123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- import numpy as np
- import pytest
- from pandas import (
- DataFrame,
- Series,
- )
- import pandas._testing as tm
- class TestDataFramePctChange:
- @pytest.mark.parametrize(
- "periods,fill_method,limit,exp",
- [
- (1, "ffill", None, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, 0]),
- (1, "ffill", 1, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, np.nan]),
- (1, "bfill", None, [np.nan, 0, 0, 1, 1, 1.5, np.nan, np.nan]),
- (1, "bfill", 1, [np.nan, np.nan, 0, 1, 1, 1.5, np.nan, np.nan]),
- (-1, "ffill", None, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, 0, np.nan]),
- (-1, "ffill", 1, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, np.nan, np.nan]),
- (-1, "bfill", None, [0, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]),
- (-1, "bfill", 1, [np.nan, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]),
- ],
- )
- def test_pct_change_with_nas(
- self, periods, fill_method, limit, exp, frame_or_series
- ):
- vals = [np.nan, np.nan, 1, 2, 4, 10, np.nan, np.nan]
- obj = frame_or_series(vals)
- res = obj.pct_change(periods=periods, fill_method=fill_method, limit=limit)
- tm.assert_equal(res, frame_or_series(exp))
- def test_pct_change_numeric(self):
- # GH#11150
- pnl = DataFrame(
- [np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange(0, 40, 10)]
- ).astype(np.float64)
- pnl.iat[1, 0] = np.nan
- pnl.iat[1, 1] = np.nan
- pnl.iat[2, 3] = 60
- for axis in range(2):
- expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift(axis=axis) - 1
- result = pnl.pct_change(axis=axis, fill_method="pad")
- tm.assert_frame_equal(result, expected)
- def test_pct_change(self, datetime_frame):
- rs = datetime_frame.pct_change(fill_method=None)
- tm.assert_frame_equal(rs, datetime_frame / datetime_frame.shift(1) - 1)
- rs = datetime_frame.pct_change(2)
- filled = datetime_frame.fillna(method="pad")
- tm.assert_frame_equal(rs, filled / filled.shift(2) - 1)
- rs = datetime_frame.pct_change(fill_method="bfill", limit=1)
- filled = datetime_frame.fillna(method="bfill", limit=1)
- tm.assert_frame_equal(rs, filled / filled.shift(1) - 1)
- rs = datetime_frame.pct_change(freq="5D")
- filled = datetime_frame.fillna(method="pad")
- tm.assert_frame_equal(
- rs, (filled / filled.shift(freq="5D") - 1).reindex_like(filled)
- )
- def test_pct_change_shift_over_nas(self):
- s = Series([1.0, 1.5, np.nan, 2.5, 3.0])
- df = DataFrame({"a": s, "b": s})
- chg = df.pct_change()
- expected = Series([np.nan, 0.5, 0.0, 2.5 / 1.5 - 1, 0.2])
- edf = DataFrame({"a": expected, "b": expected})
- tm.assert_frame_equal(chg, edf)
- @pytest.mark.parametrize(
- "freq, periods, fill_method, limit",
- [
- ("5B", 5, None, None),
- ("3B", 3, None, None),
- ("3B", 3, "bfill", None),
- ("7B", 7, "pad", 1),
- ("7B", 7, "bfill", 3),
- ("14B", 14, None, None),
- ],
- )
- def test_pct_change_periods_freq(
- self, datetime_frame, freq, periods, fill_method, limit
- ):
- # GH#7292
- rs_freq = datetime_frame.pct_change(
- freq=freq, fill_method=fill_method, limit=limit
- )
- rs_periods = datetime_frame.pct_change(
- periods, fill_method=fill_method, limit=limit
- )
- tm.assert_frame_equal(rs_freq, rs_periods)
- empty_ts = DataFrame(index=datetime_frame.index, columns=datetime_frame.columns)
- rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit)
- rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit)
- tm.assert_frame_equal(rs_freq, rs_periods)
- @pytest.mark.parametrize("fill_method", ["pad", "ffill", None])
- def test_pct_change_with_duplicated_indices(fill_method):
- # GH30463
- data = DataFrame(
- {0: [np.nan, 1, 2, 3, 9, 18], 1: [0, 1, np.nan, 3, 9, 18]}, index=["a", "b"] * 3
- )
- result = data.pct_change(fill_method=fill_method)
- if fill_method is None:
- second_column = [np.nan, np.inf, np.nan, np.nan, 2.0, 1.0]
- else:
- second_column = [np.nan, np.inf, 0.0, 2.0, 2.0, 1.0]
- expected = DataFrame(
- {0: [np.nan, np.nan, 1.0, 0.5, 2.0, 1.0], 1: second_column},
- index=["a", "b"] * 3,
- )
- tm.assert_frame_equal(result, expected)
|