1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- import numpy as np
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- )
- import pandas._testing as tm
- def test_pipe():
- # Test the pipe method of DataFrameGroupBy.
- # Issue #17871
- random_state = np.random.RandomState(1234567890)
- df = DataFrame(
- {
- "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
- "B": random_state.randn(8),
- "C": random_state.randn(8),
- }
- )
- def f(dfgb):
- return dfgb.B.max() - dfgb.C.min().min()
- def square(srs):
- return srs**2
- # Note that the transformations are
- # GroupBy -> Series
- # Series -> Series
- # This then chains the GroupBy.pipe and the
- # NDFrame.pipe methods
- result = df.groupby("A").pipe(f).pipe(square)
- index = Index(["bar", "foo"], dtype="object", name="A")
- expected = pd.Series([8.99110003361, 8.17516964785], name="B", index=index)
- tm.assert_series_equal(expected, result)
- def test_pipe_args():
- # Test passing args to the pipe method of DataFrameGroupBy.
- # Issue #17871
- df = DataFrame(
- {
- "group": ["A", "A", "B", "B", "C"],
- "x": [1.0, 2.0, 3.0, 2.0, 5.0],
- "y": [10.0, 100.0, 1000.0, -100.0, -1000.0],
- }
- )
- def f(dfgb, arg1):
- filtered = dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False)
- return filtered.groupby("group")
- def g(dfgb, arg2):
- return dfgb.sum() / dfgb.sum().sum() + arg2
- def h(df, arg3):
- return df.x + df.y - arg3
- result = df.groupby("group").pipe(f, 0).pipe(g, 10).pipe(h, 100)
- # Assert the results here
- index = Index(["A", "B"], name="group")
- expected = pd.Series([-79.5160891089, -78.4839108911], index=index)
- tm.assert_series_equal(result, expected)
- # test SeriesGroupby.pipe
- ser = pd.Series([1, 1, 2, 2, 3, 3])
- result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count())
- expected = pd.Series([4, 8, 12], index=Index([1, 2, 3], dtype=np.int64))
- tm.assert_series_equal(result, expected)
|