12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523 |
- """
- test .agg behavior / note that .apply is tested generally in test_groupby.py
- """
- import datetime
- import functools
- from functools import partial
- import re
- import numpy as np
- import pytest
- from pandas.errors import SpecificationError
- from pandas.core.dtypes.common import is_integer_dtype
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- MultiIndex,
- Series,
- concat,
- to_datetime,
- )
- import pandas._testing as tm
- from pandas.core.groupby.grouper import Grouping
- def test_groupby_agg_no_extra_calls():
- # GH#31760
- df = DataFrame({"key": ["a", "b", "c", "c"], "value": [1, 2, 3, 4]})
- gb = df.groupby("key")["value"]
- def dummy_func(x):
- assert len(x) != 0
- return x.sum()
- gb.agg(dummy_func)
- def test_agg_regression1(tsframe):
- grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- def test_agg_must_agg(df):
- grouped = df.groupby("A")["C"]
- msg = "Must produce aggregated value"
- with pytest.raises(Exception, match=msg):
- grouped.agg(lambda x: x.describe())
- with pytest.raises(Exception, match=msg):
- grouped.agg(lambda x: x.index[:2])
- def test_agg_ser_multi_key(df):
- f = lambda x: x.sum()
- results = df.C.groupby([df.A, df.B]).aggregate(f)
- expected = df.groupby(["A", "B"]).sum()["C"]
- tm.assert_series_equal(results, expected)
- def test_groupby_aggregation_mixed_dtype():
- # GH 6212
- expected = DataFrame(
- {
- "v1": [5, 5, 7, np.nan, 3, 3, 4, 1],
- "v2": [55, 55, 77, np.nan, 33, 33, 44, 11],
- },
- index=MultiIndex.from_tuples(
- [
- (1, 95),
- (1, 99),
- (2, 95),
- (2, 99),
- ("big", "damp"),
- ("blue", "dry"),
- ("red", "red"),
- ("red", "wet"),
- ],
- names=["by1", "by2"],
- ),
- )
- df = DataFrame(
- {
- "v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
- "v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
- "by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
- "by2": [
- "wet",
- "dry",
- 99,
- 95,
- np.nan,
- "damp",
- 95,
- 99,
- "red",
- 99,
- np.nan,
- np.nan,
- ],
- }
- )
- g = df.groupby(["by1", "by2"])
- result = g[["v1", "v2"]].mean()
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregation_multi_level_column():
- # GH 29772
- lst = [
- [True, True, True, False],
- [True, False, np.nan, False],
- [True, True, np.nan, False],
- [True, True, np.nan, False],
- ]
- df = DataFrame(
- data=lst,
- columns=MultiIndex.from_tuples([("A", 0), ("A", 1), ("B", 0), ("B", 1)]),
- )
- gb = df.groupby(level=1, axis=1)
- result = gb.sum(numeric_only=False)
- expected = DataFrame({0: [2.0, True, True, True], 1: [1, 0, 1, 1]})
- tm.assert_frame_equal(result, expected)
- def test_agg_apply_corner(ts, tsframe):
- # nothing to group, all NA
- grouped = ts.groupby(ts * np.nan, group_keys=False)
- assert ts.dtype == np.float64
- # groupby float64 values results in a float64 Index
- exp = Series([], dtype=np.float64, index=Index([], dtype=np.float64))
- tm.assert_series_equal(grouped.sum(), exp)
- tm.assert_series_equal(grouped.agg(np.sum), exp)
- tm.assert_series_equal(grouped.apply(np.sum), exp, check_index_type=False)
- # DataFrame
- grouped = tsframe.groupby(tsframe["A"] * np.nan, group_keys=False)
- exp_df = DataFrame(
- columns=tsframe.columns,
- dtype=float,
- index=Index([], name="A", dtype=np.float64),
- )
- tm.assert_frame_equal(grouped.sum(), exp_df)
- tm.assert_frame_equal(grouped.agg(np.sum), exp_df)
- tm.assert_frame_equal(grouped.apply(np.sum), exp_df)
- def test_agg_grouping_is_list_tuple(ts):
- df = tm.makeTimeDataFrame()
- grouped = df.groupby(lambda x: x.year)
- grouper = grouped.grouper.groupings[0].grouping_vector
- grouped.grouper.groupings[0] = Grouping(ts.index, list(grouper))
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- grouped.grouper.groupings[0] = Grouping(ts.index, tuple(grouper))
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- def test_agg_python_multiindex(mframe):
- grouped = mframe.groupby(["A", "B"])
- result = grouped.agg(np.mean)
- expected = grouped.mean()
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "groupbyfunc", [lambda x: x.weekday(), [lambda x: x.month, lambda x: x.weekday()]]
- )
- def test_aggregate_str_func(tsframe, groupbyfunc):
- grouped = tsframe.groupby(groupbyfunc)
- # single series
- result = grouped["A"].agg("std")
- expected = grouped["A"].std()
- tm.assert_series_equal(result, expected)
- # group frame by function name
- result = grouped.aggregate("var")
- expected = grouped.var()
- tm.assert_frame_equal(result, expected)
- # group frame by function dict
- result = grouped.agg({"A": "var", "B": "std", "C": "mean", "D": "sem"})
- expected = DataFrame(
- {
- "A": grouped["A"].var(),
- "B": grouped["B"].std(),
- "C": grouped["C"].mean(),
- "D": grouped["D"].sem(),
- }
- )
- tm.assert_frame_equal(result, expected)
- def test_std_masked_dtype(any_numeric_ea_dtype):
- # GH#35516
- df = DataFrame(
- {
- "a": [2, 1, 1, 1, 2, 2, 1],
- "b": Series([pd.NA, 1, 2, 1, 1, 1, 2], dtype="Float64"),
- }
- )
- result = df.groupby("a").std()
- expected = DataFrame(
- {"b": [0.57735, 0]}, index=Index([1, 2], name="a"), dtype="Float64"
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_str_with_kwarg_axis_1_raises(df, reduction_func):
- gb = df.groupby(level=0)
- if reduction_func in ("idxmax", "idxmin"):
- error = TypeError
- msg = "reduction operation '.*' not allowed for this dtype"
- else:
- error = ValueError
- msg = f"Operation {reduction_func} does not support axis=1"
- with pytest.raises(error, match=msg):
- gb.agg(reduction_func, axis=1)
- @pytest.mark.parametrize(
- "func, expected, dtype, result_dtype_dict",
- [
- ("sum", [5, 7, 9], "int64", {}),
- ("std", [4.5**0.5] * 3, int, {"i": float, "j": float, "k": float}),
- ("var", [4.5] * 3, int, {"i": float, "j": float, "k": float}),
- ("sum", [5, 7, 9], "Int64", {"j": "int64"}),
- ("std", [4.5**0.5] * 3, "Int64", {"i": float, "j": float, "k": float}),
- ("var", [4.5] * 3, "Int64", {"i": "float64", "j": "float64", "k": "float64"}),
- ],
- )
- def test_multiindex_groupby_mixed_cols_axis1(func, expected, dtype, result_dtype_dict):
- # GH#43209
- df = DataFrame(
- [[1, 2, 3, 4, 5, 6]] * 3,
- columns=MultiIndex.from_product([["a", "b"], ["i", "j", "k"]]),
- ).astype({("a", "j"): dtype, ("b", "j"): dtype})
- result = df.groupby(level=1, axis=1).agg(func)
- expected = DataFrame([expected] * 3, columns=["i", "j", "k"]).astype(
- result_dtype_dict
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "func, expected_data, result_dtype_dict",
- [
- ("sum", [[2, 4], [10, 12], [18, 20]], {10: "int64", 20: "int64"}),
- # std should ideally return Int64 / Float64 #43330
- ("std", [[2**0.5] * 2] * 3, "float64"),
- ("var", [[2] * 2] * 3, {10: "float64", 20: "float64"}),
- ],
- )
- def test_groupby_mixed_cols_axis1(func, expected_data, result_dtype_dict):
- # GH#43209
- df = DataFrame(
- np.arange(12).reshape(3, 4),
- index=Index([0, 1, 0], name="y"),
- columns=Index([10, 20, 10, 20], name="x"),
- dtype="int64",
- ).astype({10: "Int64"})
- result = df.groupby("x", axis=1).agg(func)
- expected = DataFrame(
- data=expected_data,
- index=Index([0, 1, 0], name="y"),
- columns=Index([10, 20], name="x"),
- ).astype(result_dtype_dict)
- tm.assert_frame_equal(result, expected)
- def test_aggregate_item_by_item(df):
- grouped = df.groupby("A")
- aggfun_0 = lambda ser: ser.size
- result = grouped.agg(aggfun_0)
- foosum = (df.A == "foo").sum()
- barsum = (df.A == "bar").sum()
- K = len(result.columns)
- # GH5782
- exp = Series(np.array([foosum] * K), index=list("BCD"), name="foo")
- tm.assert_series_equal(result.xs("foo"), exp)
- exp = Series(np.array([barsum] * K), index=list("BCD"), name="bar")
- tm.assert_almost_equal(result.xs("bar"), exp)
- def aggfun_1(ser):
- return ser.size
- result = DataFrame().groupby(df.A).agg(aggfun_1)
- assert isinstance(result, DataFrame)
- assert len(result) == 0
- def test_wrap_agg_out(three_group):
- grouped = three_group.groupby(["A", "B"])
- def func(ser):
- if ser.dtype == object:
- raise TypeError("Test error message")
- return ser.sum()
- with pytest.raises(TypeError, match="Test error message"):
- grouped.aggregate(func)
- result = grouped[[c for c in three_group if c != "C"]].aggregate(func)
- exp_grouped = three_group.loc[:, three_group.columns != "C"]
- expected = exp_grouped.groupby(["A", "B"]).aggregate(func)
- tm.assert_frame_equal(result, expected)
- def test_agg_multiple_functions_maintain_order(df):
- # GH #610
- funcs = [("mean", np.mean), ("max", np.max), ("min", np.min)]
- result = df.groupby("A")["C"].agg(funcs)
- exp_cols = Index(["mean", "max", "min"])
- tm.assert_index_equal(result.columns, exp_cols)
- def test_agg_multiple_functions_same_name():
- # GH 30880
- df = DataFrame(
- np.random.randn(1000, 3),
- index=pd.date_range("1/1/2012", freq="S", periods=1000),
- columns=["A", "B", "C"],
- )
- result = df.resample("3T").agg(
- {"A": [partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
- )
- expected_index = pd.date_range("1/1/2012", freq="3T", periods=6)
- expected_columns = MultiIndex.from_tuples([("A", "quantile"), ("A", "quantile")])
- expected_values = np.array(
- [df.resample("3T").A.quantile(q=q).values for q in [0.9999, 0.1111]]
- ).T
- expected = DataFrame(
- expected_values, columns=expected_columns, index=expected_index
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_multiple_functions_same_name_with_ohlc_present():
- # GH 30880
- # ohlc expands dimensions, so different test to the above is required.
- df = DataFrame(
- np.random.randn(1000, 3),
- index=pd.date_range("1/1/2012", freq="S", periods=1000, name="dti"),
- columns=Index(["A", "B", "C"], name="alpha"),
- )
- result = df.resample("3T").agg(
- {"A": ["ohlc", partial(np.quantile, q=0.9999), partial(np.quantile, q=0.1111)]}
- )
- expected_index = pd.date_range("1/1/2012", freq="3T", periods=6, name="dti")
- expected_columns = MultiIndex.from_tuples(
- [
- ("A", "ohlc", "open"),
- ("A", "ohlc", "high"),
- ("A", "ohlc", "low"),
- ("A", "ohlc", "close"),
- ("A", "quantile", "A"),
- ("A", "quantile", "A"),
- ],
- names=["alpha", None, None],
- )
- non_ohlc_expected_values = np.array(
- [df.resample("3T").A.quantile(q=q).values for q in [0.9999, 0.1111]]
- ).T
- expected_values = np.hstack([df.resample("3T").A.ohlc(), non_ohlc_expected_values])
- expected = DataFrame(
- expected_values, columns=expected_columns, index=expected_index
- )
- tm.assert_frame_equal(result, expected)
- def test_multiple_functions_tuples_and_non_tuples(df):
- # #1359
- # Columns B and C would cause partial failure
- df = df.drop(columns=["B", "C"])
- funcs = [("foo", "mean"), "std"]
- ex_funcs = [("foo", "mean"), ("std", "std")]
- result = df.groupby("A")["D"].agg(funcs)
- expected = df.groupby("A")["D"].agg(ex_funcs)
- tm.assert_frame_equal(result, expected)
- result = df.groupby("A").agg(funcs)
- expected = df.groupby("A").agg(ex_funcs)
- tm.assert_frame_equal(result, expected)
- def test_more_flexible_frame_multi_function(df):
- grouped = df.groupby("A")
- exmean = grouped.agg({"C": np.mean, "D": np.mean})
- exstd = grouped.agg({"C": np.std, "D": np.std})
- expected = concat([exmean, exstd], keys=["mean", "std"], axis=1)
- expected = expected.swaplevel(0, 1, axis=1).sort_index(level=0, axis=1)
- d = {"C": [np.mean, np.std], "D": [np.mean, np.std]}
- result = grouped.aggregate(d)
- tm.assert_frame_equal(result, expected)
- # be careful
- result = grouped.aggregate({"C": np.mean, "D": [np.mean, np.std]})
- expected = grouped.aggregate({"C": np.mean, "D": [np.mean, np.std]})
- tm.assert_frame_equal(result, expected)
- def numpymean(x):
- return np.mean(x)
- def numpystd(x):
- return np.std(x, ddof=1)
- # this uses column selection & renaming
- msg = r"nested renamer is not supported"
- with pytest.raises(SpecificationError, match=msg):
- d = {"C": np.mean, "D": {"foo": np.mean, "bar": np.std}}
- grouped.aggregate(d)
- # But without renaming, these functions are OK
- d = {"C": [np.mean], "D": [numpymean, numpystd]}
- grouped.aggregate(d)
- def test_multi_function_flexible_mix(df):
- # GH #1268
- grouped = df.groupby("A")
- # Expected
- d = {"C": {"foo": "mean", "bar": "std"}, "D": {"sum": "sum"}}
- # this uses column selection & renaming
- msg = r"nested renamer is not supported"
- with pytest.raises(SpecificationError, match=msg):
- grouped.aggregate(d)
- # Test 1
- d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
- # this uses column selection & renaming
- with pytest.raises(SpecificationError, match=msg):
- grouped.aggregate(d)
- # Test 2
- d = {"C": {"foo": "mean", "bar": "std"}, "D": "sum"}
- # this uses column selection & renaming
- with pytest.raises(SpecificationError, match=msg):
- grouped.aggregate(d)
- def test_groupby_agg_coercing_bools():
- # issue 14873
- dat = DataFrame({"a": [1, 1, 2, 2], "b": [0, 1, 2, 3], "c": [None, None, 1, 1]})
- gp = dat.groupby("a")
- index = Index([1, 2], name="a")
- result = gp["b"].aggregate(lambda x: (x != 0).all())
- expected = Series([False, True], index=index, name="b")
- tm.assert_series_equal(result, expected)
- result = gp["c"].aggregate(lambda x: x.isnull().all())
- expected = Series([True, False], index=index, name="c")
- tm.assert_series_equal(result, expected)
- def test_groupby_agg_dict_with_getitem():
- # issue 25471
- dat = DataFrame({"A": ["A", "A", "B", "B", "B"], "B": [1, 2, 1, 1, 2]})
- result = dat.groupby("A")[["B"]].agg({"B": "sum"})
- expected = DataFrame({"B": [3, 4]}, index=["A", "B"]).rename_axis("A", axis=0)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "op",
- [
- lambda x: x.sum(),
- lambda x: x.cumsum(),
- lambda x: x.transform("sum"),
- lambda x: x.transform("cumsum"),
- lambda x: x.agg("sum"),
- lambda x: x.agg("cumsum"),
- ],
- )
- def test_bool_agg_dtype(op):
- # GH 7001
- # Bool sum aggregations result in int
- df = DataFrame({"a": [1, 1], "b": [False, True]})
- s = df.set_index("a")["b"]
- result = op(df.groupby("a"))["b"].dtype
- assert is_integer_dtype(result)
- result = op(s.groupby("a")).dtype
- assert is_integer_dtype(result)
- @pytest.mark.parametrize(
- "keys, agg_index",
- [
- (["a"], Index([1], name="a")),
- (["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
- ],
- )
- @pytest.mark.parametrize(
- "input_dtype", ["bool", "int32", "int64", "float32", "float64"]
- )
- @pytest.mark.parametrize(
- "result_dtype", ["bool", "int32", "int64", "float32", "float64"]
- )
- @pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
- def test_callable_result_dtype_frame(
- keys, agg_index, input_dtype, result_dtype, method
- ):
- # GH 21240
- df = DataFrame({"a": [1], "b": [2], "c": [True]})
- df["c"] = df["c"].astype(input_dtype)
- op = getattr(df.groupby(keys)[["c"]], method)
- result = op(lambda x: x.astype(result_dtype).iloc[0])
- expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
- expected = DataFrame({"c": [df["c"].iloc[0]]}, index=expected_index).astype(
- result_dtype
- )
- if method == "apply":
- expected.columns.names = [0]
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "keys, agg_index",
- [
- (["a"], Index([1], name="a")),
- (["a", "b"], MultiIndex([[1], [2]], [[0], [0]], names=["a", "b"])),
- ],
- )
- @pytest.mark.parametrize("input", [True, 1, 1.0])
- @pytest.mark.parametrize("dtype", [bool, int, float])
- @pytest.mark.parametrize("method", ["apply", "aggregate", "transform"])
- def test_callable_result_dtype_series(keys, agg_index, input, dtype, method):
- # GH 21240
- df = DataFrame({"a": [1], "b": [2], "c": [input]})
- op = getattr(df.groupby(keys)["c"], method)
- result = op(lambda x: x.astype(dtype).iloc[0])
- expected_index = pd.RangeIndex(0, 1) if method == "transform" else agg_index
- expected = Series([df["c"].iloc[0]], index=expected_index, name="c").astype(dtype)
- tm.assert_series_equal(result, expected)
- def test_order_aggregate_multiple_funcs():
- # GH 25692
- df = DataFrame({"A": [1, 1, 2, 2], "B": [1, 2, 3, 4]})
- res = df.groupby("A").agg(["sum", "max", "mean", "ohlc", "min"])
- result = res.columns.levels[1]
- expected = Index(["sum", "max", "mean", "ohlc", "min"])
- tm.assert_index_equal(result, expected)
- def test_ohlc_ea_dtypes(any_numeric_ea_dtype):
- # GH#37493
- df = DataFrame(
- {"a": [1, 1, 2, 3, 4, 4], "b": [22, 11, pd.NA, 10, 20, pd.NA]},
- dtype=any_numeric_ea_dtype,
- )
- gb = df.groupby("a")
- result = gb.ohlc()
- expected = DataFrame(
- [[22, 22, 11, 11], [pd.NA] * 4, [10] * 4, [20] * 4],
- columns=MultiIndex.from_product([["b"], ["open", "high", "low", "close"]]),
- index=Index([1, 2, 3, 4], dtype=any_numeric_ea_dtype, name="a"),
- dtype=any_numeric_ea_dtype,
- )
- tm.assert_frame_equal(result, expected)
- gb2 = df.groupby("a", as_index=False)
- result2 = gb2.ohlc()
- expected2 = expected.reset_index()
- tm.assert_frame_equal(result2, expected2)
- @pytest.mark.parametrize("dtype", [np.int64, np.uint64])
- @pytest.mark.parametrize("how", ["first", "last", "min", "max", "mean", "median"])
- def test_uint64_type_handling(dtype, how):
- # GH 26310
- df = DataFrame({"x": 6903052872240755750, "y": [1, 2]})
- expected = df.groupby("y").agg({"x": how})
- df.x = df.x.astype(dtype)
- result = df.groupby("y").agg({"x": how})
- if how not in ("mean", "median"):
- # mean and median always result in floats
- result.x = result.x.astype(np.int64)
- tm.assert_frame_equal(result, expected, check_exact=True)
- def test_func_duplicates_raises():
- # GH28426
- msg = "Function names"
- df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
- with pytest.raises(SpecificationError, match=msg):
- df.groupby("A").agg(["min", "min"])
- @pytest.mark.parametrize(
- "index",
- [
- pd.CategoricalIndex(list("abc")),
- pd.interval_range(0, 3),
- pd.period_range("2020", periods=3, freq="D"),
- MultiIndex.from_tuples([("a", 0), ("a", 1), ("b", 0)]),
- ],
- )
- def test_agg_index_has_complex_internals(index):
- # GH 31223
- df = DataFrame({"group": [1, 1, 2], "value": [0, 1, 0]}, index=index)
- result = df.groupby("group").agg({"value": Series.nunique})
- expected = DataFrame({"group": [1, 2], "value": [2, 1]}).set_index("group")
- tm.assert_frame_equal(result, expected)
- def test_agg_split_block():
- # https://github.com/pandas-dev/pandas/issues/31522
- df = DataFrame(
- {
- "key1": ["a", "a", "b", "b", "a"],
- "key2": ["one", "two", "one", "two", "one"],
- "key3": ["three", "three", "three", "six", "six"],
- }
- )
- result = df.groupby("key1").min()
- expected = DataFrame(
- {"key2": ["one", "one"], "key3": ["six", "six"]},
- index=Index(["a", "b"], name="key1"),
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_split_object_part_datetime():
- # https://github.com/pandas-dev/pandas/pull/31616
- df = DataFrame(
- {
- "A": pd.date_range("2000", periods=4),
- "B": ["a", "b", "c", "d"],
- "C": [1, 2, 3, 4],
- "D": ["b", "c", "d", "e"],
- "E": pd.date_range("2000", periods=4),
- "F": [1, 2, 3, 4],
- }
- ).astype(object)
- result = df.groupby([0, 0, 0, 0]).min()
- expected = DataFrame(
- {
- "A": [pd.Timestamp("2000")],
- "B": ["a"],
- "C": [1],
- "D": ["b"],
- "E": [pd.Timestamp("2000")],
- "F": [1],
- },
- index=np.array([0]),
- dtype=object,
- )
- tm.assert_frame_equal(result, expected)
- class TestNamedAggregationSeries:
- def test_series_named_agg(self):
- df = Series([1, 2, 3, 4])
- gr = df.groupby([0, 0, 1, 1])
- result = gr.agg(a="sum", b="min")
- expected = DataFrame(
- {"a": [3, 7], "b": [1, 3]}, columns=["a", "b"], index=np.array([0, 1])
- )
- tm.assert_frame_equal(result, expected)
- result = gr.agg(b="min", a="sum")
- expected = expected[["b", "a"]]
- tm.assert_frame_equal(result, expected)
- def test_no_args_raises(self):
- gr = Series([1, 2]).groupby([0, 1])
- with pytest.raises(TypeError, match="Must provide"):
- gr.agg()
- # but we do allow this
- result = gr.agg([])
- expected = DataFrame(columns=[])
- tm.assert_frame_equal(result, expected)
- def test_series_named_agg_duplicates_no_raises(self):
- # GH28426
- gr = Series([1, 2, 3]).groupby([0, 0, 1])
- grouped = gr.agg(a="sum", b="sum")
- expected = DataFrame({"a": [3, 3], "b": [3, 3]}, index=np.array([0, 1]))
- tm.assert_frame_equal(expected, grouped)
- def test_mangled(self):
- gr = Series([1, 2, 3]).groupby([0, 0, 1])
- result = gr.agg(a=lambda x: 0, b=lambda x: 1)
- expected = DataFrame({"a": [0, 0], "b": [1, 1]}, index=np.array([0, 1]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "inp",
- [
- pd.NamedAgg(column="anything", aggfunc="min"),
- ("anything", "min"),
- ["anything", "min"],
- ],
- )
- def test_named_agg_nametuple(self, inp):
- # GH34422
- s = Series([1, 1, 2, 2, 3, 3, 4, 5])
- msg = f"func is expected but received {type(inp).__name__}"
- with pytest.raises(TypeError, match=msg):
- s.groupby(s.values).agg(a=inp)
- class TestNamedAggregationDataFrame:
- def test_agg_relabel(self):
- df = DataFrame(
- {"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
- )
- result = df.groupby("group").agg(a_max=("A", "max"), b_max=("B", "max"))
- expected = DataFrame(
- {"a_max": [1, 3], "b_max": [6, 8]},
- index=Index(["a", "b"], name="group"),
- columns=["a_max", "b_max"],
- )
- tm.assert_frame_equal(result, expected)
- # order invariance
- p98 = functools.partial(np.percentile, q=98)
- result = df.groupby("group").agg(
- b_min=("B", "min"),
- a_min=("A", min),
- a_mean=("A", np.mean),
- a_max=("A", "max"),
- b_max=("B", "max"),
- a_98=("A", p98),
- )
- expected = DataFrame(
- {
- "b_min": [5, 7],
- "a_min": [0, 2],
- "a_mean": [0.5, 2.5],
- "a_max": [1, 3],
- "b_max": [6, 8],
- "a_98": [0.98, 2.98],
- },
- index=Index(["a", "b"], name="group"),
- columns=["b_min", "a_min", "a_mean", "a_max", "b_max", "a_98"],
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_relabel_non_identifier(self):
- df = DataFrame(
- {"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
- )
- result = df.groupby("group").agg(**{"my col": ("A", "max")})
- expected = DataFrame({"my col": [1, 3]}, index=Index(["a", "b"], name="group"))
- tm.assert_frame_equal(result, expected)
- def test_duplicate_no_raises(self):
- # GH 28426, if use same input function on same column,
- # no error should raise
- df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
- grouped = df.groupby("A").agg(a=("B", "min"), b=("B", "min"))
- expected = DataFrame({"a": [1, 3], "b": [1, 3]}, index=Index([0, 1], name="A"))
- tm.assert_frame_equal(grouped, expected)
- quant50 = functools.partial(np.percentile, q=50)
- quant70 = functools.partial(np.percentile, q=70)
- quant50.__name__ = "quant50"
- quant70.__name__ = "quant70"
- test = DataFrame({"col1": ["a", "a", "b", "b", "b"], "col2": [1, 2, 3, 4, 5]})
- grouped = test.groupby("col1").agg(
- quantile_50=("col2", quant50), quantile_70=("col2", quant70)
- )
- expected = DataFrame(
- {"quantile_50": [1.5, 4.0], "quantile_70": [1.7, 4.4]},
- index=Index(["a", "b"], name="col1"),
- )
- tm.assert_frame_equal(grouped, expected)
- def test_agg_relabel_with_level(self):
- df = DataFrame(
- {"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]},
- index=MultiIndex.from_product([["A", "B"], ["a", "b"]]),
- )
- result = df.groupby(level=0).agg(
- aa=("A", "max"), bb=("A", "min"), cc=("B", "mean")
- )
- expected = DataFrame(
- {"aa": [0, 1], "bb": [0, 1], "cc": [1.5, 3.5]}, index=["A", "B"]
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_relabel_other_raises(self):
- df = DataFrame({"A": [0, 0, 1], "B": [1, 2, 3]})
- grouped = df.groupby("A")
- match = "Must provide"
- with pytest.raises(TypeError, match=match):
- grouped.agg(foo=1)
- with pytest.raises(TypeError, match=match):
- grouped.agg()
- with pytest.raises(TypeError, match=match):
- grouped.agg(a=("B", "max"), b=(1, 2, 3))
- def test_missing_raises(self):
- df = DataFrame({"A": [0, 1], "B": [1, 2]})
- match = re.escape("Column(s) ['C'] do not exist")
- with pytest.raises(KeyError, match=match):
- df.groupby("A").agg(c=("C", "sum"))
- def test_agg_namedtuple(self):
- df = DataFrame({"A": [0, 1], "B": [1, 2]})
- result = df.groupby("A").agg(
- b=pd.NamedAgg("B", "sum"), c=pd.NamedAgg(column="B", aggfunc="count")
- )
- expected = df.groupby("A").agg(b=("B", "sum"), c=("B", "count"))
- tm.assert_frame_equal(result, expected)
- def test_mangled(self):
- df = DataFrame({"A": [0, 1], "B": [1, 2], "C": [3, 4]})
- result = df.groupby("A").agg(b=("B", lambda x: 0), c=("C", lambda x: 1))
- expected = DataFrame({"b": [0, 0], "c": [1, 1]}, index=Index([0, 1], name="A"))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3",
- [
- (
- (("y", "A"), "max"),
- (("y", "A"), np.min),
- (("y", "B"), "mean"),
- [1, 3],
- [0, 2],
- [5.5, 7.5],
- ),
- (
- (("y", "A"), lambda x: max(x)),
- (("y", "A"), lambda x: 1),
- (("y", "B"), "mean"),
- [1, 3],
- [1, 1],
- [5.5, 7.5],
- ),
- (
- pd.NamedAgg(("y", "A"), "max"),
- pd.NamedAgg(("y", "B"), np.mean),
- pd.NamedAgg(("y", "A"), lambda x: 1),
- [1, 3],
- [5.5, 7.5],
- [1, 1],
- ),
- ],
- )
- def test_agg_relabel_multiindex_column(
- agg_col1, agg_col2, agg_col3, agg_result1, agg_result2, agg_result3
- ):
- # GH 29422, add tests for multiindex column cases
- df = DataFrame(
- {"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
- )
- df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
- idx = Index(["a", "b"], name=("x", "group"))
- result = df.groupby(("x", "group")).agg(a_max=(("y", "A"), "max"))
- expected = DataFrame({"a_max": [1, 3]}, index=idx)
- tm.assert_frame_equal(result, expected)
- result = df.groupby(("x", "group")).agg(
- col_1=agg_col1, col_2=agg_col2, col_3=agg_col3
- )
- expected = DataFrame(
- {"col_1": agg_result1, "col_2": agg_result2, "col_3": agg_result3}, index=idx
- )
- tm.assert_frame_equal(result, expected)
- def test_agg_relabel_multiindex_raises_not_exist():
- # GH 29422, add test for raises scenario when aggregate column does not exist
- df = DataFrame(
- {"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
- )
- df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
- with pytest.raises(KeyError, match="do not exist"):
- df.groupby(("x", "group")).agg(a=(("Y", "a"), "max"))
- def test_agg_relabel_multiindex_duplicates():
- # GH29422, add test for raises scenario when getting duplicates
- # GH28426, after this change, duplicates should also work if the relabelling is
- # different
- df = DataFrame(
- {"group": ["a", "a", "b", "b"], "A": [0, 1, 2, 3], "B": [5, 6, 7, 8]}
- )
- df.columns = MultiIndex.from_tuples([("x", "group"), ("y", "A"), ("y", "B")])
- result = df.groupby(("x", "group")).agg(
- a=(("y", "A"), "min"), b=(("y", "A"), "min")
- )
- idx = Index(["a", "b"], name=("x", "group"))
- expected = DataFrame({"a": [0, 2], "b": [0, 2]}, index=idx)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("kwargs", [{"c": ["min"]}, {"b": [], "c": ["min"]}])
- def test_groupby_aggregate_empty_key(kwargs):
- # GH: 32580
- df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
- result = df.groupby("a").agg(kwargs)
- expected = DataFrame(
- [1, 4],
- index=Index([1, 2], dtype="int64", name="a"),
- columns=MultiIndex.from_tuples([["c", "min"]]),
- )
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregate_empty_key_empty_return():
- # GH: 32580 Check if everything works, when return is empty
- df = DataFrame({"a": [1, 1, 2], "b": [1, 2, 3], "c": [1, 2, 4]})
- result = df.groupby("a").agg({"b": []})
- expected = DataFrame(columns=MultiIndex(levels=[["b"], []], codes=[[], []]))
- tm.assert_frame_equal(result, expected)
- def test_groupby_aggregate_empty_with_multiindex_frame():
- # GH 39178
- df = DataFrame(columns=["a", "b", "c"])
- result = df.groupby(["a", "b"], group_keys=False).agg(d=("c", list))
- expected = DataFrame(
- columns=["d"], index=MultiIndex([[], []], [[], []], names=["a", "b"])
- )
- tm.assert_frame_equal(result, expected)
- def test_grouby_agg_loses_results_with_as_index_false_relabel():
- # GH 32240: When the aggregate function relabels column names and
- # as_index=False is specified, the results are dropped.
- df = DataFrame(
- {"key": ["x", "y", "z", "x", "y", "z"], "val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75]}
- )
- grouped = df.groupby("key", as_index=False)
- result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
- expected = DataFrame({"key": ["x", "y", "z"], "min_val": [1.0, 0.8, 0.75]})
- tm.assert_frame_equal(result, expected)
- def test_grouby_agg_loses_results_with_as_index_false_relabel_multiindex():
- # GH 32240: When the aggregate function relabels column names and
- # as_index=False is specified, the results are dropped. Check if
- # multiindex is returned in the right order
- df = DataFrame(
- {
- "key": ["x", "y", "x", "y", "x", "x"],
- "key1": ["a", "b", "c", "b", "a", "c"],
- "val": [1.0, 0.8, 2.0, 3.0, 3.6, 0.75],
- }
- )
- grouped = df.groupby(["key", "key1"], as_index=False)
- result = grouped.agg(min_val=pd.NamedAgg(column="val", aggfunc="min"))
- expected = DataFrame(
- {"key": ["x", "x", "y"], "key1": ["a", "c", "b"], "min_val": [1.0, 0.75, 0.8]}
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "func", [lambda s: s.mean(), lambda s: np.mean(s), lambda s: np.nanmean(s)]
- )
- def test_multiindex_custom_func(func):
- # GH 31777
- data = [[1, 4, 2], [5, 7, 1]]
- df = DataFrame(
- data,
- columns=MultiIndex.from_arrays(
- [[1, 1, 2], [3, 4, 3]], names=["Sisko", "Janeway"]
- ),
- )
- result = df.groupby(np.array([0, 1])).agg(func)
- expected_dict = {
- (1, 3): {0: 1.0, 1: 5.0},
- (1, 4): {0: 4.0, 1: 7.0},
- (2, 3): {0: 2.0, 1: 1.0},
- }
- expected = DataFrame(expected_dict, index=np.array([0, 1]), columns=df.columns)
- tm.assert_frame_equal(result, expected)
- def myfunc(s):
- return np.percentile(s, q=0.90)
- @pytest.mark.parametrize("func", [lambda s: np.percentile(s, q=0.90), myfunc])
- def test_lambda_named_agg(func):
- # see gh-28467
- animals = DataFrame(
- {
- "kind": ["cat", "dog", "cat", "dog"],
- "height": [9.1, 6.0, 9.5, 34.0],
- "weight": [7.9, 7.5, 9.9, 198.0],
- }
- )
- result = animals.groupby("kind").agg(
- mean_height=("height", "mean"), perc90=("height", func)
- )
- expected = DataFrame(
- [[9.3, 9.1036], [20.0, 6.252]],
- columns=["mean_height", "perc90"],
- index=Index(["cat", "dog"], name="kind"),
- )
- tm.assert_frame_equal(result, expected)
- def test_aggregate_mixed_types():
- # GH 16916
- df = DataFrame(
- data=np.array([0] * 9).reshape(3, 3), columns=list("XYZ"), index=list("abc")
- )
- df["grouping"] = ["group 1", "group 1", 2]
- result = df.groupby("grouping").aggregate(lambda x: x.tolist())
- expected_data = [[[0], [0], [0]], [[0, 0], [0, 0], [0, 0]]]
- expected = DataFrame(
- expected_data,
- index=Index([2, "group 1"], dtype="object", name="grouping"),
- columns=Index(["X", "Y", "Z"], dtype="object"),
- )
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(reason="Not implemented;see GH 31256")
- def test_aggregate_udf_na_extension_type():
- # https://github.com/pandas-dev/pandas/pull/31359
- # This is currently failing to cast back to Int64Dtype.
- # The presence of the NA causes two problems
- # 1. NA is not an instance of Int64Dtype.type (numpy.int64)
- # 2. The presence of an NA forces object type, so the non-NA values is
- # a Python int rather than a NumPy int64. Python ints aren't
- # instances of numpy.int64.
- def aggfunc(x):
- if all(x > 2):
- return 1
- else:
- return pd.NA
- df = DataFrame({"A": pd.array([1, 2, 3])})
- result = df.groupby([1, 1, 2]).agg(aggfunc)
- expected = DataFrame({"A": pd.array([1, pd.NA], dtype="Int64")}, index=[1, 2])
- tm.assert_frame_equal(result, expected)
- class TestLambdaMangling:
- def test_basic(self):
- df = DataFrame({"A": [0, 0, 1, 1], "B": [1, 2, 3, 4]})
- result = df.groupby("A").agg({"B": [lambda x: 0, lambda x: 1]})
- expected = DataFrame(
- {("B", "<lambda_0>"): [0, 0], ("B", "<lambda_1>"): [1, 1]},
- index=Index([0, 1], name="A"),
- )
- tm.assert_frame_equal(result, expected)
- def test_mangle_series_groupby(self):
- gr = Series([1, 2, 3, 4]).groupby([0, 0, 1, 1])
- result = gr.agg([lambda x: 0, lambda x: 1])
- exp_data = {"<lambda_0>": [0, 0], "<lambda_1>": [1, 1]}
- expected = DataFrame(exp_data, index=np.array([0, 1]))
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(reason="GH-26611. kwargs for multi-agg.")
- def test_with_kwargs(self):
- f1 = lambda x, y, b=1: x.sum() + y + b
- f2 = lambda x, y, b=2: x.sum() + y * b
- result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0)
- expected = DataFrame({"<lambda_0>": [4], "<lambda_1>": [6]})
- tm.assert_frame_equal(result, expected)
- result = Series([1, 2]).groupby([0, 0]).agg([f1, f2], 0, b=10)
- expected = DataFrame({"<lambda_0>": [13], "<lambda_1>": [30]})
- tm.assert_frame_equal(result, expected)
- def test_agg_with_one_lambda(self):
- # GH 25719, write tests for DataFrameGroupby.agg with only one lambda
- df = DataFrame(
- {
- "kind": ["cat", "dog", "cat", "dog"],
- "height": [9.1, 6.0, 9.5, 34.0],
- "weight": [7.9, 7.5, 9.9, 198.0],
- }
- )
- columns = ["height_sqr_min", "height_max", "weight_max"]
- expected = DataFrame(
- {
- "height_sqr_min": [82.81, 36.00],
- "height_max": [9.5, 34.0],
- "weight_max": [9.9, 198.0],
- },
- index=Index(["cat", "dog"], name="kind"),
- columns=columns,
- )
- # check pd.NameAgg case
- result1 = df.groupby(by="kind").agg(
- height_sqr_min=pd.NamedAgg(
- column="height", aggfunc=lambda x: np.min(x**2)
- ),
- height_max=pd.NamedAgg(column="height", aggfunc="max"),
- weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
- )
- tm.assert_frame_equal(result1, expected)
- # check agg(key=(col, aggfunc)) case
- result2 = df.groupby(by="kind").agg(
- height_sqr_min=("height", lambda x: np.min(x**2)),
- height_max=("height", "max"),
- weight_max=("weight", "max"),
- )
- tm.assert_frame_equal(result2, expected)
- def test_agg_multiple_lambda(self):
- # GH25719, test for DataFrameGroupby.agg with multiple lambdas
- # with mixed aggfunc
- df = DataFrame(
- {
- "kind": ["cat", "dog", "cat", "dog"],
- "height": [9.1, 6.0, 9.5, 34.0],
- "weight": [7.9, 7.5, 9.9, 198.0],
- }
- )
- columns = [
- "height_sqr_min",
- "height_max",
- "weight_max",
- "height_max_2",
- "weight_min",
- ]
- expected = DataFrame(
- {
- "height_sqr_min": [82.81, 36.00],
- "height_max": [9.5, 34.0],
- "weight_max": [9.9, 198.0],
- "height_max_2": [9.5, 34.0],
- "weight_min": [7.9, 7.5],
- },
- index=Index(["cat", "dog"], name="kind"),
- columns=columns,
- )
- # check agg(key=(col, aggfunc)) case
- result1 = df.groupby(by="kind").agg(
- height_sqr_min=("height", lambda x: np.min(x**2)),
- height_max=("height", "max"),
- weight_max=("weight", "max"),
- height_max_2=("height", lambda x: np.max(x)),
- weight_min=("weight", lambda x: np.min(x)),
- )
- tm.assert_frame_equal(result1, expected)
- # check pd.NamedAgg case
- result2 = df.groupby(by="kind").agg(
- height_sqr_min=pd.NamedAgg(
- column="height", aggfunc=lambda x: np.min(x**2)
- ),
- height_max=pd.NamedAgg(column="height", aggfunc="max"),
- weight_max=pd.NamedAgg(column="weight", aggfunc="max"),
- height_max_2=pd.NamedAgg(column="height", aggfunc=lambda x: np.max(x)),
- weight_min=pd.NamedAgg(column="weight", aggfunc=lambda x: np.min(x)),
- )
- tm.assert_frame_equal(result2, expected)
- def test_groupby_get_by_index():
- # GH 33439
- df = DataFrame({"A": ["S", "W", "W"], "B": [1.0, 1.0, 2.0]})
- res = df.groupby("A").agg({"B": lambda x: x.get(x.index[-1])})
- expected = DataFrame({"A": ["S", "W"], "B": [1.0, 2.0]}).set_index("A")
- tm.assert_frame_equal(res, expected)
- @pytest.mark.parametrize(
- "grp_col_dict, exp_data",
- [
- ({"nr": "min", "cat_ord": "min"}, {"nr": [1, 5], "cat_ord": ["a", "c"]}),
- ({"cat_ord": "min"}, {"cat_ord": ["a", "c"]}),
- ({"nr": "min"}, {"nr": [1, 5]}),
- ],
- )
- def test_groupby_single_agg_cat_cols(grp_col_dict, exp_data):
- # test single aggregations on ordered categorical cols GHGH27800
- # create the result dataframe
- input_df = DataFrame(
- {
- "nr": [1, 2, 3, 4, 5, 6, 7, 8],
- "cat_ord": list("aabbccdd"),
- "cat": list("aaaabbbb"),
- }
- )
- input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
- input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
- result_df = input_df.groupby("cat").agg(grp_col_dict)
- # create expected dataframe
- cat_index = pd.CategoricalIndex(
- ["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
- )
- expected_df = DataFrame(data=exp_data, index=cat_index)
- if "cat_ord" in expected_df:
- # ordered categorical columns should be preserved
- dtype = input_df["cat_ord"].dtype
- expected_df["cat_ord"] = expected_df["cat_ord"].astype(dtype)
- tm.assert_frame_equal(result_df, expected_df)
- @pytest.mark.parametrize(
- "grp_col_dict, exp_data",
- [
- ({"nr": ["min", "max"], "cat_ord": "min"}, [(1, 4, "a"), (5, 8, "c")]),
- ({"nr": "min", "cat_ord": ["min", "max"]}, [(1, "a", "b"), (5, "c", "d")]),
- ({"cat_ord": ["min", "max"]}, [("a", "b"), ("c", "d")]),
- ],
- )
- def test_groupby_combined_aggs_cat_cols(grp_col_dict, exp_data):
- # test combined aggregations on ordered categorical cols GH27800
- # create the result dataframe
- input_df = DataFrame(
- {
- "nr": [1, 2, 3, 4, 5, 6, 7, 8],
- "cat_ord": list("aabbccdd"),
- "cat": list("aaaabbbb"),
- }
- )
- input_df = input_df.astype({"cat": "category", "cat_ord": "category"})
- input_df["cat_ord"] = input_df["cat_ord"].cat.as_ordered()
- result_df = input_df.groupby("cat").agg(grp_col_dict)
- # create expected dataframe
- cat_index = pd.CategoricalIndex(
- ["a", "b"], categories=["a", "b"], ordered=False, name="cat", dtype="category"
- )
- # unpack the grp_col_dict to create the multi-index tuple
- # this tuple will be used to create the expected dataframe index
- multi_index_list = []
- for k, v in grp_col_dict.items():
- if isinstance(v, list):
- for value in v:
- multi_index_list.append([k, value])
- else:
- multi_index_list.append([k, v])
- multi_index = MultiIndex.from_tuples(tuple(multi_index_list))
- expected_df = DataFrame(data=exp_data, columns=multi_index, index=cat_index)
- for col in expected_df.columns:
- if isinstance(col, tuple) and "cat_ord" in col:
- # ordered categorical should be preserved
- expected_df[col] = expected_df[col].astype(input_df["cat_ord"].dtype)
- tm.assert_frame_equal(result_df, expected_df)
- def test_nonagg_agg():
- # GH 35490 - Single/Multiple agg of non-agg function give same results
- # TODO: agg should raise for functions that don't aggregate
- df = DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 2, 1]})
- g = df.groupby("a")
- result = g.agg(["cumsum"])
- result.columns = result.columns.droplevel(-1)
- expected = g.agg("cumsum")
- tm.assert_frame_equal(result, expected)
- def test_aggregate_datetime_objects():
- # https://github.com/pandas-dev/pandas/issues/36003
- # ensure we don't raise an error but keep object dtype for out-of-bounds
- # datetimes
- df = DataFrame(
- {
- "A": ["X", "Y"],
- "B": [
- datetime.datetime(2005, 1, 1, 10, 30, 23, 540000),
- datetime.datetime(3005, 1, 1, 10, 30, 23, 540000),
- ],
- }
- )
- result = df.groupby("A").B.max()
- expected = df.set_index("A")["B"]
- tm.assert_series_equal(result, expected)
- def test_groupby_index_object_dtype():
- # GH 40014
- df = DataFrame({"c0": ["x", "x", "x"], "c1": ["x", "x", "y"], "p": [0, 1, 2]})
- df.index = df.index.astype("O")
- grouped = df.groupby(["c0", "c1"])
- res = grouped.p.agg(lambda x: all(x > 0))
- # Check that providing a user-defined function in agg()
- # produces the correct index shape when using an object-typed index.
- expected_index = MultiIndex.from_tuples(
- [("x", "x"), ("x", "y")], names=("c0", "c1")
- )
- expected = Series([False, True], index=expected_index, name="p")
- tm.assert_series_equal(res, expected)
- def test_timeseries_groupby_agg():
- # GH#43290
- def func(ser):
- if ser.isna().all():
- return None
- return np.sum(ser)
- df = DataFrame([1.0], index=[pd.Timestamp("2018-01-16 00:00:00+00:00")])
- res = df.groupby(lambda x: 1).agg(func)
- expected = DataFrame([[1.0]], index=[1])
- tm.assert_frame_equal(res, expected)
- def test_groupby_aggregate_directory(reduction_func):
- # GH#32793
- if reduction_func in ["corrwith", "nth"]:
- return None
- obj = DataFrame([[0, 1], [0, np.nan]])
- result_reduced_series = obj.groupby(0).agg(reduction_func)
- result_reduced_frame = obj.groupby(0).agg({1: reduction_func})
- if reduction_func in ["size", "ngroup"]:
- # names are different: None / 1
- tm.assert_series_equal(
- result_reduced_series, result_reduced_frame[1], check_names=False
- )
- else:
- tm.assert_frame_equal(result_reduced_series, result_reduced_frame)
- tm.assert_series_equal(
- result_reduced_series.dtypes, result_reduced_frame.dtypes
- )
- def test_group_mean_timedelta_nat():
- # GH43132
- data = Series(["1 day", "3 days", "NaT"], dtype="timedelta64[ns]")
- expected = Series(["2 days"], dtype="timedelta64[ns]", index=np.array([0]))
- result = data.groupby([0, 0, 0]).mean()
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "input_data, expected_output",
- [
- ( # no timezone
- ["2021-01-01T00:00", "NaT", "2021-01-01T02:00"],
- ["2021-01-01T01:00"],
- ),
- ( # timezone
- ["2021-01-01T00:00-0100", "NaT", "2021-01-01T02:00-0100"],
- ["2021-01-01T01:00-0100"],
- ),
- ],
- )
- def test_group_mean_datetime64_nat(input_data, expected_output):
- # GH43132
- data = to_datetime(Series(input_data))
- expected = to_datetime(Series(expected_output, index=np.array([0])))
- result = data.groupby([0, 0, 0]).mean()
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "func, output", [("mean", [8 + 18j, 10 + 22j]), ("sum", [40 + 90j, 50 + 110j])]
- )
- def test_groupby_complex(func, output):
- # GH#43701
- data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
- result = data.groupby(data.index % 2).agg(func)
- expected = Series(output)
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("func", ["min", "max", "var"])
- def test_groupby_complex_raises(func):
- # GH#43701
- data = Series(np.arange(20).reshape(10, 2).dot([1, 2j]))
- msg = "No matching signature found"
- with pytest.raises(TypeError, match=msg):
- data.groupby(data.index % 2).agg(func)
- @pytest.mark.parametrize(
- "func", [["min"], ["mean", "max"], {"b": "sum"}, {"b": "prod", "c": "median"}]
- )
- def test_multi_axis_1_raises(func):
- # GH#46995
- df = DataFrame({"a": [1, 1, 2], "b": [3, 4, 5], "c": [6, 7, 8]})
- gb = df.groupby("a", axis=1)
- with pytest.raises(NotImplementedError, match="axis other than 0 is not supported"):
- gb.agg(func)
- @pytest.mark.parametrize(
- "test, constant",
- [
- ([[20, "A"], [20, "B"], [10, "C"]], {0: [10, 20], 1: ["C", ["A", "B"]]}),
- ([[20, "A"], [20, "B"], [30, "C"]], {0: [20, 30], 1: [["A", "B"], "C"]}),
- ([["a", 1], ["a", 1], ["b", 2], ["b", 3]], {0: ["a", "b"], 1: [1, [2, 3]]}),
- pytest.param(
- [["a", 1], ["a", 2], ["b", 3], ["b", 3]],
- {0: ["a", "b"], 1: [[1, 2], 3]},
- marks=pytest.mark.xfail,
- ),
- ],
- )
- def test_agg_of_mode_list(test, constant):
- # GH#25581
- df1 = DataFrame(test)
- result = df1.groupby(0).agg(Series.mode)
- # Mode usually only returns 1 value, but can return a list in the case of a tie.
- expected = DataFrame(constant)
- expected = expected.set_index(0)
- tm.assert_frame_equal(result, expected)
- def test__dataframe_groupy_agg_list_like_func_with_args():
- # GH 50624
- df = DataFrame({"x": [1, 2, 3], "y": ["a", "b", "c"]})
- gb = df.groupby("y")
- def foo1(x, a=1, c=0):
- return x.sum() + a + c
- def foo2(x, b=2, c=0):
- return x.sum() + b + c
- msg = r"foo1\(\) got an unexpected keyword argument 'b'"
- with pytest.raises(TypeError, match=msg):
- gb.agg([foo1, foo2], 3, b=3, c=4)
- result = gb.agg([foo1, foo2], 3, c=4)
- expected = DataFrame(
- [[8, 8], [9, 9], [10, 10]],
- index=Index(["a", "b", "c"], name="y"),
- columns=MultiIndex.from_tuples([("x", "foo1"), ("x", "foo2")]),
- )
- tm.assert_frame_equal(result, expected)
- def test__series_groupy_agg_list_like_func_with_args():
- # GH 50624
- s = Series([1, 2, 3])
- sgb = s.groupby(s)
- def foo1(x, a=1, c=0):
- return x.sum() + a + c
- def foo2(x, b=2, c=0):
- return x.sum() + b + c
- msg = r"foo1\(\) got an unexpected keyword argument 'b'"
- with pytest.raises(TypeError, match=msg):
- sgb.agg([foo1, foo2], 3, b=3, c=4)
- result = sgb.agg([foo1, foo2], 3, c=4)
- expected = DataFrame(
- [[8, 8], [9, 9], [10, 10]], index=Index([1, 2, 3]), columns=["foo1", "foo2"]
- )
- tm.assert_frame_equal(result, expected)
|