test_pop.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import numpy as np
  2. from pandas import (
  3. DataFrame,
  4. MultiIndex,
  5. Series,
  6. )
  7. import pandas._testing as tm
  8. class TestDataFramePop:
  9. def test_pop(self, float_frame):
  10. float_frame.columns.name = "baz"
  11. float_frame.pop("A")
  12. assert "A" not in float_frame
  13. float_frame["foo"] = "bar"
  14. float_frame.pop("foo")
  15. assert "foo" not in float_frame
  16. assert float_frame.columns.name == "baz"
  17. # gh-10912: inplace ops cause caching issue
  18. a = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"], index=["X", "Y"])
  19. b = a.pop("B")
  20. b += 1
  21. # original frame
  22. expected = DataFrame([[1, 3], [4, 6]], columns=["A", "C"], index=["X", "Y"])
  23. tm.assert_frame_equal(a, expected)
  24. # result
  25. expected = Series([2, 5], index=["X", "Y"], name="B") + 1
  26. tm.assert_series_equal(b, expected)
  27. def test_pop_non_unique_cols(self):
  28. df = DataFrame({0: [0, 1], 1: [0, 1], 2: [4, 5]})
  29. df.columns = ["a", "b", "a"]
  30. res = df.pop("a")
  31. assert type(res) == DataFrame
  32. assert len(res) == 2
  33. assert len(df.columns) == 1
  34. assert "b" in df.columns
  35. assert "a" not in df.columns
  36. assert len(df.index) == 2
  37. def test_mixed_depth_pop(self):
  38. arrays = [
  39. ["a", "top", "top", "routine1", "routine1", "routine2"],
  40. ["", "OD", "OD", "result1", "result2", "result1"],
  41. ["", "wx", "wy", "", "", ""],
  42. ]
  43. tuples = sorted(zip(*arrays))
  44. index = MultiIndex.from_tuples(tuples)
  45. df = DataFrame(np.random.randn(4, 6), columns=index)
  46. df1 = df.copy()
  47. df2 = df.copy()
  48. result = df1.pop("a")
  49. expected = df2.pop(("a", "", ""))
  50. tm.assert_series_equal(expected, result, check_names=False)
  51. tm.assert_frame_equal(df1, df2)
  52. assert result.name == "a"
  53. expected = df1["top"]
  54. df1 = df1.drop(["top"], axis=1)
  55. result = df2.pop("top")
  56. tm.assert_frame_equal(expected, result)
  57. tm.assert_frame_equal(df1, df2)