123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077 |
- """
- test where we are determining what we are grouping, or getting groups
- """
- from datetime import (
- date,
- timedelta,
- )
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- CategoricalIndex,
- DataFrame,
- Grouper,
- Index,
- MultiIndex,
- Series,
- Timestamp,
- date_range,
- )
- import pandas._testing as tm
- from pandas.core.groupby.grouper import Grouping
- # selection
- # --------------------------------
- class TestSelection:
- def test_select_bad_cols(self):
- df = DataFrame([[1, 2]], columns=["A", "B"])
- g = df.groupby("A")
- with pytest.raises(KeyError, match="\"Columns not found: 'C'\""):
- g[["C"]]
- with pytest.raises(KeyError, match="^[^A]+$"):
- # A should not be referenced as a bad column...
- # will have to rethink regex if you change message!
- g[["A", "C"]]
- def test_groupby_duplicated_column_errormsg(self):
- # GH7511
- df = DataFrame(
- columns=["A", "B", "A", "C"], data=[range(4), range(2, 6), range(0, 8, 2)]
- )
- msg = "Grouper for 'A' not 1-dimensional"
- with pytest.raises(ValueError, match=msg):
- df.groupby("A")
- with pytest.raises(ValueError, match=msg):
- df.groupby(["A", "B"])
- grouped = df.groupby("B")
- c = grouped.count()
- assert c.columns.nlevels == 1
- assert c.columns.size == 3
- def test_column_select_via_attr(self, df):
- result = df.groupby("A").C.sum()
- expected = df.groupby("A")["C"].sum()
- tm.assert_series_equal(result, expected)
- df["mean"] = 1.5
- result = df.groupby("A").mean(numeric_only=True)
- expected = df.groupby("A")[["C", "D", "mean"]].agg(np.mean)
- tm.assert_frame_equal(result, expected)
- def test_getitem_list_of_columns(self):
- df = DataFrame(
- {
- "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
- "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
- "C": np.random.randn(8),
- "D": np.random.randn(8),
- "E": np.random.randn(8),
- }
- )
- result = df.groupby("A")[["C", "D"]].mean()
- result2 = df.groupby("A")[df.columns[2:4]].mean()
- expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean()
- tm.assert_frame_equal(result, expected)
- tm.assert_frame_equal(result2, expected)
- def test_getitem_numeric_column_names(self):
- # GH #13731
- df = DataFrame(
- {
- 0: list("abcd") * 2,
- 2: np.random.randn(8),
- 4: np.random.randn(8),
- 6: np.random.randn(8),
- }
- )
- result = df.groupby(0)[df.columns[1:3]].mean()
- result2 = df.groupby(0)[[2, 4]].mean()
- expected = df.loc[:, [0, 2, 4]].groupby(0).mean()
- tm.assert_frame_equal(result, expected)
- tm.assert_frame_equal(result2, expected)
- # per GH 23566 enforced deprecation raises a ValueError
- with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
- df.groupby(0)[2, 4].mean()
- def test_getitem_single_tuple_of_columns_raises(self, df):
- # per GH 23566 enforced deprecation raises a ValueError
- with pytest.raises(ValueError, match="Cannot subset columns with a tuple"):
- df.groupby("A")["C", "D"].mean()
- def test_getitem_single_column(self):
- df = DataFrame(
- {
- "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
- "B": ["one", "one", "two", "three", "two", "two", "one", "three"],
- "C": np.random.randn(8),
- "D": np.random.randn(8),
- "E": np.random.randn(8),
- }
- )
- result = df.groupby("A")["C"].mean()
- as_frame = df.loc[:, ["A", "C"]].groupby("A").mean()
- as_series = as_frame.iloc[:, 0]
- expected = as_series
- tm.assert_series_equal(result, expected)
- def test_indices_grouped_by_tuple_with_lambda(self):
- # GH 36158
- df = DataFrame(
- {"Tuples": ((x, y) for x in [0, 1] for y in np.random.randint(3, 5, 5))}
- )
- gb = df.groupby("Tuples")
- gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
- expected = gb.indices
- result = gb_lambda.indices
- tm.assert_dict_equal(result, expected)
- # grouping
- # --------------------------------
- class TestGrouping:
- @pytest.mark.parametrize(
- "index",
- [
- tm.makeFloatIndex,
- tm.makeStringIndex,
- tm.makeIntIndex,
- tm.makeDateIndex,
- tm.makePeriodIndex,
- ],
- )
- def test_grouper_index_types(self, index):
- # related GH5375
- # groupby misbehaving when using a Floatlike index
- df = DataFrame(np.arange(10).reshape(5, 2), columns=list("AB"))
- df.index = index(len(df))
- df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
- df.index = list(reversed(df.index.tolist()))
- df.groupby(list("abcde"), group_keys=False).apply(lambda x: x)
- def test_grouper_multilevel_freq(self):
- # GH 7885
- # with level and freq specified in a Grouper
- d0 = date.today() - timedelta(days=14)
- dates = date_range(d0, date.today())
- date_index = MultiIndex.from_product([dates, dates], names=["foo", "bar"])
- df = DataFrame(np.random.randint(0, 100, 225), index=date_index)
- # Check string level
- expected = (
- df.reset_index()
- .groupby([Grouper(key="foo", freq="W"), Grouper(key="bar", freq="W")])
- .sum()
- )
- # reset index changes columns dtype to object
- expected.columns = Index([0], dtype="int64")
- result = df.groupby(
- [Grouper(level="foo", freq="W"), Grouper(level="bar", freq="W")]
- ).sum()
- tm.assert_frame_equal(result, expected)
- # Check integer level
- result = df.groupby(
- [Grouper(level=0, freq="W"), Grouper(level=1, freq="W")]
- ).sum()
- tm.assert_frame_equal(result, expected)
- def test_grouper_creation_bug(self):
- # GH 8795
- df = DataFrame({"A": [0, 0, 1, 1, 2, 2], "B": [1, 2, 3, 4, 5, 6]})
- g = df.groupby("A")
- expected = g.sum()
- g = df.groupby(Grouper(key="A"))
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- g = df.groupby(Grouper(key="A", axis=0))
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- result = g.apply(lambda x: x.sum())
- expected["A"] = [0, 2, 4]
- expected = expected.loc[:, ["A", "B"]]
- tm.assert_frame_equal(result, expected)
- # GH14334
- # Grouper(key=...) may be passed in a list
- df = DataFrame(
- {"A": [0, 0, 0, 1, 1, 1], "B": [1, 1, 2, 2, 3, 3], "C": [1, 2, 3, 4, 5, 6]}
- )
- # Group by single column
- expected = df.groupby("A").sum()
- g = df.groupby([Grouper(key="A")])
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- # Group by two columns
- # using a combination of strings and Grouper objects
- expected = df.groupby(["A", "B"]).sum()
- # Group with two Grouper objects
- g = df.groupby([Grouper(key="A"), Grouper(key="B")])
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- # Group with a string and a Grouper object
- g = df.groupby(["A", Grouper(key="B")])
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- # Group with a Grouper object and a string
- g = df.groupby([Grouper(key="A"), "B"])
- result = g.sum()
- tm.assert_frame_equal(result, expected)
- # GH8866
- s = Series(
- np.arange(8, dtype="int64"),
- index=MultiIndex.from_product(
- [list("ab"), range(2), date_range("20130101", periods=2)],
- names=["one", "two", "three"],
- ),
- )
- result = s.groupby(Grouper(level="three", freq="M")).sum()
- expected = Series(
- [28],
- index=pd.DatetimeIndex([Timestamp("2013-01-31")], freq="M", name="three"),
- )
- tm.assert_series_equal(result, expected)
- # just specifying a level breaks
- result = s.groupby(Grouper(level="one")).sum()
- expected = s.groupby(level="one").sum()
- tm.assert_series_equal(result, expected)
- def test_grouper_column_and_index(self):
- # GH 14327
- # Grouping a multi-index frame by a column and an index level should
- # be equivalent to resetting the index and grouping by two columns
- idx = MultiIndex.from_tuples(
- [("a", 1), ("a", 2), ("a", 3), ("b", 1), ("b", 2), ("b", 3)]
- )
- idx.names = ["outer", "inner"]
- df_multi = DataFrame(
- {"A": np.arange(6), "B": ["one", "one", "two", "two", "one", "one"]},
- index=idx,
- )
- result = df_multi.groupby(["B", Grouper(level="inner")]).mean(numeric_only=True)
- expected = (
- df_multi.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
- )
- tm.assert_frame_equal(result, expected)
- # Test the reverse grouping order
- result = df_multi.groupby([Grouper(level="inner"), "B"]).mean(numeric_only=True)
- expected = (
- df_multi.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
- )
- tm.assert_frame_equal(result, expected)
- # Grouping a single-index frame by a column and the index should
- # be equivalent to resetting the index and grouping by two columns
- df_single = df_multi.reset_index("outer")
- result = df_single.groupby(["B", Grouper(level="inner")]).mean(
- numeric_only=True
- )
- expected = (
- df_single.reset_index().groupby(["B", "inner"]).mean(numeric_only=True)
- )
- tm.assert_frame_equal(result, expected)
- # Test the reverse grouping order
- result = df_single.groupby([Grouper(level="inner"), "B"]).mean(
- numeric_only=True
- )
- expected = (
- df_single.reset_index().groupby(["inner", "B"]).mean(numeric_only=True)
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_levels_and_columns(self):
- # GH9344, GH9049
- idx_names = ["x", "y"]
- idx = MultiIndex.from_tuples([(1, 1), (1, 2), (3, 4), (5, 6)], names=idx_names)
- df = DataFrame(np.arange(12).reshape(-1, 3), index=idx)
- by_levels = df.groupby(level=idx_names).mean()
- # reset_index changes columns dtype to object
- by_columns = df.reset_index().groupby(idx_names).mean()
- # without casting, by_columns.columns is object-dtype
- by_columns.columns = by_columns.columns.astype(np.int64)
- tm.assert_frame_equal(by_levels, by_columns)
- def test_groupby_categorical_index_and_columns(self, observed):
- # GH18432, adapted for GH25871
- columns = ["A", "B", "A", "B"]
- categories = ["B", "A"]
- data = np.array(
- [[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 1, 2]], int
- )
- cat_columns = CategoricalIndex(columns, categories=categories, ordered=True)
- df = DataFrame(data=data, columns=cat_columns)
- result = df.groupby(axis=1, level=0, observed=observed).sum()
- expected_data = np.array([[4, 2], [4, 2], [4, 2], [4, 2], [4, 2]], int)
- expected_columns = CategoricalIndex(
- categories, categories=categories, ordered=True
- )
- expected = DataFrame(data=expected_data, columns=expected_columns)
- tm.assert_frame_equal(result, expected)
- # test transposed version
- df = DataFrame(data.T, index=cat_columns)
- result = df.groupby(axis=0, level=0, observed=observed).sum()
- expected = DataFrame(data=expected_data.T, index=expected_columns)
- tm.assert_frame_equal(result, expected)
- def test_grouper_getting_correct_binner(self):
- # GH 10063
- # using a non-time-based grouper and a time-based grouper
- # and specifying levels
- df = DataFrame(
- {"A": 1},
- index=MultiIndex.from_product(
- [list("ab"), date_range("20130101", periods=80)], names=["one", "two"]
- ),
- )
- result = df.groupby(
- [Grouper(level="one"), Grouper(level="two", freq="M")]
- ).sum()
- expected = DataFrame(
- {"A": [31, 28, 21, 31, 28, 21]},
- index=MultiIndex.from_product(
- [list("ab"), date_range("20130101", freq="M", periods=3)],
- names=["one", "two"],
- ),
- )
- tm.assert_frame_equal(result, expected)
- def test_grouper_iter(self, df):
- assert sorted(df.groupby("A").grouper) == ["bar", "foo"]
- def test_empty_groups(self, df):
- # see gh-1048
- with pytest.raises(ValueError, match="No group keys passed!"):
- df.groupby([])
- def test_groupby_grouper(self, df):
- grouped = df.groupby("A")
- result = df.groupby(grouped.grouper).mean(numeric_only=True)
- expected = grouped.mean(numeric_only=True)
- tm.assert_frame_equal(result, expected)
- def test_groupby_dict_mapping(self):
- # GH #679
- s = Series({"T1": 5})
- result = s.groupby({"T1": "T2"}).agg(sum)
- expected = s.groupby(["T2"]).agg(sum)
- tm.assert_series_equal(result, expected)
- s = Series([1.0, 2.0, 3.0, 4.0], index=list("abcd"))
- mapping = {"a": 0, "b": 0, "c": 1, "d": 1}
- result = s.groupby(mapping).mean()
- result2 = s.groupby(mapping).agg(np.mean)
- exp_key = np.array([0, 0, 1, 1], dtype=np.int64)
- expected = s.groupby(exp_key).mean()
- expected2 = s.groupby(exp_key).mean()
- tm.assert_series_equal(result, expected)
- tm.assert_series_equal(result, result2)
- tm.assert_series_equal(result, expected2)
- @pytest.mark.parametrize(
- "index",
- [
- [0, 1, 2, 3],
- ["a", "b", "c", "d"],
- [Timestamp(2021, 7, 28 + i) for i in range(4)],
- ],
- )
- def test_groupby_series_named_with_tuple(self, frame_or_series, index):
- # GH 42731
- obj = frame_or_series([1, 2, 3, 4], index=index)
- groups = Series([1, 0, 1, 0], index=index, name=("a", "a"))
- result = obj.groupby(groups).last()
- expected = frame_or_series([4, 3])
- expected.index.name = ("a", "a")
- tm.assert_equal(result, expected)
- def test_groupby_grouper_f_sanity_checked(self):
- dates = date_range("01-Jan-2013", periods=12, freq="MS")
- ts = Series(np.random.randn(12), index=dates)
- # GH3035
- # index.map is used to apply grouper to the index
- # if it fails on the elements, map tries it on the entire index as
- # a sequence. That can yield invalid results that cause trouble
- # down the line.
- # the surprise comes from using key[0:6] rather than str(key)[0:6]
- # when the elements are Timestamp.
- # the result is Index[0:6], very confusing.
- msg = r"Grouper result violates len\(labels\) == len\(data\)"
- with pytest.raises(AssertionError, match=msg):
- ts.groupby(lambda key: key[0:6])
- def test_grouping_error_on_multidim_input(self, df):
- msg = "Grouper for '<class 'pandas.core.frame.DataFrame'>' not 1-dimensional"
- with pytest.raises(ValueError, match=msg):
- Grouping(df.index, df[["A", "A"]])
- def test_multiindex_passthru(self):
- # GH 7997
- # regression from 0.14.1
- df = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
- df.columns = MultiIndex.from_tuples([(0, 1), (1, 1), (2, 1)])
- result = df.groupby(axis=1, level=[0, 1]).first()
- tm.assert_frame_equal(result, df)
- def test_multiindex_negative_level(self, mframe):
- # GH 13901
- result = mframe.groupby(level=-1).sum()
- expected = mframe.groupby(level="second").sum()
- tm.assert_frame_equal(result, expected)
- result = mframe.groupby(level=-2).sum()
- expected = mframe.groupby(level="first").sum()
- tm.assert_frame_equal(result, expected)
- result = mframe.groupby(level=[-2, -1]).sum()
- expected = mframe.sort_index()
- tm.assert_frame_equal(result, expected)
- result = mframe.groupby(level=[-1, "first"]).sum()
- expected = mframe.groupby(level=["second", "first"]).sum()
- tm.assert_frame_equal(result, expected)
- def test_multifunc_select_col_integer_cols(self, df):
- df.columns = np.arange(len(df.columns))
- # it works!
- df.groupby(1, as_index=False)[2].agg({"Q": np.mean})
- def test_multiindex_columns_empty_level(self):
- lst = [["count", "values"], ["to filter", ""]]
- midx = MultiIndex.from_tuples(lst)
- df = DataFrame([[1, "A"]], columns=midx)
- grouped = df.groupby("to filter").groups
- assert grouped["A"] == [0]
- grouped = df.groupby([("to filter", "")]).groups
- assert grouped["A"] == [0]
- df = DataFrame([[1, "A"], [2, "B"]], columns=midx)
- expected = df.groupby("to filter").groups
- result = df.groupby([("to filter", "")]).groups
- assert result == expected
- df = DataFrame([[1, "A"], [2, "A"]], columns=midx)
- expected = df.groupby("to filter").groups
- result = df.groupby([("to filter", "")]).groups
- tm.assert_dict_equal(result, expected)
- def test_groupby_multiindex_tuple(self):
- # GH 17979
- df = DataFrame(
- [[1, 2, 3, 4], [3, 4, 5, 6], [1, 4, 2, 3]],
- columns=MultiIndex.from_arrays([["a", "b", "b", "c"], [1, 1, 2, 2]]),
- )
- expected = df.groupby([("b", 1)]).groups
- result = df.groupby(("b", 1)).groups
- tm.assert_dict_equal(expected, result)
- df2 = DataFrame(
- df.values,
- columns=MultiIndex.from_arrays(
- [["a", "b", "b", "c"], ["d", "d", "e", "e"]]
- ),
- )
- expected = df2.groupby([("b", "d")]).groups
- result = df.groupby(("b", 1)).groups
- tm.assert_dict_equal(expected, result)
- df3 = DataFrame(df.values, columns=[("a", "d"), ("b", "d"), ("b", "e"), "c"])
- expected = df3.groupby([("b", "d")]).groups
- result = df.groupby(("b", 1)).groups
- tm.assert_dict_equal(expected, result)
- @pytest.mark.parametrize("sort", [True, False])
- def test_groupby_level(self, sort, mframe, df):
- # GH 17537
- frame = mframe
- deleveled = frame.reset_index()
- result0 = frame.groupby(level=0, sort=sort).sum()
- result1 = frame.groupby(level=1, sort=sort).sum()
- expected0 = frame.groupby(deleveled["first"].values, sort=sort).sum()
- expected1 = frame.groupby(deleveled["second"].values, sort=sort).sum()
- expected0.index.name = "first"
- expected1.index.name = "second"
- assert result0.index.name == "first"
- assert result1.index.name == "second"
- tm.assert_frame_equal(result0, expected0)
- tm.assert_frame_equal(result1, expected1)
- assert result0.index.name == frame.index.names[0]
- assert result1.index.name == frame.index.names[1]
- # groupby level name
- result0 = frame.groupby(level="first", sort=sort).sum()
- result1 = frame.groupby(level="second", sort=sort).sum()
- tm.assert_frame_equal(result0, expected0)
- tm.assert_frame_equal(result1, expected1)
- # axis=1
- result0 = frame.T.groupby(level=0, axis=1, sort=sort).sum()
- result1 = frame.T.groupby(level=1, axis=1, sort=sort).sum()
- tm.assert_frame_equal(result0, expected0.T)
- tm.assert_frame_equal(result1, expected1.T)
- # raise exception for non-MultiIndex
- msg = "level > 0 or level < -1 only valid with MultiIndex"
- with pytest.raises(ValueError, match=msg):
- df.groupby(level=1)
- def test_groupby_level_index_names(self, axis):
- # GH4014 this used to raise ValueError since 'exp'>1 (in py2)
- df = DataFrame({"exp": ["A"] * 3 + ["B"] * 3, "var1": range(6)}).set_index(
- "exp"
- )
- if axis in (1, "columns"):
- df = df.T
- df.groupby(level="exp", axis=axis)
- msg = f"level name foo is not the name of the {df._get_axis_name(axis)}"
- with pytest.raises(ValueError, match=msg):
- df.groupby(level="foo", axis=axis)
- @pytest.mark.parametrize("sort", [True, False])
- def test_groupby_level_with_nas(self, sort):
- # GH 17537
- index = MultiIndex(
- levels=[[1, 0], [0, 1, 2, 3]],
- codes=[[1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
- )
- # factorizing doesn't confuse things
- s = Series(np.arange(8.0), index=index)
- result = s.groupby(level=0, sort=sort).sum()
- expected = Series([6.0, 22.0], index=[0, 1])
- tm.assert_series_equal(result, expected)
- index = MultiIndex(
- levels=[[1, 0], [0, 1, 2, 3]],
- codes=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]],
- )
- # factorizing doesn't confuse things
- s = Series(np.arange(8.0), index=index)
- result = s.groupby(level=0, sort=sort).sum()
- expected = Series([6.0, 18.0], index=[0.0, 1.0])
- tm.assert_series_equal(result, expected)
- def test_groupby_args(self, mframe):
- # PR8618 and issue 8015
- frame = mframe
- msg = "You have to supply one of 'by' and 'level'"
- with pytest.raises(TypeError, match=msg):
- frame.groupby()
- msg = "You have to supply one of 'by' and 'level'"
- with pytest.raises(TypeError, match=msg):
- frame.groupby(by=None, level=None)
- @pytest.mark.parametrize(
- "sort,labels",
- [
- [True, [2, 2, 2, 0, 0, 1, 1, 3, 3, 3]],
- [False, [0, 0, 0, 1, 1, 2, 2, 3, 3, 3]],
- ],
- )
- def test_level_preserve_order(self, sort, labels, mframe):
- # GH 17537
- grouped = mframe.groupby(level=0, sort=sort)
- exp_labels = np.array(labels, np.intp)
- tm.assert_almost_equal(grouped.grouper.codes[0], exp_labels)
- def test_grouping_labels(self, mframe):
- grouped = mframe.groupby(mframe.index.get_level_values(0))
- exp_labels = np.array([2, 2, 2, 0, 0, 1, 1, 3, 3, 3], dtype=np.intp)
- tm.assert_almost_equal(grouped.grouper.codes[0], exp_labels)
- def test_list_grouper_with_nat(self):
- # GH 14715
- df = DataFrame({"date": date_range("1/1/2011", periods=365, freq="D")})
- df.iloc[-1] = pd.NaT
- grouper = Grouper(key="date", freq="AS")
- # Grouper in a list grouping
- result = df.groupby([grouper])
- expected = {Timestamp("2011-01-01"): Index(list(range(364)))}
- tm.assert_dict_equal(result.groups, expected)
- # Test case without a list
- result = df.groupby(grouper)
- expected = {Timestamp("2011-01-01"): 365}
- tm.assert_dict_equal(result.groups, expected)
- @pytest.mark.parametrize(
- "func,expected",
- [
- (
- "transform",
- Series(name=2, dtype=np.float64),
- ),
- (
- "agg",
- Series(
- name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
- ),
- ),
- (
- "apply",
- Series(
- name=2, dtype=np.float64, index=Index([], dtype=np.float64, name=1)
- ),
- ),
- ],
- )
- def test_evaluate_with_empty_groups(self, func, expected):
- # 26208
- # test transform'ing empty groups
- # (not testing other agg fns, because they return
- # different index objects.
- df = DataFrame({1: [], 2: []})
- g = df.groupby(1, group_keys=False)
- result = getattr(g[2], func)(lambda x: x)
- tm.assert_series_equal(result, expected)
- def test_groupby_empty(self):
- # https://github.com/pandas-dev/pandas/issues/27190
- s = Series([], name="name", dtype="float64")
- gr = s.groupby([])
- result = gr.mean()
- expected = s.set_axis(Index([], dtype=np.intp))
- tm.assert_series_equal(result, expected)
- # check group properties
- assert len(gr.grouper.groupings) == 1
- tm.assert_numpy_array_equal(
- gr.grouper.group_info[0], np.array([], dtype=np.dtype(np.intp))
- )
- tm.assert_numpy_array_equal(
- gr.grouper.group_info[1], np.array([], dtype=np.dtype(np.intp))
- )
- assert gr.grouper.group_info[2] == 0
- # check name
- assert s.groupby(s).grouper.names == ["name"]
- def test_groupby_level_index_value_all_na(self):
- # issue 20519
- df = DataFrame(
- [["x", np.nan, 10], [None, np.nan, 20]], columns=["A", "B", "C"]
- ).set_index(["A", "B"])
- result = df.groupby(level=["A", "B"]).sum()
- expected = DataFrame(
- data=[],
- index=MultiIndex(
- levels=[Index(["x"], dtype="object"), Index([], dtype="float64")],
- codes=[[], []],
- names=["A", "B"],
- ),
- columns=["C"],
- dtype="int64",
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_multiindex_level_empty(self):
- # https://github.com/pandas-dev/pandas/issues/31670
- df = DataFrame(
- [[123, "a", 1.0], [123, "b", 2.0]], columns=["id", "category", "value"]
- )
- df = df.set_index(["id", "category"])
- empty = df[df.value < 0]
- result = empty.groupby("id").sum()
- expected = DataFrame(
- dtype="float64",
- columns=["value"],
- index=Index([], dtype=np.int64, name="id"),
- )
- tm.assert_frame_equal(result, expected)
- # get_group
- # --------------------------------
- class TestGetGroup:
- def test_get_group(self):
- # GH 5267
- # be datelike friendly
- df = DataFrame(
- {
- "DATE": pd.to_datetime(
- [
- "10-Oct-2013",
- "10-Oct-2013",
- "10-Oct-2013",
- "11-Oct-2013",
- "11-Oct-2013",
- "11-Oct-2013",
- ]
- ),
- "label": ["foo", "foo", "bar", "foo", "foo", "bar"],
- "VAL": [1, 2, 3, 4, 5, 6],
- }
- )
- g = df.groupby("DATE")
- key = list(g.groups)[0]
- result1 = g.get_group(key)
- result2 = g.get_group(Timestamp(key).to_pydatetime())
- result3 = g.get_group(str(Timestamp(key)))
- tm.assert_frame_equal(result1, result2)
- tm.assert_frame_equal(result1, result3)
- g = df.groupby(["DATE", "label"])
- key = list(g.groups)[0]
- result1 = g.get_group(key)
- result2 = g.get_group((Timestamp(key[0]).to_pydatetime(), key[1]))
- result3 = g.get_group((str(Timestamp(key[0])), key[1]))
- tm.assert_frame_equal(result1, result2)
- tm.assert_frame_equal(result1, result3)
- # must pass a same-length tuple with multiple keys
- msg = "must supply a tuple to get_group with multiple grouping keys"
- with pytest.raises(ValueError, match=msg):
- g.get_group("foo")
- with pytest.raises(ValueError, match=msg):
- g.get_group("foo")
- msg = "must supply a same-length tuple to get_group with multiple grouping keys"
- with pytest.raises(ValueError, match=msg):
- g.get_group(("foo", "bar", "baz"))
- def test_get_group_empty_bins(self, observed):
- d = DataFrame([3, 1, 7, 6])
- bins = [0, 5, 10, 15]
- g = d.groupby(pd.cut(d[0], bins), observed=observed)
- # TODO: should prob allow a str of Interval work as well
- # IOW '(0, 5]'
- result = g.get_group(pd.Interval(0, 5))
- expected = DataFrame([3, 1], index=[0, 1])
- tm.assert_frame_equal(result, expected)
- msg = r"Interval\(10, 15, closed='right'\)"
- with pytest.raises(KeyError, match=msg):
- g.get_group(pd.Interval(10, 15))
- def test_get_group_grouped_by_tuple(self):
- # GH 8121
- df = DataFrame([[(1,), (1, 2), (1,), (1, 2)]], index=["ids"]).T
- gr = df.groupby("ids")
- expected = DataFrame({"ids": [(1,), (1,)]}, index=[0, 2])
- result = gr.get_group((1,))
- tm.assert_frame_equal(result, expected)
- dt = pd.to_datetime(["2010-01-01", "2010-01-02", "2010-01-01", "2010-01-02"])
- df = DataFrame({"ids": [(x,) for x in dt]})
- gr = df.groupby("ids")
- result = gr.get_group(("2010-01-01",))
- expected = DataFrame({"ids": [(dt[0],), (dt[0],)]}, index=[0, 2])
- tm.assert_frame_equal(result, expected)
- def test_get_group_grouped_by_tuple_with_lambda(self):
- # GH 36158
- df = DataFrame(
- {"Tuples": ((x, y) for x in [0, 1] for y in np.random.randint(3, 5, 5))}
- )
- gb = df.groupby("Tuples")
- gb_lambda = df.groupby(lambda x: df.iloc[x, 0])
- expected = gb.get_group(list(gb.groups.keys())[0])
- result = gb_lambda.get_group(list(gb_lambda.groups.keys())[0])
- tm.assert_frame_equal(result, expected)
- def test_groupby_with_empty(self):
- index = pd.DatetimeIndex(())
- data = ()
- series = Series(data, index, dtype=object)
- grouper = Grouper(freq="D")
- grouped = series.groupby(grouper)
- assert next(iter(grouped), None) is None
- def test_groupby_with_single_column(self):
- df = DataFrame({"a": list("abssbab")})
- tm.assert_frame_equal(df.groupby("a").get_group("a"), df.iloc[[0, 5]])
- # GH 13530
- exp = DataFrame(index=Index(["a", "b", "s"], name="a"), columns=[])
- tm.assert_frame_equal(df.groupby("a").count(), exp)
- tm.assert_frame_equal(df.groupby("a").sum(), exp)
- exp = df.iloc[[3, 4, 5]]
- tm.assert_frame_equal(df.groupby("a").nth(1), exp)
- def test_gb_key_len_equal_axis_len(self):
- # GH16843
- # test ensures that index and column keys are recognized correctly
- # when number of keys equals axis length of groupby
- df = DataFrame(
- [["foo", "bar", "B", 1], ["foo", "bar", "B", 2], ["foo", "baz", "C", 3]],
- columns=["first", "second", "third", "one"],
- )
- df = df.set_index(["first", "second"])
- df = df.groupby(["first", "second", "third"]).size()
- assert df.loc[("foo", "bar", "B")] == 2
- assert df.loc[("foo", "baz", "C")] == 1
- # groups & iteration
- # --------------------------------
- class TestIteration:
- def test_groups(self, df):
- grouped = df.groupby(["A"])
- groups = grouped.groups
- assert groups is grouped.groups # caching works
- for k, v in grouped.groups.items():
- assert (df.loc[v]["A"] == k).all()
- grouped = df.groupby(["A", "B"])
- groups = grouped.groups
- assert groups is grouped.groups # caching works
- for k, v in grouped.groups.items():
- assert (df.loc[v]["A"] == k[0]).all()
- assert (df.loc[v]["B"] == k[1]).all()
- def test_grouping_is_iterable(self, tsframe):
- # this code path isn't used anywhere else
- # not sure it's useful
- grouped = tsframe.groupby([lambda x: x.weekday(), lambda x: x.year])
- # test it works
- for g in grouped.grouper.groupings[0]:
- pass
- def test_multi_iter(self):
- s = Series(np.arange(6))
- k1 = np.array(["a", "a", "a", "b", "b", "b"])
- k2 = np.array(["1", "2", "1", "2", "1", "2"])
- grouped = s.groupby([k1, k2])
- iterated = list(grouped)
- expected = [
- ("a", "1", s[[0, 2]]),
- ("a", "2", s[[1]]),
- ("b", "1", s[[4]]),
- ("b", "2", s[[3, 5]]),
- ]
- for i, ((one, two), three) in enumerate(iterated):
- e1, e2, e3 = expected[i]
- assert e1 == one
- assert e2 == two
- tm.assert_series_equal(three, e3)
- def test_multi_iter_frame(self, three_group):
- k1 = np.array(["b", "b", "b", "a", "a", "a"])
- k2 = np.array(["1", "2", "1", "2", "1", "2"])
- df = DataFrame(
- {"v1": np.random.randn(6), "v2": np.random.randn(6), "k1": k1, "k2": k2},
- index=["one", "two", "three", "four", "five", "six"],
- )
- grouped = df.groupby(["k1", "k2"])
- # things get sorted!
- iterated = list(grouped)
- idx = df.index
- expected = [
- ("a", "1", df.loc[idx[[4]]]),
- ("a", "2", df.loc[idx[[3, 5]]]),
- ("b", "1", df.loc[idx[[0, 2]]]),
- ("b", "2", df.loc[idx[[1]]]),
- ]
- for i, ((one, two), three) in enumerate(iterated):
- e1, e2, e3 = expected[i]
- assert e1 == one
- assert e2 == two
- tm.assert_frame_equal(three, e3)
- # don't iterate through groups with no data
- df["k1"] = np.array(["b", "b", "b", "a", "a", "a"])
- df["k2"] = np.array(["1", "1", "1", "2", "2", "2"])
- grouped = df.groupby(["k1", "k2"])
- # calling `dict` on a DataFrameGroupBy leads to a TypeError,
- # we need to use a dictionary comprehension here
- # pylint: disable-next=unnecessary-comprehension
- groups = {key: gp for key, gp in grouped}
- assert len(groups) == 2
- # axis = 1
- three_levels = three_group.groupby(["A", "B", "C"]).mean()
- grouped = three_levels.T.groupby(axis=1, level=(1, 2))
- for key, group in grouped:
- pass
- def test_dictify(self, df):
- dict(iter(df.groupby("A")))
- dict(iter(df.groupby(["A", "B"])))
- dict(iter(df["C"].groupby(df["A"])))
- dict(iter(df["C"].groupby([df["A"], df["B"]])))
- dict(iter(df.groupby("A")["C"]))
- dict(iter(df.groupby(["A", "B"])["C"]))
- def test_groupby_with_small_elem(self):
- # GH 8542
- # length=2
- df = DataFrame(
- {"event": ["start", "start"], "change": [1234, 5678]},
- index=pd.DatetimeIndex(["2014-09-10", "2013-10-10"]),
- )
- grouped = df.groupby([Grouper(freq="M"), "event"])
- assert len(grouped.groups) == 2
- assert grouped.ngroups == 2
- assert (Timestamp("2014-09-30"), "start") in grouped.groups
- assert (Timestamp("2013-10-31"), "start") in grouped.groups
- res = grouped.get_group((Timestamp("2014-09-30"), "start"))
- tm.assert_frame_equal(res, df.iloc[[0], :])
- res = grouped.get_group((Timestamp("2013-10-31"), "start"))
- tm.assert_frame_equal(res, df.iloc[[1], :])
- df = DataFrame(
- {"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
- index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-09-15"]),
- )
- grouped = df.groupby([Grouper(freq="M"), "event"])
- assert len(grouped.groups) == 2
- assert grouped.ngroups == 2
- assert (Timestamp("2014-09-30"), "start") in grouped.groups
- assert (Timestamp("2013-10-31"), "start") in grouped.groups
- res = grouped.get_group((Timestamp("2014-09-30"), "start"))
- tm.assert_frame_equal(res, df.iloc[[0, 2], :])
- res = grouped.get_group((Timestamp("2013-10-31"), "start"))
- tm.assert_frame_equal(res, df.iloc[[1], :])
- # length=3
- df = DataFrame(
- {"event": ["start", "start", "start"], "change": [1234, 5678, 9123]},
- index=pd.DatetimeIndex(["2014-09-10", "2013-10-10", "2014-08-05"]),
- )
- grouped = df.groupby([Grouper(freq="M"), "event"])
- assert len(grouped.groups) == 3
- assert grouped.ngroups == 3
- assert (Timestamp("2014-09-30"), "start") in grouped.groups
- assert (Timestamp("2013-10-31"), "start") in grouped.groups
- assert (Timestamp("2014-08-31"), "start") in grouped.groups
- res = grouped.get_group((Timestamp("2014-09-30"), "start"))
- tm.assert_frame_equal(res, df.iloc[[0], :])
- res = grouped.get_group((Timestamp("2013-10-31"), "start"))
- tm.assert_frame_equal(res, df.iloc[[1], :])
- res = grouped.get_group((Timestamp("2014-08-31"), "start"))
- tm.assert_frame_equal(res, df.iloc[[2], :])
- def test_grouping_string_repr(self):
- # GH 13394
- mi = MultiIndex.from_arrays([list("AAB"), list("aba")])
- df = DataFrame([[1, 2, 3]], columns=mi)
- gr = df.groupby(df[("A", "a")])
- result = gr.grouper.groupings[0].__repr__()
- expected = "Grouping(('A', 'a'))"
- assert result == expected
- def test_grouping_by_key_is_in_axis():
- # GH#50413 - Groupers specified by key are in-axis
- df = DataFrame({"a": [1, 1, 2], "b": [1, 1, 2], "c": [3, 4, 5]}).set_index("a")
- gb = df.groupby([Grouper(level="a"), Grouper(key="b")], as_index=False)
- assert not gb.grouper.groupings[0].in_axis
- assert gb.grouper.groupings[1].in_axis
- # Currently only in-axis groupings are including in the result when as_index=False;
- # This is likely to change in the future.
- result = gb.sum()
- expected = DataFrame({"b": [1, 2], "c": [7, 5]})
- tm.assert_frame_equal(result, expected)
- def test_grouper_groups():
- # GH#51182 check Grouper.groups does not raise AttributeError
- df = DataFrame({"a": [1, 2, 3], "b": 1})
- grper = Grouper(key="a")
- gb = df.groupby(grper)
- msg = "Use GroupBy.groups instead"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- res = grper.groups
- assert res is gb.groups
- msg = "Use GroupBy.grouper instead"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- res = grper.grouper
- assert res is gb.grouper
- msg = "Grouper.obj is deprecated and will be removed"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- res = grper.obj
- assert res is gb.obj
- msg = "Use Resampler.ax instead"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- grper.ax
- msg = "Grouper.indexer is deprecated"
- with tm.assert_produces_warning(FutureWarning, match=msg):
- grper.indexer
|