123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- import builtins
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- Series,
- isna,
- )
- import pandas._testing as tm
- @pytest.mark.parametrize("agg_func", ["any", "all"])
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize(
- "vals",
- [
- ["foo", "bar", "baz"],
- ["foo", "", ""],
- ["", "", ""],
- [1, 2, 3],
- [1, 0, 0],
- [0, 0, 0],
- [1.0, 2.0, 3.0],
- [1.0, 0.0, 0.0],
- [0.0, 0.0, 0.0],
- [True, True, True],
- [True, False, False],
- [False, False, False],
- [np.nan, np.nan, np.nan],
- ],
- )
- def test_groupby_bool_aggs(agg_func, skipna, vals):
- df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
- # Figure out expectation using Python builtin
- exp = getattr(builtins, agg_func)(vals)
- # edge case for missing data with skipna and 'any'
- if skipna and all(isna(vals)) and agg_func == "any":
- exp = False
- exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key"))
- result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
- tm.assert_frame_equal(result, exp_df)
- def test_any():
- df = DataFrame(
- [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]],
- columns=["A", "B", "C"],
- )
- expected = DataFrame(
- [[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
- )
- expected.index.name = "A"
- result = df.groupby("A").any()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- def test_bool_aggs_dup_column_labels(bool_agg_func):
- # 21668
- df = DataFrame([[True, True]], columns=["a", "a"])
- grp_by = df.groupby([0])
- result = getattr(grp_by, bool_agg_func)()
- expected = df.set_axis(np.array([0]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- @pytest.mark.parametrize("skipna", [True, False])
- @pytest.mark.parametrize(
- "data",
- [
- [False, False, False],
- [True, True, True],
- [pd.NA, pd.NA, pd.NA],
- [False, pd.NA, False],
- [True, pd.NA, True],
- [True, pd.NA, False],
- ],
- )
- def test_masked_kleene_logic(bool_agg_func, skipna, data):
- # GH#37506
- ser = Series(data, dtype="boolean")
- # The result should match aggregating on the whole series. Correctness
- # there is verified in test_reductions.py::test_any_all_boolean_kleene_logic
- expected_data = getattr(ser, bool_agg_func)(skipna=skipna)
- expected = Series(expected_data, index=np.array([0]), dtype="boolean")
- result = ser.groupby([0, 0, 0]).agg(bool_agg_func, skipna=skipna)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "dtype1,dtype2,exp_col1,exp_col2",
- [
- (
- "float",
- "Float64",
- np.array([True], dtype=bool),
- pd.array([pd.NA], dtype="boolean"),
- ),
- (
- "Int64",
- "float",
- pd.array([pd.NA], dtype="boolean"),
- np.array([True], dtype=bool),
- ),
- (
- "Int64",
- "Int64",
- pd.array([pd.NA], dtype="boolean"),
- pd.array([pd.NA], dtype="boolean"),
- ),
- (
- "Float64",
- "boolean",
- pd.array([pd.NA], dtype="boolean"),
- pd.array([pd.NA], dtype="boolean"),
- ),
- ],
- )
- def test_masked_mixed_types(dtype1, dtype2, exp_col1, exp_col2):
- # GH#37506
- data = [1.0, np.nan]
- df = DataFrame(
- {"col1": pd.array(data, dtype=dtype1), "col2": pd.array(data, dtype=dtype2)}
- )
- result = df.groupby([1, 1]).agg("all", skipna=False)
- expected = DataFrame({"col1": exp_col1, "col2": exp_col2}, index=np.array([1]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- @pytest.mark.parametrize("dtype", ["Int64", "Float64", "boolean"])
- @pytest.mark.parametrize("skipna", [True, False])
- def test_masked_bool_aggs_skipna(bool_agg_func, dtype, skipna, frame_or_series):
- # GH#40585
- obj = frame_or_series([pd.NA, 1], dtype=dtype)
- expected_res = True
- if not skipna and bool_agg_func == "all":
- expected_res = pd.NA
- expected = frame_or_series([expected_res], index=np.array([1]), dtype="boolean")
- result = obj.groupby([1, 1]).agg(bool_agg_func, skipna=skipna)
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize(
- "bool_agg_func,data,expected_res",
- [
- ("any", [pd.NA, np.nan], False),
- ("any", [pd.NA, 1, np.nan], True),
- ("all", [pd.NA, pd.NaT], True),
- ("all", [pd.NA, False, pd.NaT], False),
- ],
- )
- def test_object_type_missing_vals(bool_agg_func, data, expected_res, frame_or_series):
- # GH#37501
- obj = frame_or_series(data, dtype=object)
- result = obj.groupby([1] * len(data)).agg(bool_agg_func)
- expected = frame_or_series([expected_res], index=np.array([1]), dtype="bool")
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- def test_object_NA_raises_with_skipna_false(bool_agg_func):
- # GH#37501
- ser = Series([pd.NA], dtype=object)
- with pytest.raises(TypeError, match="boolean value of NA is ambiguous"):
- ser.groupby([1]).agg(bool_agg_func, skipna=False)
- @pytest.mark.parametrize("bool_agg_func", ["any", "all"])
- def test_empty(frame_or_series, bool_agg_func):
- # GH 45231
- kwargs = {"columns": ["a"]} if frame_or_series is DataFrame else {"name": "a"}
- obj = frame_or_series(**kwargs, dtype=object)
- result = getattr(obj.groupby(obj.index), bool_agg_func)()
- expected = frame_or_series(**kwargs, dtype=bool)
- tm.assert_equal(result, expected)
|