test_xs.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. import re
  2. import numpy as np
  3. import pytest
  4. from pandas.errors import SettingWithCopyError
  5. from pandas import (
  6. DataFrame,
  7. Index,
  8. IndexSlice,
  9. MultiIndex,
  10. Series,
  11. concat,
  12. )
  13. import pandas._testing as tm
  14. from pandas.tseries.offsets import BDay
  15. @pytest.fixture
  16. def four_level_index_dataframe():
  17. arr = np.array(
  18. [
  19. [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
  20. [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
  21. [-0.6662, -0.5243, -0.358, 0.89145, 2.5838],
  22. ]
  23. )
  24. index = MultiIndex(
  25. levels=[["a", "x"], ["b", "q"], [10.0032, 20.0, 30.0], [3, 4, 5]],
  26. codes=[[0, 0, 1], [0, 1, 1], [0, 1, 2], [2, 1, 0]],
  27. names=["one", "two", "three", "four"],
  28. )
  29. return DataFrame(arr, index=index, columns=list("ABCDE"))
  30. class TestXS:
  31. def test_xs(self, float_frame, datetime_frame, using_copy_on_write):
  32. float_frame_orig = float_frame.copy()
  33. idx = float_frame.index[5]
  34. xs = float_frame.xs(idx)
  35. for item, value in xs.items():
  36. if np.isnan(value):
  37. assert np.isnan(float_frame[item][idx])
  38. else:
  39. assert value == float_frame[item][idx]
  40. # mixed-type xs
  41. test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
  42. frame = DataFrame(test_data)
  43. xs = frame.xs("1")
  44. assert xs.dtype == np.object_
  45. assert xs["A"] == 1
  46. assert xs["B"] == "1"
  47. with pytest.raises(
  48. KeyError, match=re.escape("Timestamp('1999-12-31 00:00:00')")
  49. ):
  50. datetime_frame.xs(datetime_frame.index[0] - BDay())
  51. # xs get column
  52. series = float_frame.xs("A", axis=1)
  53. expected = float_frame["A"]
  54. tm.assert_series_equal(series, expected)
  55. # view is returned if possible
  56. series = float_frame.xs("A", axis=1)
  57. series[:] = 5
  58. if using_copy_on_write:
  59. # but with CoW the view shouldn't propagate mutations
  60. tm.assert_series_equal(float_frame["A"], float_frame_orig["A"])
  61. assert not (expected == 5).all()
  62. else:
  63. assert (expected == 5).all()
  64. def test_xs_corner(self):
  65. # pathological mixed-type reordering case
  66. df = DataFrame(index=[0])
  67. df["A"] = 1.0
  68. df["B"] = "foo"
  69. df["C"] = 2.0
  70. df["D"] = "bar"
  71. df["E"] = 3.0
  72. xs = df.xs(0)
  73. exp = Series([1.0, "foo", 2.0, "bar", 3.0], index=list("ABCDE"), name=0)
  74. tm.assert_series_equal(xs, exp)
  75. # no columns but Index(dtype=object)
  76. df = DataFrame(index=["a", "b", "c"])
  77. result = df.xs("a")
  78. expected = Series([], name="a", dtype=np.float64)
  79. tm.assert_series_equal(result, expected)
  80. def test_xs_duplicates(self):
  81. df = DataFrame(np.random.randn(5, 2), index=["b", "b", "c", "b", "a"])
  82. cross = df.xs("c")
  83. exp = df.iloc[2]
  84. tm.assert_series_equal(cross, exp)
  85. def test_xs_keep_level(self):
  86. df = DataFrame(
  87. {
  88. "day": {0: "sat", 1: "sun"},
  89. "flavour": {0: "strawberry", 1: "strawberry"},
  90. "sales": {0: 10, 1: 12},
  91. "year": {0: 2008, 1: 2008},
  92. }
  93. ).set_index(["year", "flavour", "day"])
  94. result = df.xs("sat", level="day", drop_level=False)
  95. expected = df[:1]
  96. tm.assert_frame_equal(result, expected)
  97. result = df.xs((2008, "sat"), level=["year", "day"], drop_level=False)
  98. tm.assert_frame_equal(result, expected)
  99. def test_xs_view(self, using_array_manager, using_copy_on_write):
  100. # in 0.14 this will return a view if possible a copy otherwise, but
  101. # this is numpy dependent
  102. dm = DataFrame(np.arange(20.0).reshape(4, 5), index=range(4), columns=range(5))
  103. df_orig = dm.copy()
  104. if using_copy_on_write:
  105. with tm.raises_chained_assignment_error():
  106. dm.xs(2)[:] = 20
  107. tm.assert_frame_equal(dm, df_orig)
  108. elif using_array_manager:
  109. # INFO(ArrayManager) with ArrayManager getting a row as a view is
  110. # not possible
  111. msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame"
  112. with pytest.raises(SettingWithCopyError, match=msg):
  113. dm.xs(2)[:] = 20
  114. assert not (dm.xs(2) == 20).any()
  115. else:
  116. dm.xs(2)[:] = 20
  117. assert (dm.xs(2) == 20).all()
  118. class TestXSWithMultiIndex:
  119. def test_xs_doc_example(self):
  120. # TODO: more descriptive name
  121. # based on example in advanced.rst
  122. arrays = [
  123. ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
  124. ["one", "two", "one", "two", "one", "two", "one", "two"],
  125. ]
  126. tuples = list(zip(*arrays))
  127. index = MultiIndex.from_tuples(tuples, names=["first", "second"])
  128. df = DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index)
  129. result = df.xs(("one", "bar"), level=("second", "first"), axis=1)
  130. expected = df.iloc[:, [0]]
  131. tm.assert_frame_equal(result, expected)
  132. def test_xs_integer_key(self):
  133. # see GH#2107
  134. dates = range(20111201, 20111205)
  135. ids = list("abcde")
  136. index = MultiIndex.from_product([dates, ids], names=["date", "secid"])
  137. df = DataFrame(np.random.randn(len(index), 3), index, ["X", "Y", "Z"])
  138. result = df.xs(20111201, level="date")
  139. expected = df.loc[20111201, :]
  140. tm.assert_frame_equal(result, expected)
  141. def test_xs_level(self, multiindex_dataframe_random_data):
  142. df = multiindex_dataframe_random_data
  143. result = df.xs("two", level="second")
  144. expected = df[df.index.get_level_values(1) == "two"]
  145. expected.index = Index(["foo", "bar", "baz", "qux"], name="first")
  146. tm.assert_frame_equal(result, expected)
  147. def test_xs_level_eq_2(self):
  148. arr = np.random.randn(3, 5)
  149. index = MultiIndex(
  150. levels=[["a", "p", "x"], ["b", "q", "y"], ["c", "r", "z"]],
  151. codes=[[2, 0, 1], [2, 0, 1], [2, 0, 1]],
  152. )
  153. df = DataFrame(arr, index=index)
  154. expected = DataFrame(arr[1:2], index=[["a"], ["b"]])
  155. result = df.xs("c", level=2)
  156. tm.assert_frame_equal(result, expected)
  157. def test_xs_setting_with_copy_error(
  158. self, multiindex_dataframe_random_data, using_copy_on_write
  159. ):
  160. # this is a copy in 0.14
  161. df = multiindex_dataframe_random_data
  162. df_orig = df.copy()
  163. result = df.xs("two", level="second")
  164. if using_copy_on_write:
  165. result[:] = 10
  166. else:
  167. # setting this will give a SettingWithCopyError
  168. # as we are trying to write a view
  169. msg = "A value is trying to be set on a copy of a slice from a DataFrame"
  170. with pytest.raises(SettingWithCopyError, match=msg):
  171. result[:] = 10
  172. tm.assert_frame_equal(df, df_orig)
  173. def test_xs_setting_with_copy_error_multiple(
  174. self, four_level_index_dataframe, using_copy_on_write
  175. ):
  176. # this is a copy in 0.14
  177. df = four_level_index_dataframe
  178. df_orig = df.copy()
  179. result = df.xs(("a", 4), level=["one", "four"])
  180. if using_copy_on_write:
  181. result[:] = 10
  182. else:
  183. # setting this will give a SettingWithCopyError
  184. # as we are trying to write a view
  185. msg = "A value is trying to be set on a copy of a slice from a DataFrame"
  186. with pytest.raises(SettingWithCopyError, match=msg):
  187. result[:] = 10
  188. tm.assert_frame_equal(df, df_orig)
  189. @pytest.mark.parametrize("key, level", [("one", "second"), (["one"], ["second"])])
  190. def test_xs_with_duplicates(self, key, level, multiindex_dataframe_random_data):
  191. # see GH#13719
  192. frame = multiindex_dataframe_random_data
  193. df = concat([frame] * 2)
  194. assert df.index.is_unique is False
  195. expected = concat([frame.xs("one", level="second")] * 2)
  196. if isinstance(key, list):
  197. result = df.xs(tuple(key), level=level)
  198. else:
  199. result = df.xs(key, level=level)
  200. tm.assert_frame_equal(result, expected)
  201. def test_xs_missing_values_in_index(self):
  202. # see GH#6574
  203. # missing values in returned index should be preserved
  204. acc = [
  205. ("a", "abcde", 1),
  206. ("b", "bbcde", 2),
  207. ("y", "yzcde", 25),
  208. ("z", "xbcde", 24),
  209. ("z", None, 26),
  210. ("z", "zbcde", 25),
  211. ("z", "ybcde", 26),
  212. ]
  213. df = DataFrame(acc, columns=["a1", "a2", "cnt"]).set_index(["a1", "a2"])
  214. expected = DataFrame(
  215. {"cnt": [24, 26, 25, 26]},
  216. index=Index(["xbcde", np.nan, "zbcde", "ybcde"], name="a2"),
  217. )
  218. result = df.xs("z", level="a1")
  219. tm.assert_frame_equal(result, expected)
  220. @pytest.mark.parametrize(
  221. "key, level, exp_arr, exp_index",
  222. [
  223. ("a", "lvl0", lambda x: x[:, 0:2], Index(["bar", "foo"], name="lvl1")),
  224. ("foo", "lvl1", lambda x: x[:, 1:2], Index(["a"], name="lvl0")),
  225. ],
  226. )
  227. def test_xs_named_levels_axis_eq_1(self, key, level, exp_arr, exp_index):
  228. # see GH#2903
  229. arr = np.random.randn(4, 4)
  230. index = MultiIndex(
  231. levels=[["a", "b"], ["bar", "foo", "hello", "world"]],
  232. codes=[[0, 0, 1, 1], [0, 1, 2, 3]],
  233. names=["lvl0", "lvl1"],
  234. )
  235. df = DataFrame(arr, columns=index)
  236. result = df.xs(key, level=level, axis=1)
  237. expected = DataFrame(exp_arr(arr), columns=exp_index)
  238. tm.assert_frame_equal(result, expected)
  239. @pytest.mark.parametrize(
  240. "indexer",
  241. [
  242. lambda df: df.xs(("a", 4), level=["one", "four"]),
  243. lambda df: df.xs("a").xs(4, level="four"),
  244. ],
  245. )
  246. def test_xs_level_multiple(self, indexer, four_level_index_dataframe):
  247. df = four_level_index_dataframe
  248. expected_values = [[0.4473, 1.4152, 0.2834, 1.00661, 0.1744]]
  249. expected_index = MultiIndex(
  250. levels=[["q"], [20.0]], codes=[[0], [0]], names=["two", "three"]
  251. )
  252. expected = DataFrame(
  253. expected_values, index=expected_index, columns=list("ABCDE")
  254. )
  255. result = indexer(df)
  256. tm.assert_frame_equal(result, expected)
  257. @pytest.mark.parametrize(
  258. "indexer", [lambda df: df.xs("a", level=0), lambda df: df.xs("a")]
  259. )
  260. def test_xs_level0(self, indexer, four_level_index_dataframe):
  261. df = four_level_index_dataframe
  262. expected_values = [
  263. [-0.5109, -2.3358, -0.4645, 0.05076, 0.364],
  264. [0.4473, 1.4152, 0.2834, 1.00661, 0.1744],
  265. ]
  266. expected_index = MultiIndex(
  267. levels=[["b", "q"], [10.0032, 20.0], [4, 5]],
  268. codes=[[0, 1], [0, 1], [1, 0]],
  269. names=["two", "three", "four"],
  270. )
  271. expected = DataFrame(
  272. expected_values, index=expected_index, columns=list("ABCDE")
  273. )
  274. result = indexer(df)
  275. tm.assert_frame_equal(result, expected)
  276. def test_xs_values(self, multiindex_dataframe_random_data):
  277. df = multiindex_dataframe_random_data
  278. result = df.xs(("bar", "two")).values
  279. expected = df.values[4]
  280. tm.assert_almost_equal(result, expected)
  281. def test_xs_loc_equality(self, multiindex_dataframe_random_data):
  282. df = multiindex_dataframe_random_data
  283. result = df.xs(("bar", "two"))
  284. expected = df.loc[("bar", "two")]
  285. tm.assert_series_equal(result, expected)
  286. def test_xs_IndexSlice_argument_not_implemented(self, frame_or_series):
  287. # GH#35301
  288. index = MultiIndex(
  289. levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
  290. codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
  291. )
  292. obj = DataFrame(np.random.randn(6, 4), index=index)
  293. if frame_or_series is Series:
  294. obj = obj[0]
  295. expected = obj.iloc[-2:].droplevel(0)
  296. result = obj.xs(IndexSlice[("foo", "qux", 0), :])
  297. tm.assert_equal(result, expected)
  298. result = obj.loc[IndexSlice[("foo", "qux", 0), :]]
  299. tm.assert_equal(result, expected)
  300. def test_xs_levels_raises(self, frame_or_series):
  301. obj = DataFrame({"A": [1, 2, 3]})
  302. if frame_or_series is Series:
  303. obj = obj["A"]
  304. msg = "Index must be a MultiIndex"
  305. with pytest.raises(TypeError, match=msg):
  306. obj.xs(0, level="as")
  307. def test_xs_multiindex_droplevel_false(self):
  308. # GH#19056
  309. mi = MultiIndex.from_tuples(
  310. [("a", "x"), ("a", "y"), ("b", "x")], names=["level1", "level2"]
  311. )
  312. df = DataFrame([[1, 2, 3]], columns=mi)
  313. result = df.xs("a", axis=1, drop_level=False)
  314. expected = DataFrame(
  315. [[1, 2]],
  316. columns=MultiIndex.from_tuples(
  317. [("a", "x"), ("a", "y")], names=["level1", "level2"]
  318. ),
  319. )
  320. tm.assert_frame_equal(result, expected)
  321. def test_xs_droplevel_false(self):
  322. # GH#19056
  323. df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
  324. result = df.xs("a", axis=1, drop_level=False)
  325. expected = DataFrame({"a": [1]})
  326. tm.assert_frame_equal(result, expected)
  327. def test_xs_droplevel_false_view(self, using_array_manager, using_copy_on_write):
  328. # GH#37832
  329. df = DataFrame([[1, 2, 3]], columns=Index(["a", "b", "c"]))
  330. result = df.xs("a", axis=1, drop_level=False)
  331. # check that result still views the same data as df
  332. assert np.shares_memory(result.iloc[:, 0]._values, df.iloc[:, 0]._values)
  333. df.iloc[0, 0] = 2
  334. if using_copy_on_write:
  335. # with copy on write the subset is never modified
  336. expected = DataFrame({"a": [1]})
  337. else:
  338. # modifying original df also modifies result when having a single block
  339. expected = DataFrame({"a": [2]})
  340. tm.assert_frame_equal(result, expected)
  341. # with mixed dataframe, modifying the parent doesn't modify result
  342. # TODO the "split" path behaves differently here as with single block
  343. df = DataFrame([[1, 2.5, "a"]], columns=Index(["a", "b", "c"]))
  344. result = df.xs("a", axis=1, drop_level=False)
  345. df.iloc[0, 0] = 2
  346. if using_copy_on_write:
  347. # with copy on write the subset is never modified
  348. expected = DataFrame({"a": [1]})
  349. elif using_array_manager:
  350. # Here the behavior is consistent
  351. expected = DataFrame({"a": [2]})
  352. else:
  353. # FIXME: iloc does not update the array inplace using
  354. # "split" path
  355. expected = DataFrame({"a": [1]})
  356. tm.assert_frame_equal(result, expected)
  357. def test_xs_list_indexer_droplevel_false(self):
  358. # GH#41760
  359. mi = MultiIndex.from_tuples([("x", "m", "a"), ("x", "n", "b"), ("y", "o", "c")])
  360. df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=mi)
  361. with pytest.raises(KeyError, match="y"):
  362. df.xs(("x", "y"), drop_level=False, axis=1)