12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256 |
- from datetime import datetime
- import numpy as np
- import pytest
- import pandas.util._test_decorators as td
- from pandas.core.dtypes.base import _registry as ea_registry
- from pandas.core.dtypes.common import (
- is_categorical_dtype,
- is_interval_dtype,
- is_object_dtype,
- )
- from pandas.core.dtypes.dtypes import (
- CategoricalDtype,
- DatetimeTZDtype,
- IntervalDtype,
- PeriodDtype,
- )
- import pandas as pd
- from pandas import (
- Categorical,
- DataFrame,
- DatetimeIndex,
- Index,
- Interval,
- IntervalIndex,
- MultiIndex,
- NaT,
- Period,
- PeriodIndex,
- Series,
- Timestamp,
- cut,
- date_range,
- notna,
- period_range,
- )
- import pandas._testing as tm
- from pandas.core.arrays import SparseArray
- from pandas.tseries.offsets import BDay
- class TestDataFrameSetItem:
- def test_setitem_str_subclass(self):
- # GH#37366
- class mystring(str):
- pass
- data = ["2020-10-22 01:21:00+00:00"]
- index = DatetimeIndex(data)
- df = DataFrame({"a": [1]}, index=index)
- df["b"] = 2
- df[mystring("c")] = 3
- expected = DataFrame({"a": [1], "b": [2], mystring("c"): [3]}, index=index)
- tm.assert_equal(df, expected)
- @pytest.mark.parametrize(
- "dtype", ["int32", "int64", "uint32", "uint64", "float32", "float64"]
- )
- def test_setitem_dtype(self, dtype, float_frame):
- arr = np.random.randint(1, 10, len(float_frame))
- float_frame[dtype] = np.array(arr, dtype=dtype)
- assert float_frame[dtype].dtype.name == dtype
- def test_setitem_list_not_dataframe(self, float_frame):
- data = np.random.randn(len(float_frame), 2)
- float_frame[["A", "B"]] = data
- tm.assert_almost_equal(float_frame[["A", "B"]].values, data)
- def test_setitem_error_msmgs(self):
- # GH 7432
- df = DataFrame(
- {"bar": [1, 2, 3], "baz": ["d", "e", "f"]},
- index=Index(["a", "b", "c"], name="foo"),
- )
- ser = Series(
- ["g", "h", "i", "j"],
- index=Index(["a", "b", "c", "a"], name="foo"),
- name="fiz",
- )
- msg = "cannot reindex on an axis with duplicate labels"
- with pytest.raises(ValueError, match=msg):
- df["newcol"] = ser
- # GH 4107, more descriptive error message
- df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"])
- msg = "Cannot set a DataFrame with multiple columns to the single column gr"
- with pytest.raises(ValueError, match=msg):
- df["gr"] = df.groupby(["b", "c"]).count()
- def test_setitem_benchmark(self):
- # from the vb_suite/frame_methods/frame_insert_columns
- N = 10
- K = 5
- df = DataFrame(index=range(N))
- new_col = np.random.randn(N)
- for i in range(K):
- df[i] = new_col
- expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N))
- tm.assert_frame_equal(df, expected)
- def test_setitem_different_dtype(self):
- df = DataFrame(
- np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"]
- )
- df.insert(0, "foo", df["a"])
- df.insert(2, "bar", df["c"])
- # diff dtype
- # new item
- df["x"] = df["a"].astype("float32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 5 + [np.dtype("float32")],
- index=["foo", "c", "bar", "b", "a", "x"],
- )
- tm.assert_series_equal(result, expected)
- # replacing current (in different block)
- df["a"] = df["a"].astype("float32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2,
- index=["foo", "c", "bar", "b", "a", "x"],
- )
- tm.assert_series_equal(result, expected)
- df["y"] = df["a"].astype("int32")
- result = df.dtypes
- expected = Series(
- [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")],
- index=["foo", "c", "bar", "b", "a", "x", "y"],
- )
- tm.assert_series_equal(result, expected)
- def test_setitem_empty_columns(self):
- # GH 13522
- df = DataFrame(index=["A", "B", "C"])
- df["X"] = df.index
- df["X"] = ["x", "y", "z"]
- exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"])
- tm.assert_frame_equal(df, exp)
- def test_setitem_dt64_index_empty_columns(self):
- rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s")
- df = DataFrame(index=np.arange(len(rng)))
- df["A"] = rng
- assert df["A"].dtype == np.dtype("M8[ns]")
- def test_setitem_timestamp_empty_columns(self):
- # GH#19843
- df = DataFrame(index=range(3))
- df["now"] = Timestamp("20130101", tz="UTC")
- expected = DataFrame(
- [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"]
- )
- tm.assert_frame_equal(df, expected)
- def test_setitem_wrong_length_categorical_dtype_raises(self):
- # GH#29523
- cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"])
- df = DataFrame(range(10), columns=["bar"])
- msg = (
- rf"Length of values \({len(cat)}\) "
- rf"does not match length of index \({len(df)}\)"
- )
- with pytest.raises(ValueError, match=msg):
- df["foo"] = cat
- def test_setitem_with_sparse_value(self):
- # GH#8131
- df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
- sp_array = SparseArray([0, 0, 1])
- df["new_column"] = sp_array
- expected = Series(sp_array, name="new_column")
- tm.assert_series_equal(df["new_column"], expected)
- def test_setitem_with_unaligned_sparse_value(self):
- df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]})
- sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0])
- df["new_column"] = sp_series
- expected = Series(SparseArray([1, 0, 0]), name="new_column")
- tm.assert_series_equal(df["new_column"], expected)
- def test_setitem_period_preserves_dtype(self):
- # GH: 26861
- data = [Period("2003-12", "D")]
- result = DataFrame([])
- result["a"] = data
- expected = DataFrame({"a": data})
- tm.assert_frame_equal(result, expected)
- def test_setitem_dict_preserves_dtypes(self):
- # https://github.com/pandas-dev/pandas/issues/34573
- expected = DataFrame(
- {
- "a": Series([0, 1, 2], dtype="int64"),
- "b": Series([1, 2, 3], dtype=float),
- "c": Series([1, 2, 3], dtype=float),
- "d": Series([1, 2, 3], dtype="uint32"),
- }
- )
- df = DataFrame(
- {
- "a": Series([], dtype="int64"),
- "b": Series([], dtype=float),
- "c": Series([], dtype=float),
- "d": Series([], dtype="uint32"),
- }
- )
- for idx, b in enumerate([1, 2, 3]):
- df.loc[df.shape[0]] = {
- "a": int(idx),
- "b": float(b),
- "c": float(b),
- "d": np.uint32(b),
- }
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "obj,dtype",
- [
- (Period("2020-01"), PeriodDtype("M")),
- (Interval(left=0, right=5), IntervalDtype("int64", "right")),
- (
- Timestamp("2011-01-01", tz="US/Eastern"),
- DatetimeTZDtype(tz="US/Eastern"),
- ),
- ],
- )
- def test_setitem_extension_types(self, obj, dtype):
- # GH: 34832
- expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)})
- df = DataFrame({"idx": [1, 2, 3]})
- df["obj"] = obj
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "ea_name",
- [
- dtype.name
- for dtype in ea_registry.dtypes
- # property would require instantiation
- if not isinstance(dtype.name, property)
- ]
- + ["datetime64[ns, UTC]", "period[D]"],
- )
- def test_setitem_with_ea_name(self, ea_name):
- # GH 38386
- result = DataFrame([0])
- result[ea_name] = [1]
- expected = DataFrame({0: [0], ea_name: [1]})
- tm.assert_frame_equal(result, expected)
- def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self):
- # GH#7492
- data_ns = np.array([1, "nat"], dtype="datetime64[ns]")
- result = Series(data_ns).to_frame()
- result["new"] = data_ns
- expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]")
- tm.assert_frame_equal(result, expected)
- # OutOfBoundsDatetime error shouldn't occur; as of 2.0 we preserve "M8[s]"
- data_s = np.array([1, "nat"], dtype="datetime64[s]")
- result["new"] = data_s
- tm.assert_series_equal(result[0], expected[0])
- tm.assert_numpy_array_equal(result["new"].to_numpy(), data_s)
- @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"])
- def test_frame_setitem_datetime64_col_other_units(self, unit):
- # Check that non-nano dt64 values get cast to dt64 on setitem
- # into a not-yet-existing column
- n = 100
- dtype = np.dtype(f"M8[{unit}]")
- vals = np.arange(n, dtype=np.int64).view(dtype)
- if unit in ["s", "ms"]:
- # supported unit
- ex_vals = vals
- else:
- # we get the nearest supported units, i.e. "s"
- ex_vals = vals.astype("datetime64[s]")
- df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
- df[unit] = vals
- assert df[unit].dtype == ex_vals.dtype
- assert (df[unit].values == ex_vals).all()
- @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"])
- def test_frame_setitem_existing_datetime64_col_other_units(self, unit):
- # Check that non-nano dt64 values get cast to dt64 on setitem
- # into an already-existing dt64 column
- n = 100
- dtype = np.dtype(f"M8[{unit}]")
- vals = np.arange(n, dtype=np.int64).view(dtype)
- ex_vals = vals.astype("datetime64[ns]")
- df = DataFrame({"ints": np.arange(n)}, index=np.arange(n))
- df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]")
- # We overwrite existing dt64 column with new, non-nano dt64 vals
- df["dates"] = vals
- assert (df["dates"].values == ex_vals).all()
- def test_setitem_dt64tz(self, timezone_frame):
- df = timezone_frame
- idx = df["B"].rename("foo")
- # setitem
- df["C"] = idx
- tm.assert_series_equal(df["C"], Series(idx, name="C"))
- df["D"] = "foo"
- df["D"] = idx
- tm.assert_series_equal(df["D"], Series(idx, name="D"))
- del df["D"]
- # assert that A & C are not sharing the same base (e.g. they
- # are copies)
- v1 = df._mgr.arrays[1]
- v2 = df._mgr.arrays[2]
- tm.assert_extension_array_equal(v1, v2)
- v1base = v1._ndarray.base
- v2base = v2._ndarray.base
- assert v1base is None or (id(v1base) != id(v2base))
- # with nan
- df2 = df.copy()
- df2.iloc[1, 1] = NaT
- df2.iloc[1, 2] = NaT
- result = df2["B"]
- tm.assert_series_equal(notna(result), Series([True, False, True], name="B"))
- tm.assert_series_equal(df2.dtypes, df.dtypes)
- def test_setitem_periodindex(self):
- rng = period_range("1/1/2000", periods=5, name="index")
- df = DataFrame(np.random.randn(5, 3), index=rng)
- df["Index"] = rng
- rs = Index(df["Index"])
- tm.assert_index_equal(rs, rng, check_names=False)
- assert rs.name == "Index"
- assert rng.name == "index"
- rs = df.reset_index().set_index("index")
- assert isinstance(rs.index, PeriodIndex)
- tm.assert_index_equal(rs.index, rng)
- def test_setitem_complete_column_with_array(self):
- # GH#37954
- df = DataFrame({"a": ["one", "two", "three"], "b": [1, 2, 3]})
- arr = np.array([[1, 1], [3, 1], [5, 1]])
- df[["c", "d"]] = arr
- expected = DataFrame(
- {
- "a": ["one", "two", "three"],
- "b": [1, 2, 3],
- "c": [1, 3, 5],
- "d": [1, 1, 1],
- }
- )
- expected["c"] = expected["c"].astype(arr.dtype)
- expected["d"] = expected["d"].astype(arr.dtype)
- assert expected["c"].dtype == arr.dtype
- assert expected["d"].dtype == arr.dtype
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"])
- def test_setitem_bool_with_numeric_index(self, dtype):
- # GH#36319
- cols = Index([1, 2, 3], dtype=dtype)
- df = DataFrame(np.random.randn(3, 3), columns=cols)
- df[False] = ["a", "b", "c"]
- expected_cols = Index([1, 2, 3, False], dtype=object)
- if dtype == "f8":
- expected_cols = Index([1.0, 2.0, 3.0, False], dtype=object)
- tm.assert_index_equal(df.columns, expected_cols)
- @pytest.mark.parametrize("indexer", ["B", ["B"]])
- def test_setitem_frame_length_0_str_key(self, indexer):
- # GH#38831
- df = DataFrame(columns=["A", "B"])
- other = DataFrame({"B": [1, 2]})
- df[indexer] = other
- expected = DataFrame({"A": [np.nan] * 2, "B": [1, 2]})
- expected["A"] = expected["A"].astype("object")
- tm.assert_frame_equal(df, expected)
- def test_setitem_frame_duplicate_columns(self):
- # GH#15695
- cols = ["A", "B", "C"] * 2
- df = DataFrame(index=range(3), columns=cols)
- df.loc[0, "A"] = (0, 3)
- df.loc[:, "B"] = (1, 4)
- df["C"] = (2, 5)
- expected = DataFrame(
- [
- [0, 1, 2, 3, 4, 5],
- [np.nan, 1, 2, np.nan, 4, 5],
- [np.nan, 1, 2, np.nan, 4, 5],
- ],
- dtype="object",
- )
- # set these with unique columns to be extra-unambiguous
- expected[2] = expected[2].astype(np.int64)
- expected[5] = expected[5].astype(np.int64)
- expected.columns = cols
- tm.assert_frame_equal(df, expected)
- def test_setitem_frame_duplicate_columns_size_mismatch(self):
- # GH#39510
- cols = ["A", "B", "C"] * 2
- df = DataFrame(index=range(3), columns=cols)
- with pytest.raises(ValueError, match="Columns must be same length as key"):
- df[["A"]] = (0, 3, 5)
- df2 = df.iloc[:, :3] # unique columns
- with pytest.raises(ValueError, match="Columns must be same length as key"):
- df2[["A"]] = (0, 3, 5)
- @pytest.mark.parametrize("cols", [["a", "b", "c"], ["a", "a", "a"]])
- def test_setitem_df_wrong_column_number(self, cols):
- # GH#38604
- df = DataFrame([[1, 2, 3]], columns=cols)
- rhs = DataFrame([[10, 11]], columns=["d", "e"])
- msg = "Columns must be same length as key"
- with pytest.raises(ValueError, match=msg):
- df["a"] = rhs
- def test_setitem_listlike_indexer_duplicate_columns(self):
- # GH#38604
- df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"])
- rhs = DataFrame([[10, 11, 12]], columns=["a", "b", "b"])
- df[["a", "b"]] = rhs
- expected = DataFrame([[10, 11, 12]], columns=["a", "b", "b"])
- tm.assert_frame_equal(df, expected)
- df[["c", "b"]] = rhs
- expected = DataFrame([[10, 11, 12, 10]], columns=["a", "b", "b", "c"])
- tm.assert_frame_equal(df, expected)
- def test_setitem_listlike_indexer_duplicate_columns_not_equal_length(self):
- # GH#39403
- df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"])
- rhs = DataFrame([[10, 11]], columns=["a", "b"])
- msg = "Columns must be same length as key"
- with pytest.raises(ValueError, match=msg):
- df[["a", "b"]] = rhs
- def test_setitem_intervals(self):
- df = DataFrame({"A": range(10)})
- ser = cut(df["A"], 5)
- assert isinstance(ser.cat.categories, IntervalIndex)
- # B & D end up as Categoricals
- # the remainder are converted to in-line objects
- # containing an IntervalIndex.values
- df["B"] = ser
- df["C"] = np.array(ser)
- df["D"] = ser.values
- df["E"] = np.array(ser.values)
- df["F"] = ser.astype(object)
- assert is_categorical_dtype(df["B"].dtype)
- assert is_interval_dtype(df["B"].cat.categories)
- assert is_categorical_dtype(df["D"].dtype)
- assert is_interval_dtype(df["D"].cat.categories)
- # These go through the Series constructor and so get inferred back
- # to IntervalDtype
- assert is_interval_dtype(df["C"])
- assert is_interval_dtype(df["E"])
- # But the Series constructor doesn't do inference on Series objects,
- # so setting df["F"] doesn't get cast back to IntervalDtype
- assert is_object_dtype(df["F"])
- # they compare equal as Index
- # when converted to numpy objects
- c = lambda x: Index(np.array(x))
- tm.assert_index_equal(c(df.B), c(df.B))
- tm.assert_index_equal(c(df.B), c(df.C), check_names=False)
- tm.assert_index_equal(c(df.B), c(df.D), check_names=False)
- tm.assert_index_equal(c(df.C), c(df.D), check_names=False)
- # B & D are the same Series
- tm.assert_series_equal(df["B"], df["B"])
- tm.assert_series_equal(df["B"], df["D"], check_names=False)
- # C & E are the same Series
- tm.assert_series_equal(df["C"], df["C"])
- tm.assert_series_equal(df["C"], df["E"], check_names=False)
- def test_setitem_categorical(self):
- # GH#35369
- df = DataFrame({"h": Series(list("mn")).astype("category")})
- df.h = df.h.cat.reorder_categories(["n", "m"])
- expected = DataFrame(
- {"h": Categorical(["m", "n"]).reorder_categories(["n", "m"])}
- )
- tm.assert_frame_equal(df, expected)
- def test_setitem_with_empty_listlike(self):
- # GH#17101
- index = Index([], name="idx")
- result = DataFrame(columns=["A"], index=index)
- result["A"] = []
- expected = DataFrame(columns=["A"], index=index)
- tm.assert_index_equal(result.index, expected.index)
- @pytest.mark.parametrize(
- "cols, values, expected",
- [
- (["C", "D", "D", "a"], [1, 2, 3, 4], 4), # with duplicates
- (["D", "C", "D", "a"], [1, 2, 3, 4], 4), # mixed order
- (["C", "B", "B", "a"], [1, 2, 3, 4], 4), # other duplicate cols
- (["C", "B", "a"], [1, 2, 3], 3), # no duplicates
- (["B", "C", "a"], [3, 2, 1], 1), # alphabetical order
- (["C", "a", "B"], [3, 2, 1], 2), # in the middle
- ],
- )
- def test_setitem_same_column(self, cols, values, expected):
- # GH#23239
- df = DataFrame([values], columns=cols)
- df["a"] = df["a"]
- result = df["a"].values[0]
- assert result == expected
- def test_setitem_multi_index(self):
- # GH#7655, test that assigning to a sub-frame of a frame
- # with multi-index columns aligns both rows and columns
- it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"]
- cols = MultiIndex.from_product(it)
- index = date_range("20141006", periods=20)
- vals = np.random.randint(1, 1000, (len(index), len(cols)))
- df = DataFrame(vals, columns=cols, index=index)
- i, j = df.index.values.copy(), it[-1][:]
- np.random.shuffle(i)
- df["jim"] = df["jolie"].loc[i, ::-1]
- tm.assert_frame_equal(df["jim"], df["jolie"])
- np.random.shuffle(j)
- df[("joe", "first")] = df[("jolie", "last")].loc[i, j]
- tm.assert_frame_equal(df[("joe", "first")], df[("jolie", "last")])
- np.random.shuffle(j)
- df[("joe", "last")] = df[("jolie", "first")].loc[i, j]
- tm.assert_frame_equal(df[("joe", "last")], df[("jolie", "first")])
- @pytest.mark.parametrize(
- "columns,box,expected",
- [
- (
- ["A", "B", "C", "D"],
- 7,
- DataFrame(
- [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]],
- columns=["A", "B", "C", "D"],
- ),
- ),
- (
- ["C", "D"],
- [7, 8],
- DataFrame(
- [[1, 2, 7, 8], [3, 4, 7, 8], [5, 6, 7, 8]],
- columns=["A", "B", "C", "D"],
- ),
- ),
- (
- ["A", "B", "C"],
- np.array([7, 8, 9], dtype=np.int64),
- DataFrame([[7, 8, 9], [7, 8, 9], [7, 8, 9]], columns=["A", "B", "C"]),
- ),
- (
- ["B", "C", "D"],
- [[7, 8, 9], [10, 11, 12], [13, 14, 15]],
- DataFrame(
- [[1, 7, 8, 9], [3, 10, 11, 12], [5, 13, 14, 15]],
- columns=["A", "B", "C", "D"],
- ),
- ),
- (
- ["C", "A", "D"],
- np.array([[7, 8, 9], [10, 11, 12], [13, 14, 15]], dtype=np.int64),
- DataFrame(
- [[8, 2, 7, 9], [11, 4, 10, 12], [14, 6, 13, 15]],
- columns=["A", "B", "C", "D"],
- ),
- ),
- (
- ["A", "C"],
- DataFrame([[7, 8], [9, 10], [11, 12]], columns=["A", "C"]),
- DataFrame(
- [[7, 2, 8], [9, 4, 10], [11, 6, 12]], columns=["A", "B", "C"]
- ),
- ),
- ],
- )
- def test_setitem_list_missing_columns(self, columns, box, expected):
- # GH#29334
- df = DataFrame([[1, 2], [3, 4], [5, 6]], columns=["A", "B"])
- df[columns] = box
- tm.assert_frame_equal(df, expected)
- def test_setitem_list_of_tuples(self, float_frame):
- tuples = list(zip(float_frame["A"], float_frame["B"]))
- float_frame["tuples"] = tuples
- result = float_frame["tuples"]
- expected = Series(tuples, index=float_frame.index, name="tuples")
- tm.assert_series_equal(result, expected)
- def test_setitem_iloc_generator(self):
- # GH#39614
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- indexer = (x for x in [1, 2])
- df.iloc[indexer] = 1
- expected = DataFrame({"a": [1, 1, 1], "b": [4, 1, 1]})
- tm.assert_frame_equal(df, expected)
- def test_setitem_iloc_two_dimensional_generator(self):
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- indexer = (x for x in [1, 2])
- df.iloc[indexer, 1] = 1
- expected = DataFrame({"a": [1, 2, 3], "b": [4, 1, 1]})
- tm.assert_frame_equal(df, expected)
- def test_setitem_dtypes_bytes_type_to_object(self):
- # GH 20734
- index = Series(name="id", dtype="S24")
- df = DataFrame(index=index)
- df["a"] = Series(name="a", index=index, dtype=np.uint32)
- df["b"] = Series(name="b", index=index, dtype="S64")
- df["c"] = Series(name="c", index=index, dtype="S64")
- df["d"] = Series(name="d", index=index, dtype=np.uint8)
- result = df.dtypes
- expected = Series([np.uint32, object, object, np.uint8], index=list("abcd"))
- tm.assert_series_equal(result, expected)
- def test_boolean_mask_nullable_int64(self):
- # GH 28928
- result = DataFrame({"a": [3, 4], "b": [5, 6]}).astype(
- {"a": "int64", "b": "Int64"}
- )
- mask = Series(False, index=result.index)
- result.loc[mask, "a"] = result["a"]
- result.loc[mask, "b"] = result["b"]
- expected = DataFrame({"a": [3, 4], "b": [5, 6]}).astype(
- {"a": "int64", "b": "Int64"}
- )
- tm.assert_frame_equal(result, expected)
- def test_setitem_ea_dtype_rhs_series(self):
- # GH#47425
- df = DataFrame({"a": [1, 2]})
- df["a"] = Series([1, 2], dtype="Int64")
- expected = DataFrame({"a": [1, 2]}, dtype="Int64")
- tm.assert_frame_equal(df, expected)
- # TODO(ArrayManager) set column with 2d column array, see #44788
- @td.skip_array_manager_not_yet_implemented
- def test_setitem_npmatrix_2d(self):
- # GH#42376
- # for use-case df["x"] = sparse.random(10, 10).mean(axis=1)
- expected = DataFrame(
- {"np-array": np.ones(10), "np-matrix": np.ones(10)}, index=np.arange(10)
- )
- a = np.ones((10, 1))
- df = DataFrame(index=np.arange(10))
- df["np-array"] = a
- # Instantiation of `np.matrix` gives PendingDeprecationWarning
- with tm.assert_produces_warning(PendingDeprecationWarning):
- df["np-matrix"] = np.matrix(a)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("vals", [{}, {"d": "a"}])
- def test_setitem_aligning_dict_with_index(self, vals):
- # GH#47216
- df = DataFrame({"a": [1, 2], "b": [3, 4], **vals})
- df.loc[:, "a"] = {1: 100, 0: 200}
- df.loc[:, "c"] = {0: 5, 1: 6}
- df.loc[:, "e"] = {1: 5}
- expected = DataFrame(
- {"a": [200, 100], "b": [3, 4], **vals, "c": [5, 6], "e": [np.nan, 5]}
- )
- tm.assert_frame_equal(df, expected)
- def test_setitem_rhs_dataframe(self):
- # GH#47578
- df = DataFrame({"a": [1, 2]})
- df["a"] = DataFrame({"a": [10, 11]}, index=[1, 2])
- expected = DataFrame({"a": [np.nan, 10]})
- tm.assert_frame_equal(df, expected)
- df = DataFrame({"a": [1, 2]})
- df.isetitem(0, DataFrame({"a": [10, 11]}, index=[1, 2]))
- tm.assert_frame_equal(df, expected)
- def test_setitem_frame_overwrite_with_ea_dtype(self, any_numeric_ea_dtype):
- # GH#46896
- df = DataFrame(columns=["a", "b"], data=[[1, 2], [3, 4]])
- df["a"] = DataFrame({"a": [10, 11]}, dtype=any_numeric_ea_dtype)
- expected = DataFrame(
- {
- "a": Series([10, 11], dtype=any_numeric_ea_dtype),
- "b": [2, 4],
- }
- )
- tm.assert_frame_equal(df, expected)
- def test_setitem_frame_midx_columns(self):
- # GH#49121
- df = DataFrame({("a", "b"): [10]})
- expected = df.copy()
- col_name = ("a", "b")
- df[col_name] = df[[col_name]]
- tm.assert_frame_equal(df, expected)
- class TestSetitemTZAwareValues:
- @pytest.fixture
- def idx(self):
- naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B")
- idx = naive.tz_localize("US/Pacific")
- return idx
- @pytest.fixture
- def expected(self, idx):
- expected = Series(np.array(idx.tolist(), dtype="object"), name="B")
- assert expected.dtype == idx.dtype
- return expected
- def test_setitem_dt64series(self, idx, expected):
- # convert to utc
- df = DataFrame(np.random.randn(2, 1), columns=["A"])
- df["B"] = idx
- df["B"] = idx.to_series(index=[0, 1]).dt.tz_convert(None)
- result = df["B"]
- comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B")
- tm.assert_series_equal(result, comp)
- def test_setitem_datetimeindex(self, idx, expected):
- # setting a DataFrame column with a tzaware DTI retains the dtype
- df = DataFrame(np.random.randn(2, 1), columns=["A"])
- # assign to frame
- df["B"] = idx
- result = df["B"]
- tm.assert_series_equal(result, expected)
- def test_setitem_object_array_of_tzaware_datetimes(self, idx, expected):
- # setting a DataFrame column with a tzaware DTI retains the dtype
- df = DataFrame(np.random.randn(2, 1), columns=["A"])
- # object array of datetimes with a tz
- df["B"] = idx.to_pydatetime()
- result = df["B"]
- tm.assert_series_equal(result, expected)
- class TestDataFrameSetItemWithExpansion:
- def test_setitem_listlike_views(self, using_copy_on_write):
- # GH#38148
- df = DataFrame({"a": [1, 2, 3], "b": [4, 4, 6]})
- # get one column as a view of df
- ser = df["a"]
- # add columns with list-like indexer
- df[["c", "d"]] = np.array([[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]])
- # edit in place the first column to check view semantics
- df.iloc[0, 0] = 100
- if using_copy_on_write:
- expected = Series([1, 2, 3], name="a")
- else:
- expected = Series([100, 2, 3], name="a")
- tm.assert_series_equal(ser, expected)
- def test_setitem_string_column_numpy_dtype_raising(self):
- # GH#39010
- df = DataFrame([[1, 2], [3, 4]])
- df["0 - Name"] = [5, 6]
- expected = DataFrame([[1, 2, 5], [3, 4, 6]], columns=[0, 1, "0 - Name"])
- tm.assert_frame_equal(df, expected)
- def test_setitem_empty_df_duplicate_columns(self, using_copy_on_write):
- # GH#38521
- df = DataFrame(columns=["a", "b", "b"], dtype="float64")
- df.loc[:, "a"] = list(range(2))
- expected = DataFrame(
- [[0, np.nan, np.nan], [1, np.nan, np.nan]], columns=["a", "b", "b"]
- )
- tm.assert_frame_equal(df, expected)
- def test_setitem_with_expansion_categorical_dtype(self):
- # assignment
- df = DataFrame(
- {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")}
- )
- labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)])
- df = df.sort_values(by=["value"], ascending=True)
- ser = cut(df.value, range(0, 10500, 500), right=False, labels=labels)
- cat = ser.values
- # setting with a Categorical
- df["D"] = cat
- str(df)
- result = df.dtypes
- expected = Series(
- [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)],
- index=["value", "D"],
- )
- tm.assert_series_equal(result, expected)
- # setting with a Series
- df["E"] = ser
- str(df)
- result = df.dtypes
- expected = Series(
- [
- np.dtype("int32"),
- CategoricalDtype(categories=labels, ordered=False),
- CategoricalDtype(categories=labels, ordered=False),
- ],
- index=["value", "D", "E"],
- )
- tm.assert_series_equal(result, expected)
- result1 = df["D"]
- result2 = df["E"]
- tm.assert_categorical_equal(result1._mgr.array, cat)
- # sorting
- ser.name = "E"
- tm.assert_series_equal(result2.sort_index(), ser.sort_index())
- def test_setitem_scalars_no_index(self):
- # GH#16823 / GH#17894
- df = DataFrame()
- df["foo"] = 1
- expected = DataFrame(columns=["foo"]).astype(np.int64)
- tm.assert_frame_equal(df, expected)
- def test_setitem_newcol_tuple_key(self, float_frame):
- assert (
- "A",
- "B",
- ) not in float_frame.columns
- float_frame["A", "B"] = float_frame["A"]
- assert ("A", "B") in float_frame.columns
- result = float_frame["A", "B"]
- expected = float_frame["A"]
- tm.assert_series_equal(result, expected, check_names=False)
- def test_frame_setitem_newcol_timestamp(self):
- # GH#2155
- columns = date_range(start="1/1/2012", end="2/1/2012", freq=BDay())
- data = DataFrame(columns=columns, index=range(10))
- t = datetime(2012, 11, 1)
- ts = Timestamp(t)
- data[ts] = np.nan # works, mostly a smoke-test
- assert np.isnan(data[ts]).all()
- def test_frame_setitem_rangeindex_into_new_col(self):
- # GH#47128
- df = DataFrame({"a": ["a", "b"]})
- df["b"] = df.index
- df.loc[[False, True], "b"] = 100
- result = df.loc[[1], :]
- expected = DataFrame({"a": ["b"], "b": [100]}, index=[1])
- tm.assert_frame_equal(result, expected)
- def test_setitem_frame_keep_ea_dtype(self, any_numeric_ea_dtype):
- # GH#46896
- df = DataFrame(columns=["a", "b"], data=[[1, 2], [3, 4]])
- df["c"] = DataFrame({"a": [10, 11]}, dtype=any_numeric_ea_dtype)
- expected = DataFrame(
- {
- "a": [1, 3],
- "b": [2, 4],
- "c": Series([10, 11], dtype=any_numeric_ea_dtype),
- }
- )
- tm.assert_frame_equal(df, expected)
- class TestDataFrameSetItemSlicing:
- def test_setitem_slice_position(self):
- # GH#31469
- df = DataFrame(np.zeros((100, 1)))
- df[-4:] = 1
- arr = np.zeros((100, 1))
- arr[-4:] = 1
- expected = DataFrame(arr)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc])
- @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
- @pytest.mark.parametrize("n", [1, 2, 3])
- def test_setitem_slice_indexer_broadcasting_rhs(self, n, box, indexer):
- # GH#40440
- df = DataFrame([[1, 3, 5]] + [[2, 4, 6]] * n, columns=["a", "b", "c"])
- indexer(df)[1:] = box([10, 11, 12])
- expected = DataFrame([[1, 3, 5]] + [[10, 11, 12]] * n, columns=["a", "b", "c"])
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
- @pytest.mark.parametrize("n", [1, 2, 3])
- def test_setitem_list_indexer_broadcasting_rhs(self, n, box):
- # GH#40440
- df = DataFrame([[1, 3, 5]] + [[2, 4, 6]] * n, columns=["a", "b", "c"])
- df.iloc[list(range(1, n + 1))] = box([10, 11, 12])
- expected = DataFrame([[1, 3, 5]] + [[10, 11, 12]] * n, columns=["a", "b", "c"])
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("indexer", [tm.setitem, tm.iloc])
- @pytest.mark.parametrize("box", [Series, np.array, list, pd.array])
- @pytest.mark.parametrize("n", [1, 2, 3])
- def test_setitem_slice_broadcasting_rhs_mixed_dtypes(self, n, box, indexer):
- # GH#40440
- df = DataFrame(
- [[1, 3, 5], ["x", "y", "z"]] + [[2, 4, 6]] * n, columns=["a", "b", "c"]
- )
- indexer(df)[1:] = box([10, 11, 12])
- expected = DataFrame(
- [[1, 3, 5]] + [[10, 11, 12]] * (n + 1),
- columns=["a", "b", "c"],
- dtype="object",
- )
- tm.assert_frame_equal(df, expected)
- class TestDataFrameSetItemCallable:
- def test_setitem_callable(self):
- # GH#12533
- df = DataFrame({"A": [1, 2, 3, 4], "B": [5, 6, 7, 8]})
- df[lambda x: "A"] = [11, 12, 13, 14]
- exp = DataFrame({"A": [11, 12, 13, 14], "B": [5, 6, 7, 8]})
- tm.assert_frame_equal(df, exp)
- def test_setitem_other_callable(self):
- # GH#13299
- def inc(x):
- return x + 1
- df = DataFrame([[-1, 1], [1, -1]])
- df[df > 0] = inc
- expected = DataFrame([[-1, inc], [inc, -1]])
- tm.assert_frame_equal(df, expected)
- class TestDataFrameSetItemBooleanMask:
- @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values
- @pytest.mark.parametrize(
- "mask_type",
- [lambda df: df > np.abs(df) / 2, lambda df: (df > np.abs(df) / 2).values],
- ids=["dataframe", "array"],
- )
- def test_setitem_boolean_mask(self, mask_type, float_frame):
- # Test for issue #18582
- df = float_frame.copy()
- mask = mask_type(df)
- # index with boolean mask
- result = df.copy()
- result[mask] = np.nan
- expected = df.values.copy()
- expected[np.array(mask)] = np.nan
- expected = DataFrame(expected, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.xfail(reason="Currently empty indexers are treated as all False")
- @pytest.mark.parametrize("box", [list, np.array, Series])
- def test_setitem_loc_empty_indexer_raises_with_non_empty_value(self, box):
- # GH#37672
- df = DataFrame({"a": ["a"], "b": [1], "c": [1]})
- if box == Series:
- indexer = box([], dtype="object")
- else:
- indexer = box([])
- msg = "Must have equal len keys and value when setting with an iterable"
- with pytest.raises(ValueError, match=msg):
- df.loc[indexer, ["b"]] = [1]
- @pytest.mark.parametrize("box", [list, np.array, Series])
- def test_setitem_loc_only_false_indexer_dtype_changed(self, box):
- # GH#37550
- # Dtype is only changed when value to set is a Series and indexer is
- # empty/bool all False
- df = DataFrame({"a": ["a"], "b": [1], "c": [1]})
- indexer = box([False])
- df.loc[indexer, ["b"]] = 10 - df["c"]
- expected = DataFrame({"a": ["a"], "b": [1], "c": [1]})
- tm.assert_frame_equal(df, expected)
- df.loc[indexer, ["b"]] = 9
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize("indexer", [tm.setitem, tm.loc])
- def test_setitem_boolean_mask_aligning(self, indexer):
- # GH#39931
- df = DataFrame({"a": [1, 4, 2, 3], "b": [5, 6, 7, 8]})
- expected = df.copy()
- mask = df["a"] >= 3
- indexer(df)[mask] = indexer(df)[mask].sort_values("a")
- tm.assert_frame_equal(df, expected)
- def test_setitem_mask_categorical(self):
- # assign multiple rows (mixed values) (-> array) -> exp_multi_row
- # changed multiple rows
- cats2 = Categorical(["a", "a", "b", "b", "a", "a", "a"], categories=["a", "b"])
- idx2 = Index(["h", "i", "j", "k", "l", "m", "n"])
- values2 = [1, 1, 2, 2, 1, 1, 1]
- exp_multi_row = DataFrame({"cats": cats2, "values": values2}, index=idx2)
- catsf = Categorical(
- ["a", "a", "c", "c", "a", "a", "a"], categories=["a", "b", "c"]
- )
- idxf = Index(["h", "i", "j", "k", "l", "m", "n"])
- valuesf = [1, 1, 3, 3, 1, 1, 1]
- df = DataFrame({"cats": catsf, "values": valuesf}, index=idxf)
- exp_fancy = exp_multi_row.copy()
- exp_fancy["cats"] = exp_fancy["cats"].cat.set_categories(["a", "b", "c"])
- mask = df["cats"] == "c"
- df[mask] = ["b", 2]
- # category c is kept in .categories
- tm.assert_frame_equal(df, exp_fancy)
- @pytest.mark.parametrize("dtype", ["float", "int64"])
- @pytest.mark.parametrize("kwargs", [{}, {"index": [1]}, {"columns": ["A"]}])
- def test_setitem_empty_frame_with_boolean(self, dtype, kwargs):
- # see GH#10126
- kwargs["dtype"] = dtype
- df = DataFrame(**kwargs)
- df2 = df.copy()
- df[df > df2] = 47
- tm.assert_frame_equal(df, df2)
- def test_setitem_boolean_indexing(self):
- idx = list(range(3))
- cols = ["A", "B", "C"]
- df1 = DataFrame(
- index=idx,
- columns=cols,
- data=np.array(
- [[0.0, 0.5, 1.0], [1.5, 2.0, 2.5], [3.0, 3.5, 4.0]], dtype=float
- ),
- )
- df2 = DataFrame(index=idx, columns=cols, data=np.ones((len(idx), len(cols))))
- expected = DataFrame(
- index=idx,
- columns=cols,
- data=np.array([[0.0, 0.5, 1.0], [1.5, 2.0, -1], [-1, -1, -1]], dtype=float),
- )
- df1[df1 > 2.0 * df2] = -1
- tm.assert_frame_equal(df1, expected)
- with pytest.raises(ValueError, match="Item wrong length"):
- df1[df1.index[:-1] > 2] = -1
- def test_loc_setitem_all_false_boolean_two_blocks(self):
- # GH#40885
- df = DataFrame({"a": [1, 2], "b": [3, 4], "c": "a"})
- expected = df.copy()
- indexer = Series([False, False], name="c")
- df.loc[indexer, ["b"]] = DataFrame({"b": [5, 6]}, index=[0, 1])
- tm.assert_frame_equal(df, expected)
- def test_setitem_ea_boolean_mask(self):
- # GH#47125
- df = DataFrame([[-1, 2], [3, -4]])
- expected = DataFrame([[0, 2], [3, 0]])
- boolean_indexer = DataFrame(
- {
- 0: Series([True, False], dtype="boolean"),
- 1: Series([pd.NA, True], dtype="boolean"),
- }
- )
- df[boolean_indexer] = 0
- tm.assert_frame_equal(df, expected)
- class TestDataFrameSetitemCopyViewSemantics:
- def test_setitem_always_copy(self, float_frame):
- assert "E" not in float_frame.columns
- s = float_frame["A"].copy()
- float_frame["E"] = s
- float_frame.iloc[5:10, float_frame.columns.get_loc("E")] = np.nan
- assert notna(s[5:10]).all()
- @pytest.mark.parametrize("consolidate", [True, False])
- def test_setitem_partial_column_inplace(
- self, consolidate, using_array_manager, using_copy_on_write
- ):
- # This setting should be in-place, regardless of whether frame is
- # single-block or multi-block
- # GH#304 this used to be incorrectly not-inplace, in which case
- # we needed to ensure _item_cache was cleared.
- df = DataFrame(
- {"x": [1.1, 2.1, 3.1, 4.1], "y": [5.1, 6.1, 7.1, 8.1]}, index=[0, 1, 2, 3]
- )
- df.insert(2, "z", np.nan)
- if not using_array_manager:
- if consolidate:
- df._consolidate_inplace()
- assert len(df._mgr.blocks) == 1
- else:
- assert len(df._mgr.blocks) == 2
- zvals = df["z"]._values
- df.loc[2:, "z"] = 42
- expected = Series([np.nan, np.nan, 42, 42], index=df.index, name="z")
- tm.assert_series_equal(df["z"], expected)
- # check setting occurred in-place
- if not using_copy_on_write:
- tm.assert_numpy_array_equal(zvals, expected.values)
- assert np.shares_memory(zvals, df["z"]._values)
- def test_setitem_duplicate_columns_not_inplace(self):
- # GH#39510
- cols = ["A", "B"] * 2
- df = DataFrame(0.0, index=[0], columns=cols)
- df_copy = df.copy()
- df_view = df[:]
- df["B"] = (2, 5)
- expected = DataFrame([[0.0, 2, 0.0, 5]], columns=cols)
- tm.assert_frame_equal(df_view, df_copy)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "value", [1, np.array([[1], [1]], dtype="int64"), [[1], [1]]]
- )
- def test_setitem_same_dtype_not_inplace(self, value, using_array_manager):
- # GH#39510
- cols = ["A", "B"]
- df = DataFrame(0, index=[0, 1], columns=cols)
- df_copy = df.copy()
- df_view = df[:]
- df[["B"]] = value
- expected = DataFrame([[0, 1], [0, 1]], columns=cols)
- tm.assert_frame_equal(df, expected)
- tm.assert_frame_equal(df_view, df_copy)
- @pytest.mark.parametrize("value", [1.0, np.array([[1.0], [1.0]]), [[1.0], [1.0]]])
- def test_setitem_listlike_key_scalar_value_not_inplace(self, value):
- # GH#39510
- cols = ["A", "B"]
- df = DataFrame(0, index=[0, 1], columns=cols)
- df_copy = df.copy()
- df_view = df[:]
- df[["B"]] = value
- expected = DataFrame([[0, 1.0], [0, 1.0]], columns=cols)
- tm.assert_frame_equal(df_view, df_copy)
- tm.assert_frame_equal(df, expected)
- @pytest.mark.parametrize(
- "indexer",
- [
- "a",
- ["a"],
- pytest.param(
- [True, False],
- marks=pytest.mark.xfail(
- reason="Boolean indexer incorrectly setting inplace",
- strict=False, # passing on some builds, no obvious pattern
- ),
- ),
- ],
- )
- @pytest.mark.parametrize(
- "value, set_value",
- [
- (1, 5),
- (1.0, 5.0),
- (Timestamp("2020-12-31"), Timestamp("2021-12-31")),
- ("a", "b"),
- ],
- )
- def test_setitem_not_operating_inplace(self, value, set_value, indexer):
- # GH#43406
- df = DataFrame({"a": value}, index=[0, 1])
- expected = df.copy()
- view = df[:]
- df[indexer] = set_value
- tm.assert_frame_equal(view, expected)
- @td.skip_array_manager_invalid_test
- def test_setitem_column_update_inplace(self, using_copy_on_write):
- # https://github.com/pandas-dev/pandas/issues/47172
- labels = [f"c{i}" for i in range(10)]
- df = DataFrame({col: np.zeros(len(labels)) for col in labels}, index=labels)
- values = df._mgr.blocks[0].values
- if not using_copy_on_write:
- for label in df.columns:
- df[label][label] = 1
- # diagonal values all updated
- assert np.all(values[np.arange(10), np.arange(10)] == 1)
- else:
- with tm.raises_chained_assignment_error():
- for label in df.columns:
- df[label][label] = 1
- # original dataframe not updated
- assert np.all(values[np.arange(10), np.arange(10)] == 0)
|