test_setitem.py 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256
  1. from datetime import datetime
  2. import numpy as np
  3. import pytest
  4. import pandas.util._test_decorators as td
  5. from pandas.core.dtypes.base import _registry as ea_registry
  6. from pandas.core.dtypes.common import (
  7. is_categorical_dtype,
  8. is_interval_dtype,
  9. is_object_dtype,
  10. )
  11. from pandas.core.dtypes.dtypes import (
  12. CategoricalDtype,
  13. DatetimeTZDtype,
  14. IntervalDtype,
  15. PeriodDtype,
  16. )
  17. import pandas as pd
  18. from pandas import (
  19. Categorical,
  20. DataFrame,
  21. DatetimeIndex,
  22. Index,
  23. Interval,
  24. IntervalIndex,
  25. MultiIndex,
  26. NaT,
  27. Period,
  28. PeriodIndex,
  29. Series,
  30. Timestamp,
  31. cut,
  32. date_range,
  33. notna,
  34. period_range,
  35. )
  36. import pandas._testing as tm
  37. from pandas.core.arrays import SparseArray
  38. from pandas.tseries.offsets import BDay
  39. class TestDataFrameSetItem:
  40. def test_setitem_str_subclass(self):
  41. # GH#37366
  42. class mystring(str):
  43. pass
  44. data = ["2020-10-22 01:21:00+00:00"]
  45. index = DatetimeIndex(data)
  46. df = DataFrame({"a": [1]}, index=index)
  47. df["b"] = 2
  48. df[mystring("c")] = 3
  49. expected = DataFrame({"a": [1], "b": [2], mystring("c"): [3]}, index=index)
  50. tm.assert_equal(df, expected)
  51. @pytest.mark.parametrize(
  52. "dtype", ["int32", "int64", "uint32", "uint64", "float32", "float64"]
  53. )
  54. def test_setitem_dtype(self, dtype, float_frame):
  55. arr = np.random.randint(1, 10, len(float_frame))
  56. float_frame[dtype] = np.array(arr, dtype=dtype)
  57. assert float_frame[dtype].dtype.name == dtype
  58. def test_setitem_list_not_dataframe(self, float_frame):
  59. data = np.random.randn(len(float_frame), 2)
  60. float_frame[["A", "B"]] = data
  61. tm.assert_almost_equal(float_frame[["A", "B"]].values, data)
  62. def test_setitem_error_msmgs(self):
  63. # GH 7432
  64. df = DataFrame(
  65. {"bar": [1, 2, 3], "baz": ["d", "e", "f"]},
  66. index=Index(["a", "b", "c"], name="foo"),
  67. )
  68. ser = Series(
  69. ["g", "h", "i", "j"],
  70. index=Index(["a", "b", "c", "a"], name="foo"),
  71. name="fiz",
  72. )
  73. msg = "cannot reindex on an axis with duplicate labels"
  74. with pytest.raises(ValueError, match=msg):
  75. df["newcol"] = ser
  76. # GH 4107, more descriptive error message
  77. df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"])
  78. msg = "Cannot set a DataFrame with multiple columns to the single column gr"
  79. with pytest.raises(ValueError, match=msg):
  80. df["gr"] = df.groupby(["b", "c"]).count()
  81. def test_setitem_benchmark(self):
  82. # from the vb_suite/frame_methods/frame_insert_columns
  83. N = 10
  84. K = 5
  85. df = DataFrame(index=range(N))
  86. new_col = np.random.randn(N)
  87. for i in range(K):
  88. df[i] = new_col
  89. expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N))
  90. tm.assert_frame_equal(df, expected)
  91. def test_setitem_different_dtype(self):
  92. df = DataFrame(
  93. np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"]
  94. )
  95. df.insert(0, "foo", df["a"])
  96. df.insert(2, "bar", df["c"])
  97. # diff dtype
  98. # new item
  99. df["x"] = df["a"].astype("float32")
  100. result = df.dtypes
  101. expected = Series(
  102. [np.dtype("float64")] * 5 + [np.dtype("float32")],
  103. index=["foo", "c", "bar", "b", "a", "x"],
  104. )
  105. tm.assert_series_equal(result, expected)
  106. # replacing current (in different block)
  107. df["a"] = df["a"].astype("float32")
  108. result = df.dtypes
  109. expected = Series(
  110. [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2,
  111. index=["foo", "c", "bar", "b", "a", "x"],
  112. )
  113. tm.assert_series_equal(result, expected)
  114. df["y"] = df["a"].astype("int32")
  115. result = df.dtypes
  116. expected = Series(
  117. [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")],
  118. index=["foo", "c", "bar", "b", "a", "x", "y"],
  119. )
  120. tm.assert_series_equal(result, expected)
  121. def test_setitem_empty_columns(self):
  122. # GH 13522
  123. df = DataFrame(index=["A", "B", "C"])
  124. df["X"] = df.index
  125. df["X"] = ["x", "y", "z"]
  126. exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"])
  127. tm.assert_frame_equal(df, exp)
  128. def test_setitem_dt64_index_empty_columns(self):
  129. rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
  130. df = DataFrame(index=np.arange(len(rng)))
  131. df["A"] = rng
  132. assert df["A"].dtype == np.dtype("M8[ns]")
  133. def test_setitem_timestamp_empty_columns(self):
  134. # GH#19843
  135. df = DataFrame(index=range(3))
  136. df["now"] = Timestamp("20130101", tz="UTC")
  137. expected = DataFrame(
  138. [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"]
  139. )
  140. tm.assert_frame_equal(df, expected)
  141. def test_setitem_wrong_length_categorical_dtype_raises(self):
  142. # GH#29523
  143. cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"])
  144. df = DataFrame(range(10), columns=["bar"])
  145. msg = (
  146. rf"Length of values \({len(cat)}\) "
  147. rf"does not match length of index \({len(df)}\)"
  148. )
  149. with pytest.raises(ValueError, match=msg):
  150. df["foo"] = cat
  151. def test_setitem_with_sparse_value(self):
  152. # GH#8131
  153. df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
  154. sp_array = SparseArray([0, 0, 1])
  155. df["new_column"] = sp_array
  156. expected = Series(sp_array, name="new_column")
  157. tm.assert_series_equal(df["new_column"], expected)
  158. def test_setitem_with_unaligned_sparse_value(self):
  159. df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
  160. sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0])
  161. df["new_column"] = sp_series
  162. expected = Series(SparseArray([1, 0, 0]), name="new_column")
  163. tm.assert_series_equal(df["new_column"], expected)
  164. def test_setitem_period_preserves_dtype(self):
  165. # GH: 26861
  166. data = [Period("2003-12", "D")]
  167. result = DataFrame([])
  168. result["a"] = data
  169. expected = DataFrame({"a": data})
  170. tm.assert_frame_equal(result, expected)
  171. def test_setitem_dict_preserves_dtypes(self):
  172. # https://github.com/pandas-dev/pandas/issues/34573
  173. expected = DataFrame(
  174. {
  175. "a": Series([0, 1, 2], dtype="int64"),
  176. "b": Series([1, 2, 3], dtype=float),
  177. "c": Series([1, 2, 3], dtype=float),
  178. "d": Series([1, 2, 3], dtype="uint32"),
  179. }
  180. )
  181. df = DataFrame(
  182. {
  183. "a": Series([], dtype="int64"),
  184. "b": Series([], dtype=float),
  185. "c": Series([], dtype=float),
  186. "d": Series([], dtype="uint32"),
  187. }
  188. )
  189. for idx, b in enumerate([1, 2, 3]):
  190. df.loc[df.shape[0]] = {
  191. "a": int(idx),
  192. "b": float(b),
  193. "c": float(b),
  194. "d": np.uint32(b),
  195. }
  196. tm.assert_frame_equal(df, expected)
  197. @pytest.mark.parametrize(
  198. "obj,dtype",
  199. [
  200. (Period("2020-01"), PeriodDtype("M")),
  201. (Interval(left=0, right=5), IntervalDtype("int64", "right")),
  202. (
  203. Timestamp("2011-01-01", tz="US/Eastern"),
  204. DatetimeTZDtype(tz="US/Eastern"),
  205. ),
  206. ],
  207. )
  208. def test_setitem_extension_types(self, obj, dtype):
  209. # GH: 34832
  210. expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)})
  211. df = DataFrame({"idx": [1, 2, 3]})
  212. df["obj"] = obj
  213. tm.assert_frame_equal(df, expected)
  214. @pytest.mark.parametrize(
  215. "ea_name",
  216. [
  217. dtype.name
  218. for dtype in ea_registry.dtypes
  219. # property would require instantiation
  220. if not isinstance(dtype.name, property)
  221. ]
  222. + ["datetime64[ns, UTC]", "period[D]"],
  223. )
  224. def test_setitem_with_ea_name(self, ea_name):
  225. # GH 38386
  226. result = DataFrame([0])
  227. result[ea_name] = [1]
  228. expected = DataFrame({0: [0], ea_name: [1]})
  229. tm.assert_frame_equal(result, expected)
  230. def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self):
  231. # GH#7492
  232. data_ns = np.array([1, "nat"], dtype="datetime64[ns]")
  233. result = Series(data_ns).to_frame()
  234. result["new"] = data_ns
  235. expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]")
  236. tm.assert_frame_equal(result, expected)
  237. # OutOfBoundsDatetime error shouldn't occur; as of 2.0 we preserve "M8[s]"
  238. data_s = np.array([1, "nat"], dtype="datetime64[s]")
  239. result["new"] = data_s
  240. tm.assert_series_equal(result[0], expected[0])
  241. tm.assert_numpy_array_equal(result["new"].to_numpy(), data_s)
  242. @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"])
  243. def test_frame_setitem_datetime64_col_other_units(self, unit):
  244. # Check that non-nano dt64 values get cast to dt64 on setitem
  245. # into a not-yet-existing column
  246. n = 100
  247. dtype = np.dtype(f"M8[{unit}]")
  248. vals = np.arange(n, dtype=np.int64).view(dtype)
  249. if unit in ["s", "ms"]:
  250. # supported unit
  251. ex_vals = vals
  252. else:
  253. # we get the nearest supported units, i.e. "s"
  254. ex_vals = vals.astype("datetime64[s]")
  255. df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
  256. df[unit] = vals
  257. assert df[unit].dtype == ex_vals.dtype
  258. assert (df[unit].values == ex_vals).all()
  259. @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"])
  260. def test_frame_setitem_existing_datetime64_col_other_units(self, unit):
  261. # Check that non-nano dt64 values get cast to dt64 on setitem
  262. # into an already-existing dt64 column
  263. n = 100
  264. dtype = np.dtype(f"M8[{unit}]")
  265. vals = np.arange(n, dtype=np.int64).view(dtype)
  266. ex_vals = vals.astype("datetime64[ns]")
  267. df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
  268. df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]")
  269. # We overwrite existing dt64 column with new, non-nano dt64 vals
  270. df["dates"] = vals
  271. assert (df["dates"].values == ex_vals).all()
  272. def test_setitem_dt64tz(self, timezone_frame):
  273. df = timezone_frame
  274. idx = df["B"].rename("foo")
  275. # setitem
  276. df["C"] = idx
  277. tm.assert_series_equal(df["C"], Series(idx, name="C"))
  278. df["D"] = "foo"
  279. df["D"] = idx
  280. tm.assert_series_equal(df["D"], Series(idx, name="D"))
  281. del df["D"]
  282. # assert that A & C are not sharing the same base (e.g. they
  283. # are copies)
  284. v1 = df._mgr.arrays[1]
  285. v2 = df._mgr.arrays[2]
  286. tm.assert_extension_array_equal(v1, v2)
  287. v1base = v1._ndarray.base
  288. v2base = v2._ndarray.base
  289. assert v1base is None or (id(v1base) != id(v2base))
  290. # with nan
  291. df2 = df.copy()
  292. df2.iloc[1, 1] = NaT
  293. df2.iloc[1, 2] = NaT
  294. result = df2["B"]
  295. tm.assert_series_equal(notna(result), Series([True, False, True], name="B"))
  296. tm.assert_series_equal(df2.dtypes, df.dtypes)
  297. def test_setitem_periodindex(self):
  298. rng = period_range("1/1/2000", periods=5, name="index")
  299. df = DataFrame(np.random.randn(5, 3), index=rng)
  300. df["Index"] = rng
  301. rs = Index(df["Index"])
  302. tm.assert_index_equal(rs, rng, check_names=False)
  303. assert rs.name == "Index"
  304. assert rng.name == "index"
  305. rs = df.reset_index().set_index("index")
  306. assert isinstance(rs.index, PeriodIndex)
  307. tm.assert_index_equal(rs.index, rng)
  308. def test_setitem_complete_column_with_array(self):
  309. # GH#37954
  310. df = DataFrame({"a": ["one", "two", "three"], "b": [1, 2, 3]})
  311. arr = np.array([[1, 1], [3, 1], [5, 1]])
  312. df[["c", "d"]] = arr
  313. expected = DataFrame(
  314. {
  315. "a": ["one", "two", "three"],
  316. "b": [1, 2, 3],
  317. "c": [1, 3, 5],
  318. "d": [1, 1, 1],
  319. }
  320. )
  321. expected["c"] = expected["c"].astype(arr.dtype)
  322. expected["d"] = expected["d"].astype(arr.dtype)
  323. assert expected["c"].dtype == arr.dtype
  324. assert expected["d"].dtype == arr.dtype
  325. tm.assert_frame_equal(df, expected)
  326. @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"])
  327. def test_setitem_bool_with_numeric_index(self, dtype):
  328. # GH#36319
  329. cols = Index([1, 2, 3], dtype=dtype)
  330. df = DataFrame(np.random.randn(3, 3), columns=cols)
  331. df[False] = ["a", "b", "c"]
  332. expected_cols = Index([1, 2, 3, False], dtype=object)
  333. if dtype == "f8":
  334. expected_cols = Index([1.0, 2.0, 3.0, False], dtype=object)
  335. tm.assert_index_equal(df.columns, expected_cols)
  336. @pytest.mark.parametrize("indexer", ["B", ["B"]])
  337. def test_setitem_frame_length_0_str_key(self, indexer):
  338. # GH#38831
  339. df = DataFrame(columns=["A", "B"])
  340. other = DataFrame({"B": [1, 2]})
  341. df[indexer] = other
  342. expected = DataFrame({"A": [np.nan] * 2, "B": [1, 2]})
  343. expected["A"] = expected["A"].astype("object")
  344. tm.assert_frame_equal(df, expected)
  345. def test_setitem_frame_duplicate_columns(self):
  346. # GH#15695
  347. cols = ["A", "B", "C"] * 2
  348. df = DataFrame(index=range(3), columns=cols)
  349. df.loc[0, "A"] = (0, 3)
  350. df.loc[:, "B"] = (1, 4)
  351. df["C"] = (2, 5)
  352. expected = DataFrame(
  353. [
  354. [0, 1, 2, 3, 4, 5],
  355. [np.nan, 1, 2, np.nan, 4, 5],
  356. [np.nan, 1, 2, np.nan, 4, 5],
  357. ],
  358. dtype="object",
  359. )
  360. # set these with unique columns to be extra-unambiguous
  361. expected[2] = expected[2].astype(np.int64)
  362. expected[5] = expected[5].astype(np.int64)
  363. expected.columns = cols
  364. tm.assert_frame_equal(df, expected)
  365. def test_setitem_frame_duplicate_columns_size_mismatch(self):
  366. # GH#39510
  367. cols = ["A", "B", "C"] * 2
  368. df = DataFrame(index=range(3), columns=cols)
  369. with pytest.raises(ValueError, match="Columns must be same length as key"):
  370. df[["A"]] = (0, 3, 5)
  371. df2 = df.iloc[:, :3] # unique columns
  372. with pytest.raises(ValueError, match="Columns must be same length as key"):
  373. df2[["A"]] = (0, 3, 5)
  374. @pytest.mark.parametrize("cols", [["a", "b", "c"], ["a", "a", "a"]])
  375. def test_setitem_df_wrong_column_number(self, cols):
  376. # GH#38604
  377. df = DataFrame([[1, 2, 3]], columns=cols)
  378. rhs = DataFrame([[10, 11]], columns=["d", "e"])
  379. msg = "Columns must be same length as key"
  380. with pytest.raises(ValueError, match=msg):
  381. df["a"] = rhs
  382. def test_setitem_listlike_indexer_duplicate_columns(self):
  383. # GH#38604
  384. df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"])
  385. rhs = DataFrame([[10, 11, 12]], columns=["a", "b", "b"])
  386. df[["a", "b"]] = rhs
  387. expected = DataFrame([[10, 11, 12]], columns=["a", "b", "b"])
  388. tm.assert_frame_equal(df, expected)
  389. df[["c", "b"]] = rhs
  390. expected = DataFrame([[10, 11, 12, 10]], columns=["a", "b", "b", "c"])
  391. tm.assert_frame_equal(df, expected)
  392. def test_setitem_listlike_indexer_duplicate_columns_not_equal_length(self):
  393. # GH#39403
  394. df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"])
  395. rhs = DataFrame([[10, 11]], columns=["a", "b"])
  396. msg = "Columns must be same length as key"
  397. with pytest.raises(ValueError, match=msg):
  398. df[["a", "b"]] = rhs
  399. def test_setitem_intervals(self):
  400. df = DataFrame({"A": range(10)})
  401. ser = cut(df["A"], 5)
  402. assert isinstance(ser.cat.categories, IntervalIndex)
  403. # B & D end up as Categoricals
  404. # the remainder are converted to in-line objects
  405. # containing an IntervalIndex.values
  406. df["B"] = ser
  407. df["C"] = np.array(ser)
  408. df["D"] = ser.values
  409. df["E"] = np.array(ser.values)
  410. df["F"] = ser.astype(object)
  411. assert is_categorical_dtype(df["B"].dtype)
  412. assert is_interval_dtype(df["B"].cat.categories)
  413. assert is_categorical_dtype(df["D"].dtype)
  414. assert is_interval_dtype(df["D"].cat.categories)
  415. # These go through the Series constructor and so get inferred back
  416. # to IntervalDtype
  417. assert is_interval_dtype(df["C"])
  418. assert is_interval_dtype(df["E"])
  419. # But the Series constructor doesn't do inference on Series objects,
  420. # so setting df["F"] doesn't get cast back to IntervalDtype
  421. assert is_object_dtype(df["F"])
  422. # they compare equal as Index
  423. # when converted to numpy objects
  424. c = lambda x: Index(np.array(x))
  425. tm.assert_index_equal(c(df.B), c(df.B))
  426. tm.assert_index_equal(c(df.B), c(df.C), check_names=False)
  427. tm.assert_index_equal(c(df.B), c(df.D), check_names=False)
  428. tm.assert_index_equal(c(df.C), c(df.D), check_names=False)
  429. # B & D are the same Series
  430. tm.assert_series_equal(df["B"], df["B"])
  431. tm.assert_series_equal(df["B"], df["D"], check_names=False)
  432. # C & E are the same Series
  433. tm.assert_series_equal(df["C"], df["C"])
  434. tm.assert_series_equal(df["C"], df["E"], check_names=False)
  435. def test_setitem_categorical(self):
  436. # GH#35369
  437. df = DataFrame({"h": Series(list("mn")).astype("category")})
  438. df.h = df.h.cat.reorder_categories(["n", "m"])
  439. expected = DataFrame(
  440. {"h": Categorical(["m", "n"]).reorder_categories(["n", "m"])}
  441. )
  442. tm.assert_frame_equal(df, expected)
  443. def test_setitem_with_empty_listlike(self):
  444. # GH#17101
  445. index = Index([], name="idx")
  446. result = DataFrame(columns=["A"], index=index)
  447. result["A"] = []
  448. expected = DataFrame(columns=["A"], index=index)
  449. tm.assert_index_equal(result.index, expected.index)
  450. @pytest.mark.parametrize(
  451. "cols, values, expected",
  452. [
  453. (["C", "D", "D", "a"], [1, 2, 3, 4], 4), # with duplicates
  454. (["D", "C", "D", "a"], [1, 2, 3, 4], 4), # mixed order
  455. (["C", "B", "B", "a"], [1, 2, 3, 4], 4), # other duplicate cols
  456. (["C", "B", "a"], [1, 2, 3], 3), # no duplicates
  457. (["B", "C", "a"], [3, 2, 1], 1), # alphabetical order
  458. (["C", "a", "B"], [3, 2, 1], 2), # in the middle
  459. ],
  460. )
  461. def test_setitem_same_column(self, cols, values, expected):
  462. # GH#23239
  463. df = DataFrame([values], columns=cols)
  464. df["a"] = df["a"]
  465. result = df["a"].values[0]
  466. assert result == expected
  467. def test_setitem_multi_index(self):
  468. # GH#7655, test that assigning to a sub-frame of a frame
  469. # with multi-index columns aligns both rows and columns
  470. it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"]
  471. cols = MultiIndex.from_product(it)
  472. index = date_range("20141006", periods=20)
  473. vals = np.random.randint(1, 1000, (len(index), len(cols)))
  474. df = DataFrame(vals, columns=cols, index=index)
  475. i, j = df.index.values.copy(), it[-1][:]
  476. np.random.shuffle(i)
  477. df["jim"] = df["jolie"].loc[i, ::-1]
  478. tm.assert_frame_equal(df["jim"], df["jolie"])
  479. np.random.shuffle(j)
  480. df[("joe", "first")] = df[("jolie", "last")].loc[i, j]
  481. tm.assert_frame_equal(df[("joe", "first")], df[("jolie", "last")])
  482. np.random.shuffle(j)
  483. df[("joe", "last")] = df[("jolie", "first")].loc[i, j]
  484. tm.assert_frame_equal(df[("joe", "last")], df[("jolie", "first")])
  485. @pytest.mark.parametrize(
  486. "columns,box,expected",
  487. [
  488. (
  489. ["A", "B", "C", "D"],
  490. 7,
  491. DataFrame(
  492. [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]],
  493. columns=["A", "B", "C", "D"],
  494. ),
  495. ),
  496. (
  497. ["C", "D"],
  498. [7, 8],
  499. DataFrame(
  500. [[1, 2, 7, 8], [3, 4, 7, 8], [5, 6, 7, 8]],
  501. columns=["A", "B", "C", "D"],
  502. ),
  503. ),
  504. (
  505. ["A", "B", "C"],
  506. np.array([7, 8, 9], dtype=np.int64),
  507. DataFrame([[7, 8, 9], [7, 8, 9], [7, 8, 9]], columns=["A", "B", "C"]),
  508. ),
  509. (
  510. ["B", "C", "D"],
  511. [[7, 8, 9], [10, 11, 12], [13, 14, 15]],
  512. DataFrame(
  513. [[1, 7, 8, 9], [3, 10, 11, 12], [5, 13, 14, 15]],
  514. columns=["A", "B", "C", "D"],
  515. ),
  516. ),
  517. (
  518. ["C", "A", "D"],
  519. np.array([[7, 8, 9], [10, 11, 12], [13, 14, 15]], dtype=np.int64),
  520. DataFrame(
  521. [[8, 2, 7, 9], [11, 4, 10, 12], [14, 6, 13, 15]],
  522. columns=["A", "B", "C", "D"],
  523. ),
  524. ),
  525. (
  526. ["A", "C"],
  527. DataFrame([[7, 8], [9, 10], [11, 12]], columns=["A", "C"]),
  528. DataFrame(
  529. [[7, 2, 8], [9, 4, 10], [11, 6, 12]], columns=["A", "B", "C"]
  530. ),
  531. ),
  532. ],
  533. )
  534. def test_setitem_list_missing_columns(self, columns, box, expected):
  535. # GH#29334
  536. df = DataFrame([[1, 2], [3, 4], [5, 6]], columns=["A", "B"])
  537. df[columns] = box
  538. tm.assert_frame_equal(df, expected)
  539. def test_setitem_list_of_tuples(self, float_frame):
  540. tuples = list(zip(float_frame["A"], float_frame["B"]))
  541. float_frame["tuples"] = tuples
  542. result = float_frame["tuples"]
  543. expected = Series(tuples, index=float_frame.index, name="tuples")
  544. tm.assert_series_equal(result, expected)
  545. def test_setitem_iloc_generator(self):
  546. # GH#39614
  547. df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
  548. indexer = (x for x in [1, 2])
  549. df.iloc[indexer] = 1
  550. expected = DataFrame({"a": [1, 1, 1], "b": [4, 1, 1]})
  551. tm.assert_frame_equal(df, expected)
  552. def test_setitem_iloc_two_dimensional_generator(self):
  553. df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
  554. indexer = (x for x in [1, 2])
  555. df.iloc[indexer, 1] = 1
  556. expected = DataFrame({"a": [1, 2, 3], "b": [4, 1, 1]})
  557. tm.assert_frame_equal(df, expected)
  558. def test_setitem_dtypes_bytes_type_to_object(self):
  559. # GH 20734
  560. index = Series(name="id", dtype="S24")
  561. df = DataFrame(index=index)
  562. df["a"] = Series(name="a", index=index, dtype=np.uint32)
  563. df["b"] = Series(name="b", index=index, dtype="S64")
  564. df["c"] = Series(name="c", index=index, dtype="S64")
  565. df["d"] = Series(name="d", index=index, dtype=np.uint8)
  566. result = df.dtypes
  567. expected = Series([np.uint32, object, object, np.uint8], index=list("abcd"))
  568. tm.assert_series_equal(result, expected)
  569. def test_boolean_mask_nullable_int64(self):
  570. # GH 28928
  571. result = DataFrame({"a": [3, 4], "b": [5, 6]}).astype(
  572. {"a": "int64", "b": "Int64"}
  573. )
  574. mask = Series(False, index=result.index)
  575. result.loc[mask, "a"] = result["a"]
  576. result.loc[mask, "b"] = result["b"]
  577. expected = DataFrame({"a": [3, 4], "b": [5, 6]}).astype(
  578. {"a": "int64", "b": "Int64"}
  579. )
  580. tm.assert_frame_equal(result, expected)
  581. def test_setitem_ea_dtype_rhs_series(self):
  582. # GH#47425
  583. df = DataFrame({"a": [1, 2]})
  584. df["a"] = Series([1, 2], dtype="Int64")
  585. expected = DataFrame({"a": [1, 2]}, dtype="Int64")
  586. tm.assert_frame_equal(df, expected)
  587. # TODO(ArrayManager) set column with 2d column array, see #44788
  588. @td.skip_array_manager_not_yet_implemented
  589. def test_setitem_npmatrix_2d(self):
  590. # GH#42376
  591. # for use-case df["x"] = sparse.random(10, 10).mean(axis=1)
  592. expected = DataFrame(
  593. {"np-array": np.ones(10), "np-matrix": np.ones(10)}, index=np.arange(10)
  594. )
  595. a = np.ones((10, 1))
  596. df = DataFrame(index=np.arange(10))
  597. df["np-array"] = a
  598. # Instantiation of `np.matrix` gives PendingDeprecationWarning
  599. with tm.assert_produces_warning(PendingDeprecationWarning):
  600. df["np-matrix"] = np.matrix(a)
  601. tm.assert_frame_equal(df, expected)
  602. @pytest.mark.parametrize("vals", [{}, {"d": "a"}])
  603. def test_setitem_aligning_dict_with_index(self, vals):
  604. # GH#47216
  605. df = DataFrame({"a": [1, 2], "b": [3, 4], **vals})
  606. df.loc[:, "a"] = {1: 100, 0: 200}
  607. df.loc[:, "c"] = {0: 5, 1: 6}
  608. df.loc[:, "e"] = {1: 5}
  609. expected = DataFrame(
  610. {"a": [200, 100], "b": [3, 4], **vals, "c": [5, 6], "e": [np.nan, 5]}
  611. )
  612. tm.assert_frame_equal(df, expected)
  613. def test_setitem_rhs_dataframe(self):
  614. # GH#47578
  615. df = DataFrame({"a": [1, 2]})
  616. df["a"] = DataFrame({"a": [10, 11]}, index=[1, 2])
  617. expected = DataFrame({"a": [np.nan, 10]})
  618. tm.assert_frame_equal(df, expected)
  619. df = DataFrame({"a": [1, 2]})
  620. df.isetitem(0, DataFrame({"a": [10, 11]}, index=[1, 2]))
  621. tm.assert_frame_equal(df, expected)
  622. def test_setitem_frame_overwrite_with_ea_dtype(self, any_numeric_ea_dtype):
  623. # GH#46896
  624. df = DataFrame(columns=["a", "b"], data=[[1, 2], [3, 4]])
  625. df["a"] = DataFrame({"a": [10, 11]}, dtype=any_numeric_ea_dtype)
  626. expected = DataFrame(
  627. {
  628. "a": Series([10, 11], dtype=any_numeric_ea_dtype),
  629. "b": [2, 4],
  630. }
  631. )
  632. tm.assert_frame_equal(df, expected)
  633. def test_setitem_frame_midx_columns(self):
  634. # GH#49121
  635. df = DataFrame({("a", "b"): [10]})
  636. expected = df.copy()
  637. col_name = ("a", "b")
  638. df[col_name] = df[[col_name]]
  639. tm.assert_frame_equal(df, expected)
  640. class TestSetitemTZAwareValues:
  641. @pytest.fixture
  642. def idx(self):
  643. naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
  644. idx = naive.tz_localize("US/Pacific")
  645. return idx
  646. @pytest.fixture
  647. def expected(self, idx):
  648. expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
  649. assert expected.dtype == idx.dtype
  650. return expected
  651. def test_setitem_dt64series(self, idx, expected):
  652. # convert to utc
  653. df = DataFrame(np.random.randn(2, 1), columns=["A"])
  654. df["B"] = idx
  655. df["B"] = idx.to_series(index=[0, 1]).dt.tz_convert(None)
  656. result = df["B"]
  657. comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B")
  658. tm.assert_series_equal(result, comp)
  659. def test_setitem_datetimeindex(self, idx, expected):
  660. # setting a DataFrame column with a tzaware DTI retains the dtype
  661. df = DataFrame(np.random.randn(2, 1), columns=["A"])
  662. # assign to frame
  663. df["B"] = idx
  664. result = df["B"]
  665. tm.assert_series_equal(result, expected)
  666. def test_setitem_object_array_of_tzaware_datetimes(self, idx, expected):
  667. # setting a DataFrame column with a tzaware DTI retains the dtype
  668. df = DataFrame(np.random.randn(2, 1), columns=["A"])
  669. # object array of datetimes with a tz
  670. df["B"] = idx.to_pydatetime()
  671. result = df["B"]
  672. tm.assert_series_equal(result, expected)
  673. class TestDataFrameSetItemWithExpansion:
  674. def test_setitem_listlike_views(self, using_copy_on_write):
  675. # GH#38148
  676. df = DataFrame({"a": [1, 2, 3], "b": [4, 4, 6]})
  677. # get one column as a view of df
  678. ser = df["a"]
  679. # add columns with list-like indexer
  680. df[["c", "d"]] = np.array([[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]])
  681. # edit in place the first column to check view semantics
  682. df.iloc[0, 0] = 100
  683. if using_copy_on_write:
  684. expected = Series([1, 2, 3], name="a")
  685. else:
  686. expected = Series([100, 2, 3], name="a")
  687. tm.assert_series_equal(ser, expected)
  688. def test_setitem_string_column_numpy_dtype_raising(self):
  689. # GH#39010
  690. df = DataFrame([[1, 2], [3, 4]])
  691. df["0 - Name"] = [5, 6]
  692. expected = DataFrame([[1, 2, 5], [3, 4, 6]], columns=[0, 1, "0 - Name"])
  693. tm.assert_frame_equal(df, expected)
  694. def test_setitem_empty_df_duplicate_columns(self, using_copy_on_write):
  695. # GH#38521
  696. df = DataFrame(columns=["a", "b", "b"], dtype="float64")
  697. df.loc[:, "a"] = list(range(2))
  698. expected = DataFrame(
  699. [[0, np.nan, np.nan], [1, np.nan, np.nan]], columns=["a", "b", "b"]
  700. )
  701. tm.assert_frame_equal(df, expected)
  702. def test_setitem_with_expansion_categorical_dtype(self):
  703. # assignment
  704. df = DataFrame(
  705. {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")}
  706. )
  707. labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
  708. df = df.sort_values(by=["value"], ascending=True)
  709. ser = cut(df.value, range(0, 10500, 500), right=False, labels=labels)
  710. cat = ser.values
  711. # setting with a Categorical
  712. df["D"] = cat
  713. str(df)
  714. result = df.dtypes
  715. expected = Series(
  716. [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)],
  717. index=["value", "D"],
  718. )
  719. tm.assert_series_equal(result, expected)
  720. # setting with a Series
  721. df["E"] = ser
  722. str(df)
  723. result = df.dtypes
  724. expected = Series(
  725. [
  726. np.dtype("int32"),
  727. CategoricalDtype(categories=labels, ordered=False),
  728. CategoricalDtype(categories=labels, ordered=False),
  729. ],
  730. index=["value", "D", "E"],
  731. )
  732. tm.assert_series_equal(result, expected)
  733. result1 = df["D"]
  734. result2 = df["E"]
  735. tm.assert_categorical_equal(result1._mgr.array, cat)
  736. # sorting
  737. ser.name = "E"
  738. tm.assert_series_equal(result2.sort_index(), ser.sort_index())
  739. def test_setitem_scalars_no_index(self):
  740. # GH#16823 / GH#17894
  741. df = DataFrame()
  742. df["foo"] = 1
  743. expected = DataFrame(columns=["foo"]).astype(np.int64)
  744. tm.assert_frame_equal(df, expected)
  745. def test_setitem_newcol_tuple_key(self, float_frame):
  746. assert (
  747. "A",
  748. "B",
  749. ) not in float_frame.columns
  750. float_frame["A", "B"] = float_frame["A"]
  751. assert ("A", "B") in float_frame.columns
  752. result = float_frame["A", "B"]
  753. expected = float_frame["A"]
  754. tm.assert_series_equal(result, expected, check_names=False)
  755. def test_frame_setitem_newcol_timestamp(self):
  756. # GH#2155
  757. columns = date_range(start="1/1/2012", end="2/1/2012", freq=BDay())
  758. data = DataFrame(columns=columns, index=range(10))
  759. t = datetime(2012, 11, 1)
  760. ts = Timestamp(t)
  761. data[ts] = np.nan # works, mostly a smoke-test
  762. assert np.isnan(data[ts]).all()
  763. def test_frame_setitem_rangeindex_into_new_col(self):
  764. # GH#47128
  765. df = DataFrame({"a": ["a", "b"]})
  766. df["b"] = df.index
  767. df.loc[[False, True], "b"] = 100
  768. result = df.loc[[1], :]
  769. expected = DataFrame({"a": ["b"], "b": [100]}, index=[1])
  770. tm.assert_frame_equal(result, expected)
  771. def test_setitem_frame_keep_ea_dtype(self, any_numeric_ea_dtype):
  772. # GH#46896
  773. df = DataFrame(columns=["a", "b"], data=[[1, 2], [3, 4]])
  774. df["c"] = DataFrame({"a": [10, 11]}, dtype=any_numeric_ea_dtype)
  775. expected = DataFrame(
  776. {
  777. "a": [1, 3],
  778. "b": [2, 4],
  779. "c": Series([10, 11], dtype=any_numeric_ea_dtype),
  780. }
  781. )
  782. tm.assert_frame_equal(df, expected)
  783. class TestDataFrameSetItemSlicing:
  784. def test_setitem_slice_position(self):
  785. # GH#31469
  786. df = DataFrame(np.zeros((100, 1)))
  787. df[-4:] = 1
  788. arr = np.zeros((100, 1))
  789. arr[-4:] = 1
  790. expected = DataFrame(arr)
  791. tm.assert_frame_equal(df, expected)
  792. @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc])
  793. @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
  794. @pytest.mark.parametrize("n", [1, 2, 3])
  795. def test_setitem_slice_indexer_broadcasting_rhs(self, n, box, indexer):
  796. # GH#40440
  797. df = DataFrame([[1, 3, 5]] + [[2, 4, 6]] * n, columns=["a", "b", "c"])
  798. indexer(df)[1:] = box([10, 11, 12])
  799. expected = DataFrame([[1, 3, 5]] + [[10, 11, 12]] * n, columns=["a", "b", "c"])
  800. tm.assert_frame_equal(df, expected)
  801. @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
  802. @pytest.mark.parametrize("n", [1, 2, 3])
  803. def test_setitem_list_indexer_broadcasting_rhs(self, n, box):
  804. # GH#40440
  805. df = DataFrame([[1, 3, 5]] + [[2, 4, 6]] * n, columns=["a", "b", "c"])
  806. df.iloc[list(range(1, n + 1))] = box([10, 11, 12])
  807. expected = DataFrame([[1, 3, 5]] + [[10, 11, 12]] * n, columns=["a", "b", "c"])
  808. tm.assert_frame_equal(df, expected)
  809. @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc])
  810. @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
  811. @pytest.mark.parametrize("n", [1, 2, 3])
  812. def test_setitem_slice_broadcasting_rhs_mixed_dtypes(self, n, box, indexer):
  813. # GH#40440
  814. df = DataFrame(
  815. [[1, 3, 5], ["x", "y", "z"]] + [[2, 4, 6]] * n, columns=["a", "b", "c"]
  816. )
  817. indexer(df)[1:] = box([10, 11, 12])
  818. expected = DataFrame(
  819. [[1, 3, 5]] + [[10, 11, 12]] * (n + 1),
  820. columns=["a", "b", "c"],
  821. dtype="object",
  822. )
  823. tm.assert_frame_equal(df, expected)
  824. class TestDataFrameSetItemCallable:
  825. def test_setitem_callable(self):
  826. # GH#12533
  827. df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]})
  828. df[lambda x: "A"] = [11, 12, 13, 14]
  829. exp = DataFrame({"A": [11, 12, 13, 14], "B": [5, 6, 7, 8]})
  830. tm.assert_frame_equal(df, exp)
  831. def test_setitem_other_callable(self):
  832. # GH#13299
  833. def inc(x):
  834. return x + 1
  835. df = DataFrame([[-1, 1], [1, -1]])
  836. df[df > 0] = inc
  837. expected = DataFrame([[-1, inc], [inc, -1]])
  838. tm.assert_frame_equal(df, expected)
  839. class TestDataFrameSetItemBooleanMask:
  840. @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values
  841. @pytest.mark.parametrize(
  842. "mask_type",
  843. [lambda df: df > np.abs(df) / 2, lambda df: (df > np.abs(df) / 2).values],
  844. ids=["dataframe", "array"],
  845. )
  846. def test_setitem_boolean_mask(self, mask_type, float_frame):
  847. # Test for issue #18582
  848. df = float_frame.copy()
  849. mask = mask_type(df)
  850. # index with boolean mask
  851. result = df.copy()
  852. result[mask] = np.nan
  853. expected = df.values.copy()
  854. expected[np.array(mask)] = np.nan
  855. expected = DataFrame(expected, index=df.index, columns=df.columns)
  856. tm.assert_frame_equal(result, expected)
  857. @pytest.mark.xfail(reason="Currently empty indexers are treated as all False")
  858. @pytest.mark.parametrize("box", [list, np.array, Series])
  859. def test_setitem_loc_empty_indexer_raises_with_non_empty_value(self, box):
  860. # GH#37672
  861. df = DataFrame({"a": ["a"], "b": [1], "c": [1]})
  862. if box == Series:
  863. indexer = box([], dtype="object")
  864. else:
  865. indexer = box([])
  866. msg = "Must have equal len keys and value when setting with an iterable"
  867. with pytest.raises(ValueError, match=msg):
  868. df.loc[indexer, ["b"]] = [1]
  869. @pytest.mark.parametrize("box", [list, np.array, Series])
  870. def test_setitem_loc_only_false_indexer_dtype_changed(self, box):
  871. # GH#37550
  872. # Dtype is only changed when value to set is a Series and indexer is
  873. # empty/bool all False
  874. df = DataFrame({"a": ["a"], "b": [1], "c": [1]})
  875. indexer = box([False])
  876. df.loc[indexer, ["b"]] = 10 - df["c"]
  877. expected = DataFrame({"a": ["a"], "b": [1], "c": [1]})
  878. tm.assert_frame_equal(df, expected)
  879. df.loc[indexer, ["b"]] = 9
  880. tm.assert_frame_equal(df, expected)
  881. @pytest.mark.parametrize("indexer", [tm.setitem, tm.loc])
  882. def test_setitem_boolean_mask_aligning(self, indexer):
  883. # GH#39931
  884. df = DataFrame({"a": [1, 4, 2, 3], "b": [5, 6, 7, 8]})
  885. expected = df.copy()
  886. mask = df["a"] >= 3
  887. indexer(df)[mask] = indexer(df)[mask].sort_values("a")
  888. tm.assert_frame_equal(df, expected)
  889. def test_setitem_mask_categorical(self):
  890. # assign multiple rows (mixed values) (-> array) -> exp_multi_row
  891. # changed multiple rows
  892. cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"])
  893. idx2 = Index(["h", "i", "j", "k", "l", "m", "n"])
  894. values2 = [1, 1, 2, 2, 1, 1, 1]
  895. exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2)
  896. catsf = Categorical(
  897. ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]
  898. )
  899. idxf = Index(["h", "i", "j", "k", "l", "m", "n"])
  900. valuesf = [1, 1, 3, 3, 1, 1, 1]
  901. df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf)
  902. exp_fancy = exp_multi_row.copy()
  903. exp_fancy["cats"] = exp_fancy["cats"].cat.set_categories(["a", "b", "c"])
  904. mask = df["cats"] == "c"
  905. df[mask] = ["b", 2]
  906. # category c is kept in .categories
  907. tm.assert_frame_equal(df, exp_fancy)
  908. @pytest.mark.parametrize("dtype", ["float", "int64"])
  909. @pytest.mark.parametrize("kwargs", [{}, {"index": [1]}, {"columns": ["A"]}])
  910. def test_setitem_empty_frame_with_boolean(self, dtype, kwargs):
  911. # see GH#10126
  912. kwargs["dtype"] = dtype
  913. df = DataFrame(**kwargs)
  914. df2 = df.copy()
  915. df[df > df2] = 47
  916. tm.assert_frame_equal(df, df2)
  917. def test_setitem_boolean_indexing(self):
  918. idx = list(range(3))
  919. cols = ["A", "B", "C"]
  920. df1 = DataFrame(
  921. index=idx,
  922. columns=cols,
  923. data=np.array(
  924. [[0.0, 0.5, 1.0], [1.5, 2.0, 2.5], [3.0, 3.5, 4.0]], dtype=float
  925. ),
  926. )
  927. df2 = DataFrame(index=idx, columns=cols, data=np.ones((len(idx), len(cols))))
  928. expected = DataFrame(
  929. index=idx,
  930. columns=cols,
  931. data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, -1], [-1, -1, -1]], dtype=float),
  932. )
  933. df1[df1 > 2.0 * df2] = -1
  934. tm.assert_frame_equal(df1, expected)
  935. with pytest.raises(ValueError, match="Item wrong length"):
  936. df1[df1.index[:-1] > 2] = -1
  937. def test_loc_setitem_all_false_boolean_two_blocks(self):
  938. # GH#40885
  939. df = DataFrame({"a": [1, 2], "b": [3, 4], "c": "a"})
  940. expected = df.copy()
  941. indexer = Series([False, False], name="c")
  942. df.loc[indexer, ["b"]] = DataFrame({"b": [5, 6]}, index=[0, 1])
  943. tm.assert_frame_equal(df, expected)
  944. def test_setitem_ea_boolean_mask(self):
  945. # GH#47125
  946. df = DataFrame([[-1, 2], [3, -4]])
  947. expected = DataFrame([[0, 2], [3, 0]])
  948. boolean_indexer = DataFrame(
  949. {
  950. 0: Series([True, False], dtype="boolean"),
  951. 1: Series([pd.NA, True], dtype="boolean"),
  952. }
  953. )
  954. df[boolean_indexer] = 0
  955. tm.assert_frame_equal(df, expected)
  956. class TestDataFrameSetitemCopyViewSemantics:
  957. def test_setitem_always_copy(self, float_frame):
  958. assert "E" not in float_frame.columns
  959. s = float_frame["A"].copy()
  960. float_frame["E"] = s
  961. float_frame.iloc[5:10, float_frame.columns.get_loc("E")] = np.nan
  962. assert notna(s[5:10]).all()
  963. @pytest.mark.parametrize("consolidate", [True, False])
  964. def test_setitem_partial_column_inplace(
  965. self, consolidate, using_array_manager, using_copy_on_write
  966. ):
  967. # This setting should be in-place, regardless of whether frame is
  968. # single-block or multi-block
  969. # GH#304 this used to be incorrectly not-inplace, in which case
  970. # we needed to ensure _item_cache was cleared.
  971. df = DataFrame(
  972. {"x": [1.1, 2.1, 3.1, 4.1], "y": [5.1, 6.1, 7.1, 8.1]}, index=[0, 1, 2, 3]
  973. )
  974. df.insert(2, "z", np.nan)
  975. if not using_array_manager:
  976. if consolidate:
  977. df._consolidate_inplace()
  978. assert len(df._mgr.blocks) == 1
  979. else:
  980. assert len(df._mgr.blocks) == 2
  981. zvals = df["z"]._values
  982. df.loc[2:, "z"] = 42
  983. expected = Series([np.nan, np.nan, 42, 42], index=df.index, name="z")
  984. tm.assert_series_equal(df["z"], expected)
  985. # check setting occurred in-place
  986. if not using_copy_on_write:
  987. tm.assert_numpy_array_equal(zvals, expected.values)
  988. assert np.shares_memory(zvals, df["z"]._values)
  989. def test_setitem_duplicate_columns_not_inplace(self):
  990. # GH#39510
  991. cols = ["A", "B"] * 2
  992. df = DataFrame(0.0, index=[0], columns=cols)
  993. df_copy = df.copy()
  994. df_view = df[:]
  995. df["B"] = (2, 5)
  996. expected = DataFrame([[0.0, 2, 0.0, 5]], columns=cols)
  997. tm.assert_frame_equal(df_view, df_copy)
  998. tm.assert_frame_equal(df, expected)
  999. @pytest.mark.parametrize(
  1000. "value", [1, np.array([[1], [1]], dtype="int64"), [[1], [1]]]
  1001. )
  1002. def test_setitem_same_dtype_not_inplace(self, value, using_array_manager):
  1003. # GH#39510
  1004. cols = ["A", "B"]
  1005. df = DataFrame(0, index=[0, 1], columns=cols)
  1006. df_copy = df.copy()
  1007. df_view = df[:]
  1008. df[["B"]] = value
  1009. expected = DataFrame([[0, 1], [0, 1]], columns=cols)
  1010. tm.assert_frame_equal(df, expected)
  1011. tm.assert_frame_equal(df_view, df_copy)
  1012. @pytest.mark.parametrize("value", [1.0, np.array([[1.0], [1.0]]), [[1.0], [1.0]]])
  1013. def test_setitem_listlike_key_scalar_value_not_inplace(self, value):
  1014. # GH#39510
  1015. cols = ["A", "B"]
  1016. df = DataFrame(0, index=[0, 1], columns=cols)
  1017. df_copy = df.copy()
  1018. df_view = df[:]
  1019. df[["B"]] = value
  1020. expected = DataFrame([[0, 1.0], [0, 1.0]], columns=cols)
  1021. tm.assert_frame_equal(df_view, df_copy)
  1022. tm.assert_frame_equal(df, expected)
  1023. @pytest.mark.parametrize(
  1024. "indexer",
  1025. [
  1026. "a",
  1027. ["a"],
  1028. pytest.param(
  1029. [True, False],
  1030. marks=pytest.mark.xfail(
  1031. reason="Boolean indexer incorrectly setting inplace",
  1032. strict=False, # passing on some builds, no obvious pattern
  1033. ),
  1034. ),
  1035. ],
  1036. )
  1037. @pytest.mark.parametrize(
  1038. "value, set_value",
  1039. [
  1040. (1, 5),
  1041. (1.0, 5.0),
  1042. (Timestamp("2020-12-31"), Timestamp("2021-12-31")),
  1043. ("a", "b"),
  1044. ],
  1045. )
  1046. def test_setitem_not_operating_inplace(self, value, set_value, indexer):
  1047. # GH#43406
  1048. df = DataFrame({"a": value}, index=[0, 1])
  1049. expected = df.copy()
  1050. view = df[:]
  1051. df[indexer] = set_value
  1052. tm.assert_frame_equal(view, expected)
  1053. @td.skip_array_manager_invalid_test
  1054. def test_setitem_column_update_inplace(self, using_copy_on_write):
  1055. # https://github.com/pandas-dev/pandas/issues/47172
  1056. labels = [f"c{i}" for i in range(10)]
  1057. df = DataFrame({col: np.zeros(len(labels)) for col in labels}, index=labels)
  1058. values = df._mgr.blocks[0].values
  1059. if not using_copy_on_write:
  1060. for label in df.columns:
  1061. df[label][label] = 1
  1062. # diagonal values all updated
  1063. assert np.all(values[np.arange(10), np.arange(10)] == 1)
  1064. else:
  1065. with tm.raises_chained_assignment_error():
  1066. for label in df.columns:
  1067. df[label][label] = 1
  1068. # original dataframe not updated
  1069. assert np.all(values[np.arange(10), np.arange(10)] == 0)