123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540 |
- from datetime import datetime
- import numpy as np
- import pytest
- from pandas.core.dtypes.cast import find_common_type
- from pandas.core.dtypes.common import is_dtype_equal
- import pandas as pd
- from pandas import (
- DataFrame,
- Index,
- MultiIndex,
- Series,
- )
- import pandas._testing as tm
- class TestDataFrameCombineFirst:
- def test_combine_first_mixed(self):
- a = Series(["a", "b"], index=range(2))
- b = Series(range(2), index=range(2))
- f = DataFrame({"A": a, "B": b})
- a = Series(["a", "b"], index=range(5, 7))
- b = Series(range(2), index=range(5, 7))
- g = DataFrame({"A": a, "B": b})
- exp = DataFrame({"A": list("abab"), "B": [0, 1, 0, 1]}, index=[0, 1, 5, 6])
- combined = f.combine_first(g)
- tm.assert_frame_equal(combined, exp)
- def test_combine_first(self, float_frame):
- # disjoint
- head, tail = float_frame[:5], float_frame[5:]
- combined = head.combine_first(tail)
- reordered_frame = float_frame.reindex(combined.index)
- tm.assert_frame_equal(combined, reordered_frame)
- assert tm.equalContents(combined.columns, float_frame.columns)
- tm.assert_series_equal(combined["A"], reordered_frame["A"])
- # same index
- fcopy = float_frame.copy()
- fcopy["A"] = 1
- del fcopy["C"]
- fcopy2 = float_frame.copy()
- fcopy2["B"] = 0
- del fcopy2["D"]
- combined = fcopy.combine_first(fcopy2)
- assert (combined["A"] == 1).all()
- tm.assert_series_equal(combined["B"], fcopy["B"])
- tm.assert_series_equal(combined["C"], fcopy2["C"])
- tm.assert_series_equal(combined["D"], fcopy["D"])
- # overlap
- head, tail = reordered_frame[:10].copy(), reordered_frame
- head["A"] = 1
- combined = head.combine_first(tail)
- assert (combined["A"][:10] == 1).all()
- # reverse overlap
- tail.iloc[:10, tail.columns.get_loc("A")] = 0
- combined = tail.combine_first(head)
- assert (combined["A"][:10] == 0).all()
- # no overlap
- f = float_frame[:10]
- g = float_frame[10:]
- combined = f.combine_first(g)
- tm.assert_series_equal(combined["A"].reindex(f.index), f["A"])
- tm.assert_series_equal(combined["A"].reindex(g.index), g["A"])
- # corner cases
- comb = float_frame.combine_first(DataFrame())
- tm.assert_frame_equal(comb, float_frame)
- comb = DataFrame().combine_first(float_frame)
- tm.assert_frame_equal(comb, float_frame)
- comb = float_frame.combine_first(DataFrame(index=["faz", "boo"]))
- assert "faz" in comb.index
- # #2525
- df = DataFrame({"a": [1]}, index=[datetime(2012, 1, 1)])
- df2 = DataFrame(columns=["b"])
- result = df.combine_first(df2)
- assert "b" in result
- def test_combine_first_mixed_bug(self):
- idx = Index(["a", "b", "c", "e"])
- ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
- ser2 = Series(["a", "b", "c", "e"], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame1 = DataFrame({"col0": ser1, "col2": ser2, "col3": ser3})
- idx = Index(["a", "b", "c", "f"])
- ser1 = Series([5.0, -9.0, 4.0, 100.0], index=idx)
- ser2 = Series(["a", "b", "c", "f"], index=idx)
- ser3 = Series([12, 4, 5, 97], index=idx)
- frame2 = DataFrame({"col1": ser1, "col2": ser2, "col5": ser3})
- combined = frame1.combine_first(frame2)
- assert len(combined.columns) == 5
- def test_combine_first_same_as_in_update(self):
- # gh 3016 (same as in update)
- df = DataFrame(
- [[1.0, 2.0, False, True], [4.0, 5.0, True, False]],
- columns=["A", "B", "bool1", "bool2"],
- )
- other = DataFrame([[45, 45]], index=[0], columns=["A", "B"])
- result = df.combine_first(other)
- tm.assert_frame_equal(result, df)
- df.loc[0, "A"] = np.nan
- result = df.combine_first(other)
- df.loc[0, "A"] = 45
- tm.assert_frame_equal(result, df)
- def test_combine_first_doc_example(self):
- # doc example
- df1 = DataFrame(
- {"A": [1.0, np.nan, 3.0, 5.0, np.nan], "B": [np.nan, 2.0, 3.0, np.nan, 6.0]}
- )
- df2 = DataFrame(
- {
- "A": [5.0, 2.0, 4.0, np.nan, 3.0, 7.0],
- "B": [np.nan, np.nan, 3.0, 4.0, 6.0, 8.0],
- }
- )
- result = df1.combine_first(df2)
- expected = DataFrame({"A": [1, 2, 3, 5, 3, 7.0], "B": [np.nan, 2, 3, 4, 6, 8]})
- tm.assert_frame_equal(result, expected)
- def test_combine_first_return_obj_type_with_bools(self):
- # GH3552
- df1 = DataFrame(
- [[np.nan, 3.0, True], [-4.6, np.nan, True], [np.nan, 7.0, False]]
- )
- df2 = DataFrame([[-42.6, np.nan, True], [-5.0, 1.6, False]], index=[1, 2])
- expected = Series([True, True, False], name=2, dtype=bool)
- result_12 = df1.combine_first(df2)[2]
- tm.assert_series_equal(result_12, expected)
- result_21 = df2.combine_first(df1)[2]
- tm.assert_series_equal(result_21, expected)
- @pytest.mark.parametrize(
- "data1, data2, data_expected",
- (
- (
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- [pd.NaT, pd.NaT, pd.NaT],
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- ),
- (
- [pd.NaT, pd.NaT, pd.NaT],
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- ),
- (
- [datetime(2000, 1, 2), pd.NaT, pd.NaT],
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- ),
- (
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- [datetime(2000, 1, 2), pd.NaT, pd.NaT],
- [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)],
- ),
- ),
- )
- def test_combine_first_convert_datatime_correctly(
- self, data1, data2, data_expected
- ):
- # GH 3593
- df1, df2 = DataFrame({"a": data1}), DataFrame({"a": data2})
- result = df1.combine_first(df2)
- expected = DataFrame({"a": data_expected})
- tm.assert_frame_equal(result, expected)
- def test_combine_first_align_nan(self):
- # GH 7509 (not fixed)
- dfa = DataFrame([[pd.Timestamp("2011-01-01"), 2]], columns=["a", "b"])
- dfb = DataFrame([[4], [5]], columns=["b"])
- assert dfa["a"].dtype == "datetime64[ns]"
- assert dfa["b"].dtype == "int64"
- res = dfa.combine_first(dfb)
- exp = DataFrame(
- {"a": [pd.Timestamp("2011-01-01"), pd.NaT], "b": [2, 5]},
- columns=["a", "b"],
- )
- tm.assert_frame_equal(res, exp)
- assert res["a"].dtype == "datetime64[ns]"
- # TODO: this must be int64
- assert res["b"].dtype == "int64"
- res = dfa.iloc[:0].combine_first(dfb)
- exp = DataFrame({"a": [np.nan, np.nan], "b": [4, 5]}, columns=["a", "b"])
- tm.assert_frame_equal(res, exp)
- # TODO: this must be datetime64
- assert res["a"].dtype == "float64"
- # TODO: this must be int64
- assert res["b"].dtype == "int64"
- def test_combine_first_timezone(self):
- # see gh-7630
- data1 = pd.to_datetime("20100101 01:01").tz_localize("UTC")
- df1 = DataFrame(
- columns=["UTCdatetime", "abc"],
- data=data1,
- index=pd.date_range("20140627", periods=1),
- )
- data2 = pd.to_datetime("20121212 12:12").tz_localize("UTC")
- df2 = DataFrame(
- columns=["UTCdatetime", "xyz"],
- data=data2,
- index=pd.date_range("20140628", periods=1),
- )
- res = df2[["UTCdatetime"]].combine_first(df1)
- exp = DataFrame(
- {
- "UTCdatetime": [
- pd.Timestamp("2010-01-01 01:01", tz="UTC"),
- pd.Timestamp("2012-12-12 12:12", tz="UTC"),
- ],
- "abc": [pd.Timestamp("2010-01-01 01:01:00", tz="UTC"), pd.NaT],
- },
- columns=["UTCdatetime", "abc"],
- index=pd.date_range("20140627", periods=2, freq="D"),
- )
- assert res["UTCdatetime"].dtype == "datetime64[ns, UTC]"
- assert res["abc"].dtype == "datetime64[ns, UTC]"
- tm.assert_frame_equal(res, exp)
- # see gh-10567
- dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="UTC")
- df1 = DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-03", "2015-01-05", tz="UTC")
- df2 = DataFrame({"DATE": dts2})
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res["DATE"].dtype == "datetime64[ns, UTC]"
- dts1 = pd.DatetimeIndex(
- ["2011-01-01", "NaT", "2011-01-03", "2011-01-04"], tz="US/Eastern"
- )
- df1 = DataFrame({"DATE": dts1}, index=[1, 3, 5, 7])
- dts2 = pd.DatetimeIndex(
- ["2012-01-01", "2012-01-02", "2012-01-03"], tz="US/Eastern"
- )
- df2 = DataFrame({"DATE": dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.DatetimeIndex(
- [
- "2011-01-01",
- "2012-01-01",
- "NaT",
- "2012-01-02",
- "2011-01-03",
- "2011-01-04",
- ],
- tz="US/Eastern",
- )
- exp = DataFrame({"DATE": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- # different tz
- dts1 = pd.date_range("2015-01-01", "2015-01-05", tz="US/Eastern")
- df1 = DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-03", "2015-01-05")
- df2 = DataFrame({"DATE": dts2})
- # if df1 doesn't have NaN, keep its dtype
- res = df1.combine_first(df2)
- tm.assert_frame_equal(res, df1)
- assert res["DATE"].dtype == "datetime64[ns, US/Eastern]"
- dts1 = pd.date_range("2015-01-01", "2015-01-02", tz="US/Eastern")
- df1 = DataFrame({"DATE": dts1})
- dts2 = pd.date_range("2015-01-01", "2015-01-03")
- df2 = DataFrame({"DATE": dts2})
- res = df1.combine_first(df2)
- exp_dts = [
- pd.Timestamp("2015-01-01", tz="US/Eastern"),
- pd.Timestamp("2015-01-02", tz="US/Eastern"),
- pd.Timestamp("2015-01-03"),
- ]
- exp = DataFrame({"DATE": exp_dts})
- tm.assert_frame_equal(res, exp)
- assert res["DATE"].dtype == "object"
- def test_combine_first_timedelta(self):
- data1 = pd.TimedeltaIndex(["1 day", "NaT", "3 day", "4day"])
- df1 = DataFrame({"TD": data1}, index=[1, 3, 5, 7])
- data2 = pd.TimedeltaIndex(["10 day", "11 day", "12 day"])
- df2 = DataFrame({"TD": data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.TimedeltaIndex(
- ["1 day", "10 day", "NaT", "11 day", "3 day", "4 day"]
- )
- exp = DataFrame({"TD": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["TD"].dtype == "timedelta64[ns]"
- def test_combine_first_period(self):
- data1 = pd.PeriodIndex(["2011-01", "NaT", "2011-03", "2011-04"], freq="M")
- df1 = DataFrame({"P": data1}, index=[1, 3, 5, 7])
- data2 = pd.PeriodIndex(["2012-01-01", "2012-02", "2012-03"], freq="M")
- df2 = DataFrame({"P": data2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = pd.PeriodIndex(
- ["2011-01", "2012-01", "NaT", "2012-02", "2011-03", "2011-04"], freq="M"
- )
- exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["P"].dtype == data1.dtype
- # different freq
- dts2 = pd.PeriodIndex(["2012-01-01", "2012-01-02", "2012-01-03"], freq="D")
- df2 = DataFrame({"P": dts2}, index=[2, 4, 5])
- res = df1.combine_first(df2)
- exp_dts = [
- pd.Period("2011-01", freq="M"),
- pd.Period("2012-01-01", freq="D"),
- pd.NaT,
- pd.Period("2012-01-02", freq="D"),
- pd.Period("2011-03", freq="M"),
- pd.Period("2011-04", freq="M"),
- ]
- exp = DataFrame({"P": exp_dts}, index=[1, 2, 3, 4, 5, 7])
- tm.assert_frame_equal(res, exp)
- assert res["P"].dtype == "object"
- def test_combine_first_int(self):
- # GH14687 - integer series that do no align exactly
- df1 = DataFrame({"a": [0, 1, 3, 5]}, dtype="int64")
- df2 = DataFrame({"a": [1, 4]}, dtype="int64")
- result_12 = df1.combine_first(df2)
- expected_12 = DataFrame({"a": [0, 1, 3, 5]})
- tm.assert_frame_equal(result_12, expected_12)
- result_21 = df2.combine_first(df1)
- expected_21 = DataFrame({"a": [1, 4, 3, 5]})
- tm.assert_frame_equal(result_21, expected_21)
- @pytest.mark.parametrize("val", [1, 1.0])
- def test_combine_first_with_asymmetric_other(self, val):
- # see gh-20699
- df1 = DataFrame({"isNum": [val]})
- df2 = DataFrame({"isBool": [True]})
- res = df1.combine_first(df2)
- exp = DataFrame({"isBool": [True], "isNum": [val]})
- tm.assert_frame_equal(res, exp)
- def test_combine_first_string_dtype_only_na(self, nullable_string_dtype):
- # GH: 37519
- df = DataFrame(
- {"a": ["962", "85"], "b": [pd.NA] * 2}, dtype=nullable_string_dtype
- )
- df2 = DataFrame({"a": ["85"], "b": [pd.NA]}, dtype=nullable_string_dtype)
- df.set_index(["a", "b"], inplace=True)
- df2.set_index(["a", "b"], inplace=True)
- result = df.combine_first(df2)
- expected = DataFrame(
- {"a": ["962", "85"], "b": [pd.NA] * 2}, dtype=nullable_string_dtype
- ).set_index(["a", "b"])
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "scalar1, scalar2",
- [
- (datetime(2020, 1, 1), datetime(2020, 1, 2)),
- (pd.Period("2020-01-01", "D"), pd.Period("2020-01-02", "D")),
- (pd.Timedelta("89 days"), pd.Timedelta("60 min")),
- (pd.Interval(left=0, right=1), pd.Interval(left=2, right=3, closed="left")),
- ],
- )
- def test_combine_first_timestamp_bug(scalar1, scalar2, nulls_fixture):
- # GH28481
- na_value = nulls_fixture
- frame = DataFrame([[na_value, na_value]], columns=["a", "b"])
- other = DataFrame([[scalar1, scalar2]], columns=["b", "c"])
- common_dtype = find_common_type([frame.dtypes["b"], other.dtypes["b"]])
- if is_dtype_equal(common_dtype, "object") or frame.dtypes["b"] == other.dtypes["b"]:
- val = scalar1
- else:
- val = na_value
- result = frame.combine_first(other)
- expected = DataFrame([[na_value, val, scalar2]], columns=["a", "b", "c"])
- expected["b"] = expected["b"].astype(common_dtype)
- tm.assert_frame_equal(result, expected)
- def test_combine_first_timestamp_bug_NaT():
- # GH28481
- frame = DataFrame([[pd.NaT, pd.NaT]], columns=["a", "b"])
- other = DataFrame(
- [[datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["b", "c"]
- )
- result = frame.combine_first(other)
- expected = DataFrame(
- [[pd.NaT, datetime(2020, 1, 1), datetime(2020, 1, 2)]], columns=["a", "b", "c"]
- )
- tm.assert_frame_equal(result, expected)
- def test_combine_first_with_nan_multiindex():
- # gh-36562
- mi1 = MultiIndex.from_arrays(
- [["b", "b", "c", "a", "b", np.nan], [1, 2, 3, 4, 5, 6]], names=["a", "b"]
- )
- df = DataFrame({"c": [1, 1, 1, 1, 1, 1]}, index=mi1)
- mi2 = MultiIndex.from_arrays(
- [["a", "b", "c", "a", "b", "d"], [1, 1, 1, 1, 1, 1]], names=["a", "b"]
- )
- s = Series([1, 2, 3, 4, 5, 6], index=mi2)
- res = df.combine_first(DataFrame({"d": s}))
- mi_expected = MultiIndex.from_arrays(
- [
- ["a", "a", "a", "b", "b", "b", "b", "c", "c", "d", np.nan],
- [1, 1, 4, 1, 1, 2, 5, 1, 3, 1, 6],
- ],
- names=["a", "b"],
- )
- expected = DataFrame(
- {
- "c": [np.nan, np.nan, 1, 1, 1, 1, 1, np.nan, 1, np.nan, 1],
- "d": [1.0, 4.0, np.nan, 2.0, 5.0, np.nan, np.nan, 3.0, np.nan, 6.0, np.nan],
- },
- index=mi_expected,
- )
- tm.assert_frame_equal(res, expected)
- def test_combine_preserve_dtypes():
- # GH7509
- a_column = Series(["a", "b"], index=range(2))
- b_column = Series(range(2), index=range(2))
- df1 = DataFrame({"A": a_column, "B": b_column})
- c_column = Series(["a", "b"], index=range(5, 7))
- b_column = Series(range(-1, 1), index=range(5, 7))
- df2 = DataFrame({"B": b_column, "C": c_column})
- expected = DataFrame(
- {
- "A": ["a", "b", np.nan, np.nan],
- "B": [0, 1, -1, 0],
- "C": [np.nan, np.nan, "a", "b"],
- },
- index=[0, 1, 5, 6],
- )
- combined = df1.combine_first(df2)
- tm.assert_frame_equal(combined, expected)
- def test_combine_first_duplicates_rows_for_nan_index_values():
- # GH39881
- df1 = DataFrame(
- {"x": [9, 10, 11]},
- index=MultiIndex.from_arrays([[1, 2, 3], [np.nan, 5, 6]], names=["a", "b"]),
- )
- df2 = DataFrame(
- {"y": [12, 13, 14]},
- index=MultiIndex.from_arrays([[1, 2, 4], [np.nan, 5, 7]], names=["a", "b"]),
- )
- expected = DataFrame(
- {
- "x": [9.0, 10.0, 11.0, np.nan],
- "y": [12.0, 13.0, np.nan, 14.0],
- },
- index=MultiIndex.from_arrays(
- [[1, 2, 3, 4], [np.nan, 5.0, 6.0, 7.0]], names=["a", "b"]
- ),
- )
- combined = df1.combine_first(df2)
- tm.assert_frame_equal(combined, expected)
- def test_combine_first_int64_not_cast_to_float64():
- # GH 28613
- df_1 = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
- df_2 = DataFrame({"A": [1, 20, 30], "B": [40, 50, 60], "C": [12, 34, 65]})
- result = df_1.combine_first(df_2)
- expected = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [12, 34, 65]})
- tm.assert_frame_equal(result, expected)
- def test_midx_losing_dtype():
- # GH#49830
- midx = MultiIndex.from_arrays([[0, 0], [np.nan, np.nan]])
- midx2 = MultiIndex.from_arrays([[1, 1], [np.nan, np.nan]])
- df1 = DataFrame({"a": [None, 4]}, index=midx)
- df2 = DataFrame({"a": [3, 3]}, index=midx2)
- result = df1.combine_first(df2)
- expected_midx = MultiIndex.from_arrays(
- [[0, 0, 1, 1], [np.nan, np.nan, np.nan, np.nan]]
- )
- expected = DataFrame({"a": [np.nan, 4, 3, 3]}, index=expected_midx)
- tm.assert_frame_equal(result, expected)
|