123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470 |
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- )
- import pandas._testing as tm
- @pytest.mark.parametrize(
- "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"]
- )
- @pytest.mark.parametrize(
- "a_vals,b_vals",
- [
- # Ints
- ([1, 2, 3, 4, 5], [5, 4, 3, 2, 1]),
- ([1, 2, 3, 4], [4, 3, 2, 1]),
- ([1, 2, 3, 4, 5], [4, 3, 2, 1]),
- # Floats
- ([1.0, 2.0, 3.0, 4.0, 5.0], [5.0, 4.0, 3.0, 2.0, 1.0]),
- # Missing data
- ([1.0, np.nan, 3.0, np.nan, 5.0], [5.0, np.nan, 3.0, np.nan, 1.0]),
- ([np.nan, 4.0, np.nan, 2.0, np.nan], [np.nan, 4.0, np.nan, 2.0, np.nan]),
- # Timestamps
- (
- pd.date_range("1/1/18", freq="D", periods=5),
- pd.date_range("1/1/18", freq="D", periods=5)[::-1],
- ),
- (
- pd.date_range("1/1/18", freq="D", periods=5).as_unit("s"),
- pd.date_range("1/1/18", freq="D", periods=5)[::-1].as_unit("s"),
- ),
- # All NA
- ([np.nan] * 5, [np.nan] * 5),
- ],
- )
- @pytest.mark.parametrize("q", [0, 0.25, 0.5, 0.75, 1])
- def test_quantile(interpolation, a_vals, b_vals, q, request):
- if (
- interpolation == "nearest"
- and q == 0.5
- and isinstance(b_vals, list)
- and b_vals == [4, 3, 2, 1]
- ):
- request.node.add_marker(
- pytest.mark.xfail(
- reason="Unclear numpy expectation for nearest "
- "result with equidistant data"
- )
- )
- all_vals = pd.concat([pd.Series(a_vals), pd.Series(b_vals)])
- a_expected = pd.Series(a_vals).quantile(q, interpolation=interpolation)
- b_expected = pd.Series(b_vals).quantile(q, interpolation=interpolation)
- df = DataFrame({"key": ["a"] * len(a_vals) + ["b"] * len(b_vals), "val": all_vals})
- expected = DataFrame(
- [a_expected, b_expected], columns=["val"], index=Index(["a", "b"], name="key")
- )
- if all_vals.dtype.kind == "M" and expected.dtypes.values[0].kind == "M":
- # TODO(non-nano): this should be unnecessary once array_to_datetime
- # correctly infers non-nano from Timestamp.unit
- expected = expected.astype(all_vals.dtype)
- result = df.groupby("key").quantile(q, interpolation=interpolation)
- tm.assert_frame_equal(result, expected)
- def test_quantile_array():
- # https://github.com/pandas-dev/pandas/issues/27526
- df = DataFrame({"A": [0, 1, 2, 3, 4]})
- key = np.array([0, 0, 1, 1, 1], dtype=np.int64)
- result = df.groupby(key).quantile([0.25])
- index = pd.MultiIndex.from_product([[0, 1], [0.25]])
- expected = DataFrame({"A": [0.25, 2.50]}, index=index)
- tm.assert_frame_equal(result, expected)
- df = DataFrame({"A": [0, 1, 2, 3], "B": [4, 5, 6, 7]})
- index = pd.MultiIndex.from_product([[0, 1], [0.25, 0.75]])
- key = np.array([0, 0, 1, 1], dtype=np.int64)
- result = df.groupby(key).quantile([0.25, 0.75])
- expected = DataFrame(
- {"A": [0.25, 0.75, 2.25, 2.75], "B": [4.25, 4.75, 6.25, 6.75]}, index=index
- )
- tm.assert_frame_equal(result, expected)
- def test_quantile_array2():
- # https://github.com/pandas-dev/pandas/pull/28085#issuecomment-524066959
- arr = np.random.RandomState(0).randint(0, 5, size=(10, 3), dtype=np.int64)
- df = DataFrame(arr, columns=list("ABC"))
- result = df.groupby("A").quantile([0.3, 0.7])
- expected = DataFrame(
- {
- "B": [0.9, 2.1, 2.2, 3.4, 1.6, 2.4, 2.3, 2.7, 0.0, 0.0],
- "C": [1.2, 2.8, 1.8, 3.0, 0.0, 0.0, 1.9, 3.1, 3.0, 3.0],
- },
- index=pd.MultiIndex.from_product(
- [[0, 1, 2, 3, 4], [0.3, 0.7]], names=["A", None]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_quantile_array_no_sort():
- df = DataFrame({"A": [0, 1, 2], "B": [3, 4, 5]})
- key = np.array([1, 0, 1], dtype=np.int64)
- result = df.groupby(key, sort=False).quantile([0.25, 0.5, 0.75])
- expected = DataFrame(
- {"A": [0.5, 1.0, 1.5, 1.0, 1.0, 1.0], "B": [3.5, 4.0, 4.5, 4.0, 4.0, 4.0]},
- index=pd.MultiIndex.from_product([[1, 0], [0.25, 0.5, 0.75]]),
- )
- tm.assert_frame_equal(result, expected)
- result = df.groupby(key, sort=False).quantile([0.75, 0.25])
- expected = DataFrame(
- {"A": [1.5, 0.5, 1.0, 1.0], "B": [4.5, 3.5, 4.0, 4.0]},
- index=pd.MultiIndex.from_product([[1, 0], [0.75, 0.25]]),
- )
- tm.assert_frame_equal(result, expected)
- def test_quantile_array_multiple_levels():
- df = DataFrame(
- {"A": [0, 1, 2], "B": [3, 4, 5], "c": ["a", "a", "a"], "d": ["a", "a", "b"]}
- )
- result = df.groupby(["c", "d"]).quantile([0.25, 0.75])
- index = pd.MultiIndex.from_tuples(
- [("a", "a", 0.25), ("a", "a", 0.75), ("a", "b", 0.25), ("a", "b", 0.75)],
- names=["c", "d", None],
- )
- expected = DataFrame(
- {"A": [0.25, 0.75, 2.0, 2.0], "B": [3.25, 3.75, 5.0, 5.0]}, index=index
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("frame_size", [(2, 3), (100, 10)])
- @pytest.mark.parametrize("groupby", [[0], [0, 1]])
- @pytest.mark.parametrize("q", [[0.5, 0.6]])
- def test_groupby_quantile_with_arraylike_q_and_int_columns(frame_size, groupby, q):
- # GH30289
- nrow, ncol = frame_size
- df = DataFrame(np.array([ncol * [_ % 4] for _ in range(nrow)]), columns=range(ncol))
- idx_levels = [np.arange(min(nrow, 4))] * len(groupby) + [q]
- idx_codes = [[x for x in range(min(nrow, 4)) for _ in q]] * len(groupby) + [
- list(range(len(q))) * min(nrow, 4)
- ]
- expected_index = pd.MultiIndex(
- levels=idx_levels, codes=idx_codes, names=groupby + [None]
- )
- expected_values = [
- [float(x)] * (ncol - len(groupby)) for x in range(min(nrow, 4)) for _ in q
- ]
- expected_columns = [x for x in range(ncol) if x not in groupby]
- expected = DataFrame(
- expected_values, index=expected_index, columns=expected_columns
- )
- result = df.groupby(groupby).quantile(q)
- tm.assert_frame_equal(result, expected)
- def test_quantile_raises():
- df = DataFrame([["foo", "a"], ["foo", "b"], ["foo", "c"]], columns=["key", "val"])
- with pytest.raises(TypeError, match="cannot be performed against 'object' dtypes"):
- df.groupby("key").quantile()
- def test_quantile_out_of_bounds_q_raises():
- # https://github.com/pandas-dev/pandas/issues/27470
- df = DataFrame({"a": [0, 0, 0, 1, 1, 1], "b": range(6)})
- g = df.groupby([0, 0, 0, 1, 1, 1])
- with pytest.raises(ValueError, match="Got '50.0' instead"):
- g.quantile(50)
- with pytest.raises(ValueError, match="Got '-1.0' instead"):
- g.quantile(-1)
- def test_quantile_missing_group_values_no_segfaults():
- # GH 28662
- data = np.array([1.0, np.nan, 1.0])
- df = DataFrame({"key": data, "val": range(3)})
- # Random segfaults; would have been guaranteed in loop
- grp = df.groupby("key")
- for _ in range(100):
- grp.quantile()
- @pytest.mark.parametrize(
- "key, val, expected_key, expected_val",
- [
- ([1.0, np.nan, 3.0, np.nan], range(4), [1.0, 3.0], [0.0, 2.0]),
- ([1.0, np.nan, 2.0, 2.0], range(4), [1.0, 2.0], [0.0, 2.5]),
- (["a", "b", "b", np.nan], range(4), ["a", "b"], [0, 1.5]),
- ([0], [42], [0], [42.0]),
- ([], [], np.array([], dtype="float64"), np.array([], dtype="float64")),
- ],
- )
- def test_quantile_missing_group_values_correct_results(
- key, val, expected_key, expected_val
- ):
- # GH 28662, GH 33200, GH 33569
- df = DataFrame({"key": key, "val": val})
- expected = DataFrame(
- expected_val, index=Index(expected_key, name="key"), columns=["val"]
- )
- grp = df.groupby("key")
- result = grp.quantile(0.5)
- tm.assert_frame_equal(result, expected)
- result = grp.quantile()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "values",
- [
- pd.array([1, 0, None] * 2, dtype="Int64"),
- pd.array([True, False, None] * 2, dtype="boolean"),
- ],
- )
- @pytest.mark.parametrize("q", [0.5, [0.0, 0.5, 1.0]])
- def test_groupby_quantile_nullable_array(values, q):
- # https://github.com/pandas-dev/pandas/issues/33136
- df = DataFrame({"a": ["x"] * 3 + ["y"] * 3, "b": values})
- result = df.groupby("a")["b"].quantile(q)
- if isinstance(q, list):
- idx = pd.MultiIndex.from_product((["x", "y"], q), names=["a", None])
- true_quantiles = [0.0, 0.5, 1.0]
- else:
- idx = Index(["x", "y"], name="a")
- true_quantiles = [0.5]
- expected = pd.Series(true_quantiles * 2, index=idx, name="b", dtype="Float64")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("q", [0.5, [0.0, 0.5, 1.0]])
- @pytest.mark.parametrize("numeric_only", [True, False])
- def test_groupby_quantile_raises_on_invalid_dtype(q, numeric_only):
- df = DataFrame({"a": [1], "b": [2.0], "c": ["x"]})
- if numeric_only:
- result = df.groupby("a").quantile(q, numeric_only=numeric_only)
- expected = df.groupby("a")[["b"]].quantile(q)
- tm.assert_frame_equal(result, expected)
- else:
- with pytest.raises(
- TypeError, match="'quantile' cannot be performed against 'object' dtypes!"
- ):
- df.groupby("a").quantile(q, numeric_only=numeric_only)
- def test_groupby_quantile_NA_float(any_float_dtype):
- # GH#42849
- df = DataFrame({"x": [1, 1], "y": [0.2, np.nan]}, dtype=any_float_dtype)
- result = df.groupby("x")["y"].quantile(0.5)
- exp_index = Index([1.0], dtype=any_float_dtype, name="x")
- if any_float_dtype in ["Float32", "Float64"]:
- expected_dtype = any_float_dtype
- else:
- expected_dtype = None
- expected = pd.Series([0.2], dtype=expected_dtype, index=exp_index, name="y")
- tm.assert_series_equal(result, expected)
- result = df.groupby("x")["y"].quantile([0.5, 0.75])
- expected = pd.Series(
- [0.2] * 2,
- index=pd.MultiIndex.from_product((exp_index, [0.5, 0.75]), names=["x", None]),
- name="y",
- dtype=expected_dtype,
- )
- tm.assert_series_equal(result, expected)
- def test_groupby_quantile_NA_int(any_int_ea_dtype):
- # GH#42849
- df = DataFrame({"x": [1, 1], "y": [2, 5]}, dtype=any_int_ea_dtype)
- result = df.groupby("x")["y"].quantile(0.5)
- expected = pd.Series(
- [3.5],
- dtype="Float64",
- index=Index([1], name="x", dtype=any_int_ea_dtype),
- name="y",
- )
- tm.assert_series_equal(expected, result)
- result = df.groupby("x").quantile(0.5)
- expected = DataFrame(
- {"y": 3.5}, dtype="Float64", index=Index([1], name="x", dtype=any_int_ea_dtype)
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "interpolation, val1, val2", [("lower", 2, 2), ("higher", 2, 3), ("nearest", 2, 2)]
- )
- def test_groupby_quantile_all_na_group_masked(
- interpolation, val1, val2, any_numeric_ea_dtype
- ):
- # GH#37493
- df = DataFrame(
- {"a": [1, 1, 1, 2], "b": [1, 2, 3, pd.NA]}, dtype=any_numeric_ea_dtype
- )
- result = df.groupby("a").quantile(q=[0.5, 0.7], interpolation=interpolation)
- expected = DataFrame(
- {"b": [val1, val2, pd.NA, pd.NA]},
- dtype=any_numeric_ea_dtype,
- index=pd.MultiIndex.from_arrays(
- [pd.Series([1, 1, 2, 2], dtype=any_numeric_ea_dtype), [0.5, 0.7, 0.5, 0.7]],
- names=["a", None],
- ),
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("interpolation", ["midpoint", "linear"])
- def test_groupby_quantile_all_na_group_masked_interp(
- interpolation, any_numeric_ea_dtype
- ):
- # GH#37493
- df = DataFrame(
- {"a": [1, 1, 1, 2], "b": [1, 2, 3, pd.NA]}, dtype=any_numeric_ea_dtype
- )
- result = df.groupby("a").quantile(q=[0.5, 0.75], interpolation=interpolation)
- if any_numeric_ea_dtype == "Float32":
- expected_dtype = any_numeric_ea_dtype
- else:
- expected_dtype = "Float64"
- expected = DataFrame(
- {"b": [2.0, 2.5, pd.NA, pd.NA]},
- dtype=expected_dtype,
- index=pd.MultiIndex.from_arrays(
- [
- pd.Series([1, 1, 2, 2], dtype=any_numeric_ea_dtype),
- [0.5, 0.75, 0.5, 0.75],
- ],
- names=["a", None],
- ),
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("dtype", ["Float64", "Float32"])
- def test_groupby_quantile_allNA_column(dtype):
- # GH#42849
- df = DataFrame({"x": [1, 1], "y": [pd.NA] * 2}, dtype=dtype)
- result = df.groupby("x")["y"].quantile(0.5)
- expected = pd.Series(
- [np.nan], dtype=dtype, index=Index([1.0], dtype=dtype), name="y"
- )
- expected.index.name = "x"
- tm.assert_series_equal(expected, result)
- def test_groupby_timedelta_quantile():
- # GH: 29485
- df = DataFrame(
- {"value": pd.to_timedelta(np.arange(4), unit="s"), "group": [1, 1, 2, 2]}
- )
- result = df.groupby("group").quantile(0.99)
- expected = DataFrame(
- {
- "value": [
- pd.Timedelta("0 days 00:00:00.990000"),
- pd.Timedelta("0 days 00:00:02.990000"),
- ]
- },
- index=Index([1, 2], name="group"),
- )
- tm.assert_frame_equal(result, expected)
- def test_columns_groupby_quantile():
- # GH 33795
- df = DataFrame(
- np.arange(12).reshape(3, -1),
- index=list("XYZ"),
- columns=pd.Series(list("ABAB"), name="col"),
- )
- result = df.groupby("col", axis=1).quantile(q=[0.8, 0.2])
- expected = DataFrame(
- [
- [1.6, 0.4, 2.6, 1.4],
- [5.6, 4.4, 6.6, 5.4],
- [9.6, 8.4, 10.6, 9.4],
- ],
- index=list("XYZ"),
- columns=pd.MultiIndex.from_tuples(
- [("A", 0.8), ("A", 0.2), ("B", 0.8), ("B", 0.2)], names=["col", None]
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_timestamp_groupby_quantile():
- # GH 33168
- df = DataFrame(
- {
- "timestamp": pd.date_range(
- start="2020-04-19 00:00:00", freq="1T", periods=100, tz="UTC"
- ).floor("1H"),
- "category": list(range(1, 101)),
- "value": list(range(101, 201)),
- }
- )
- result = df.groupby("timestamp").quantile([0.2, 0.8])
- expected = DataFrame(
- [
- {"category": 12.8, "value": 112.8},
- {"category": 48.2, "value": 148.2},
- {"category": 68.8, "value": 168.8},
- {"category": 92.2, "value": 192.2},
- ],
- index=pd.MultiIndex.from_tuples(
- [
- (pd.Timestamp("2020-04-19 00:00:00+00:00"), 0.2),
- (pd.Timestamp("2020-04-19 00:00:00+00:00"), 0.8),
- (pd.Timestamp("2020-04-19 01:00:00+00:00"), 0.2),
- (pd.Timestamp("2020-04-19 01:00:00+00:00"), 0.8),
- ],
- names=("timestamp", None),
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_quantile_dt64tz_period():
- # GH#51373
- dti = pd.date_range("2016-01-01", periods=1000)
- ser = pd.Series(dti)
- df = ser.to_frame()
- df[1] = dti.tz_localize("US/Pacific")
- df[2] = dti.to_period("D")
- df[3] = dti - dti[0]
- df.iloc[-1] = pd.NaT
- by = np.tile(np.arange(5), 200)
- gb = df.groupby(by)
- result = gb.quantile(0.5)
- # Check that we match the group-by-group result
- exp = {i: df.iloc[i::5].quantile(0.5) for i in range(5)}
- expected = DataFrame(exp).T
- expected.index = expected.index.astype(np.int_)
- tm.assert_frame_equal(result, expected)
|