123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- """
- This file contains a minimal set of tests for compliance with the extension
- array interface test suite, and should contain no other tests.
- The test suite for the full functionality of the array is located in
- `pandas/tests/arrays/`.
- The tests in this file are inherited from the BaseExtensionTests, and only
- minimal tweaks should be applied to get the tests passing (by overwriting a
- parent method).
- Additional tests should either be added to one of the BaseExtensionTests
- classes (if they are relevant for the extension interface for all dtypes), or
- be added to the array-specific tests in `pandas/tests/arrays/`.
- """
- import numpy as np
- import pytest
- from pandas.core.dtypes.common import is_extension_array_dtype
- import pandas as pd
- import pandas._testing as tm
- from pandas.api.types import is_float_dtype
- from pandas.core.arrays.floating import (
- Float32Dtype,
- Float64Dtype,
- )
- from pandas.tests.extension import base
- def make_data():
- return (
- list(np.arange(0.1, 0.9, 0.1))
- + [pd.NA]
- + list(np.arange(1, 9.8, 0.1))
- + [pd.NA]
- + [9.9, 10.0]
- )
- @pytest.fixture(params=[Float32Dtype, Float64Dtype])
- def dtype(request):
- return request.param()
- @pytest.fixture
- def data(dtype):
- return pd.array(make_data(), dtype=dtype)
- @pytest.fixture
- def data_for_twos(dtype):
- return pd.array(np.ones(100) * 2, dtype=dtype)
- @pytest.fixture
- def data_missing(dtype):
- return pd.array([pd.NA, 0.1], dtype=dtype)
- @pytest.fixture
- def data_for_sorting(dtype):
- return pd.array([0.1, 0.2, 0.0], dtype=dtype)
- @pytest.fixture
- def data_missing_for_sorting(dtype):
- return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
- @pytest.fixture
- def na_cmp():
- # we are pd.NA
- return lambda x, y: x is pd.NA and y is pd.NA
- @pytest.fixture
- def na_value():
- return pd.NA
- @pytest.fixture
- def data_for_grouping(dtype):
- b = 0.1
- a = 0.0
- c = 0.2
- na = pd.NA
- return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
- class TestDtype(base.BaseDtypeTests):
- pass
- class TestArithmeticOps(base.BaseArithmeticOpsTests):
- def check_opname(self, s, op_name, other, exc=None):
- # overwriting to indicate ops don't raise an error
- super().check_opname(s, op_name, other, exc=None)
- def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
- if exc is None:
- sdtype = tm.get_dtype(s)
- if (
- hasattr(other, "dtype")
- and not is_extension_array_dtype(other.dtype)
- and is_float_dtype(other.dtype)
- ):
- # other is np.float64 and would therefore always result in
- # upcasting, so keeping other as same numpy_dtype
- other = other.astype(sdtype.numpy_dtype)
- result = op(s, other)
- expected = self._combine(s, other, op)
- # combine method result in 'biggest' (float64) dtype
- expected = expected.astype(sdtype)
- self.assert_equal(result, expected)
- else:
- with pytest.raises(exc):
- op(s, other)
- def _check_divmod_op(self, s, op, other, exc=None):
- super()._check_divmod_op(s, op, other, None)
- class TestComparisonOps(base.BaseComparisonOpsTests):
- # TODO: share with IntegerArray?
- def _check_op(self, s, op, other, op_name, exc=NotImplementedError):
- if exc is None:
- result = op(s, other)
- # Override to do the astype to boolean
- expected = s.combine(other, op).astype("boolean")
- self.assert_series_equal(result, expected)
- else:
- with pytest.raises(exc):
- op(s, other)
- def check_opname(self, s, op_name, other, exc=None):
- super().check_opname(s, op_name, other, exc=None)
- def _compare_other(self, s, data, op, other):
- op_name = f"__{op.__name__}__"
- self.check_opname(s, op_name, other)
- class TestInterface(base.BaseInterfaceTests):
- pass
- class TestConstructors(base.BaseConstructorsTests):
- pass
- class TestReshaping(base.BaseReshapingTests):
- pass
- class TestGetitem(base.BaseGetitemTests):
- pass
- class TestSetitem(base.BaseSetitemTests):
- pass
- class TestIndex(base.BaseIndexTests):
- pass
- class TestMissing(base.BaseMissingTests):
- pass
- class TestMethods(base.BaseMethodsTests):
- _combine_le_expected_dtype = object # TODO: can we make this boolean?
- class TestCasting(base.BaseCastingTests):
- pass
- class TestGroupby(base.BaseGroupbyTests):
- pass
- class TestNumericReduce(base.BaseNumericReduceTests):
- def check_reduce(self, s, op_name, skipna):
- # overwrite to ensure pd.NA is tested instead of np.nan
- # https://github.com/pandas-dev/pandas/issues/30958
- if op_name == "count":
- result = getattr(s, op_name)()
- expected = getattr(s.dropna().astype(s.dtype.numpy_dtype), op_name)()
- else:
- result = getattr(s, op_name)(skipna=skipna)
- expected = getattr(s.dropna().astype(s.dtype.numpy_dtype), op_name)(
- skipna=skipna
- )
- if not skipna and s.isna().any():
- expected = pd.NA
- tm.assert_almost_equal(result, expected)
- @pytest.mark.skip(reason="Tested in tests/reductions/test_reductions.py")
- class TestBooleanReduce(base.BaseBooleanReduceTests):
- pass
- class TestPrinting(base.BasePrintingTests):
- pass
- class TestParsing(base.BaseParsingTests):
- pass
- @pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning")
- class Test2DCompat(base.Dim2CompatTests):
- pass
- class TestAccumulation(base.BaseAccumulateTests):
- @pytest.mark.parametrize("skipna", [True, False])
- def test_accumulate_series_raises(self, data, all_numeric_accumulations, skipna):
- pass
|