12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Index,
- NaT,
- )
- import pandas._testing as tm
- class TestGetSliceBounds:
- @pytest.mark.parametrize("side, expected", [("left", 4), ("right", 5)])
- def test_get_slice_bounds_within(self, side, expected):
- index = Index(list("abcdef"))
- result = index.get_slice_bound("e", side=side)
- assert result == expected
- @pytest.mark.parametrize("side", ["left", "right"])
- @pytest.mark.parametrize(
- "data, bound, expected", [(list("abcdef"), "x", 6), (list("bcdefg"), "a", 0)]
- )
- def test_get_slice_bounds_outside(self, side, expected, data, bound):
- index = Index(data)
- result = index.get_slice_bound(bound, side=side)
- assert result == expected
- def test_get_slice_bounds_invalid_side(self):
- with pytest.raises(ValueError, match="Invalid value for side kwarg"):
- Index([]).get_slice_bound("a", side="middle")
- class TestGetIndexerNonUnique:
- def test_get_indexer_non_unique_dtype_mismatch(self):
- # GH#25459
- indexes, missing = Index(["A", "B"]).get_indexer_non_unique(Index([0]))
- tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes)
- tm.assert_numpy_array_equal(np.array([0], dtype=np.intp), missing)
- class TestGetLoc:
- @pytest.mark.slow # to_flat_index takes a while
- def test_get_loc_tuple_monotonic_above_size_cutoff(self):
- # Go through the libindex path for which using
- # _bin_search vs ndarray.searchsorted makes a difference
- lev = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
- dti = pd.date_range("2016-01-01", periods=100)
- mi = pd.MultiIndex.from_product([lev, range(10**3), dti])
- oidx = mi.to_flat_index()
- loc = len(oidx) // 2
- tup = oidx[loc]
- res = oidx.get_loc(tup)
- assert res == loc
- def test_get_loc_nan_object_dtype_nonmonotonic_nonunique(self):
- # case that goes through _maybe_get_bool_indexer
- idx = Index(["foo", np.nan, None, "foo", 1.0, None], dtype=object)
- # we dont raise KeyError on nan
- res = idx.get_loc(np.nan)
- assert res == 1
- # we only match on None, not on np.nan
- res = idx.get_loc(None)
- expected = np.array([False, False, True, False, False, True])
- tm.assert_numpy_array_equal(res, expected)
- # we don't match at all on mismatched NA
- with pytest.raises(KeyError, match="NaT"):
- idx.get_loc(NaT)
- def test_getitem_boolean_ea_indexer():
- # GH#45806
- ser = pd.Series([True, False, pd.NA], dtype="boolean")
- result = ser.index[ser]
- expected = Index([0])
- tm.assert_index_equal(result, expected)
|