ----------------------------------------------------------------------------
  267. @pytest.fixture
  268. def dataframe_with_duplicate_index():
  269. """Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
  270. data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
  271. index = ["h1", "h3", "h5"]
  272. columns = MultiIndex(
  273. levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
  274. codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
  275. names=["main", "sub"],
  276. )
  277. return DataFrame(data, index=index, columns=columns)
  278. @pytest.mark.parametrize(
  279. "indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
  280. )
  281. def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
  282. # GH 4145
  283. df = dataframe_with_duplicate_index
  284. index = Index(["h1", "h3", "h5"])
  285. columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
  286. expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
  287. result = indexer(df)
  288. tm.assert_frame_equal(result, expected)
  289. def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
  290. # GH 4146, not returning a block manager when selecting a unique index
  291. # from a duplicate index
  292. # as of 4879, this returns a Series (which is similar to what happens
  293. # with a non-unique)
  294. df = dataframe_with_duplicate_index
  295. expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
  296. result = df["A"]["A1"]
  297. tm.assert_series_equal(result, expected)
  298. def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
  299. # selecting a non_unique from the 2nd level
  300. df = dataframe_with_duplicate_index
  301. expected = DataFrame(
  302. [["d", 4, 4], ["e", 5, 5]],
  303. index=Index(["B2", "B2"], name="sub"),
  304. columns=["h1", "h3", "h5"],
  305. ).T
  306. result = df["A"]["B2"]
  307. tm.assert_frame_equal(result, expected)
  308. def test_frame_mi_empty_slice():
  309. # GH 15454
  310. df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
  311. result = df[[]]
  312. expected = DataFrame(
  313. index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
  314. )
  315. tm.assert_frame_equal(result, expected)
  316. def test_loc_empty_multiindex():
  317. # GH#36936
  318. arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
  319. index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
  320. df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
  321. # loc on empty multiindex == loc with False mask
  322. empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
  323. result = df.loc[empty_multiindex, :]
  324. expected = df.loc[[False] * len(df.index), :]
  325. tm.assert_frame_equal(result, expected)
  326. # replacing value with loc on empty multiindex
  327. df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
  328. result = df
  329. expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
  330. tm.assert_frame_equal(result, expected)