123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395 |
- import collections
- import operator
- import sys
- import pytest
- import pandas as pd
- import pandas._testing as tm
- from pandas.tests.extension import base
- from pandas.tests.extension.json.array import (
- JSONArray,
- JSONDtype,
- make_data,
- )
- @pytest.fixture
- def dtype():
- return JSONDtype()
- @pytest.fixture
- def data():
- """Length-100 PeriodArray for semantics test."""
- data = make_data()
- # Why the while loop? NumPy is unable to construct an ndarray from
- # equal-length ndarrays. Many of our operations involve coercing the
- # EA to an ndarray of objects. To avoid random test failures, we ensure
- # that our data is coercible to an ndarray. Several tests deal with only
- # the first two elements, so that's what we'll check.
- while len(data[0]) == len(data[1]):
- data = make_data()
- return JSONArray(data)
- @pytest.fixture
- def data_missing():
- """Length 2 array with [NA, Valid]"""
- return JSONArray([{}, {"a": 10}])
- @pytest.fixture
- def data_for_sorting():
- return JSONArray([{"b": 1}, {"c": 4}, {"a": 2, "c": 3}])
- @pytest.fixture
- def data_missing_for_sorting():
- return JSONArray([{"b": 1}, {}, {"a": 4}])
- @pytest.fixture
- def na_value(dtype):
- return dtype.na_value
- @pytest.fixture
- def na_cmp():
- return operator.eq
- @pytest.fixture
- def data_for_grouping():
- return JSONArray(
- [
- {"b": 1},
- {"b": 1},
- {},
- {},
- {"a": 0, "c": 2},
- {"a": 0, "c": 2},
- {"b": 1},
- {"c": 2},
- ]
- )
- class BaseJSON:
- # NumPy doesn't handle an array of equal-length UserDicts.
- # The default assert_series_equal eventually does a
- # Series.values, which raises. We work around it by
- # converting the UserDicts to dicts.
- @classmethod
- def assert_series_equal(cls, left, right, *args, **kwargs):
- if left.dtype.name == "json":
- assert left.dtype == right.dtype
- left = pd.Series(
- JSONArray(left.values.astype(object)), index=left.index, name=left.name
- )
- right = pd.Series(
- JSONArray(right.values.astype(object)),
- index=right.index,
- name=right.name,
- )
- tm.assert_series_equal(left, right, *args, **kwargs)
- @classmethod
- def assert_frame_equal(cls, left, right, *args, **kwargs):
- obj_type = kwargs.get("obj", "DataFrame")
- tm.assert_index_equal(
- left.columns,
- right.columns,
- exact=kwargs.get("check_column_type", "equiv"),
- check_names=kwargs.get("check_names", True),
- check_exact=kwargs.get("check_exact", False),
- check_categorical=kwargs.get("check_categorical", True),
- obj=f"{obj_type}.columns",
- )
- jsons = (left.dtypes == "json").index
- for col in jsons:
- cls.assert_series_equal(left[col], right[col], *args, **kwargs)
- left = left.drop(columns=jsons)
- right = right.drop(columns=jsons)
- tm.assert_frame_equal(left, right, *args, **kwargs)
- class TestDtype(BaseJSON, base.BaseDtypeTests):
- pass
- class TestInterface(BaseJSON, base.BaseInterfaceTests):
- def test_custom_asserts(self):
- # This would always trigger the KeyError from trying to put
- # an array of equal-length UserDicts inside an ndarray.
- data = JSONArray(
- [
- collections.UserDict({"a": 1}),
- collections.UserDict({"b": 2}),
- collections.UserDict({"c": 3}),
- ]
- )
- a = pd.Series(data)
- self.assert_series_equal(a, a)
- self.assert_frame_equal(a.to_frame(), a.to_frame())
- b = pd.Series(data.take([0, 0, 1]))
- msg = r"Series are different"
- with pytest.raises(AssertionError, match=msg):
- self.assert_series_equal(a, b)
- with pytest.raises(AssertionError, match=msg):
- self.assert_frame_equal(a.to_frame(), b.to_frame())
- @pytest.mark.xfail(
- reason="comparison method not implemented for JSONArray (GH-37867)"
- )
- def test_contains(self, data):
- # GH-37867
- super().test_contains(data)
- class TestConstructors(BaseJSON, base.BaseConstructorsTests):
- @pytest.mark.xfail(reason="not implemented constructor from dtype")
- def test_from_dtype(self, data):
- # construct from our dtype & string dtype
- super().test_from_dtype(data)
- @pytest.mark.xfail(reason="RecursionError, GH-33900")
- def test_series_constructor_no_data_with_index(self, dtype, na_value):
- # RecursionError: maximum recursion depth exceeded in comparison
- rec_limit = sys.getrecursionlimit()
- try:
- # Limit to avoid stack overflow on Windows CI
- sys.setrecursionlimit(100)
- super().test_series_constructor_no_data_with_index(dtype, na_value)
- finally:
- sys.setrecursionlimit(rec_limit)
- @pytest.mark.xfail(reason="RecursionError, GH-33900")
- def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
- # RecursionError: maximum recursion depth exceeded in comparison
- rec_limit = sys.getrecursionlimit()
- try:
- # Limit to avoid stack overflow on Windows CI
- sys.setrecursionlimit(100)
- super().test_series_constructor_scalar_na_with_index(dtype, na_value)
- finally:
- sys.setrecursionlimit(rec_limit)
- @pytest.mark.xfail(reason="collection as scalar, GH-33901")
- def test_series_constructor_scalar_with_index(self, data, dtype):
- # TypeError: All values must be of type <class 'collections.abc.Mapping'>
- rec_limit = sys.getrecursionlimit()
- try:
- # Limit to avoid stack overflow on Windows CI
- sys.setrecursionlimit(100)
- super().test_series_constructor_scalar_with_index(data, dtype)
- finally:
- sys.setrecursionlimit(rec_limit)
- class TestReshaping(BaseJSON, base.BaseReshapingTests):
- @pytest.mark.xfail(reason="Different definitions of NA")
- def test_stack(self):
- """
- The test does .astype(object).stack(). If we happen to have
- any missing values in `data`, then we'll end up with different
- rows since we consider `{}` NA, but `.astype(object)` doesn't.
- """
- super().test_stack()
- @pytest.mark.xfail(reason="dict for NA")
- def test_unstack(self, data, index):
- # The base test has NaN for the expected NA value.
- # this matches otherwise
- return super().test_unstack(data, index)
- class TestGetitem(BaseJSON, base.BaseGetitemTests):
- pass
- class TestIndex(BaseJSON, base.BaseIndexTests):
- pass
- class TestMissing(BaseJSON, base.BaseMissingTests):
- @pytest.mark.xfail(reason="Setting a dict as a scalar")
- def test_fillna_series(self):
- """We treat dictionaries as a mapping in fillna, not a scalar."""
- super().test_fillna_series()
- @pytest.mark.xfail(reason="Setting a dict as a scalar")
- def test_fillna_frame(self):
- """We treat dictionaries as a mapping in fillna, not a scalar."""
- super().test_fillna_frame()
- unhashable = pytest.mark.xfail(reason="Unhashable")
- class TestReduce(base.BaseNoReduceTests):
- pass
- class TestMethods(BaseJSON, base.BaseMethodsTests):
- @unhashable
- def test_value_counts(self, all_data, dropna):
- super().test_value_counts(all_data, dropna)
- @unhashable
- def test_value_counts_with_normalize(self, data):
- super().test_value_counts_with_normalize(data)
- @unhashable
- def test_sort_values_frame(self):
- # TODO (EA.factorize): see if _values_for_factorize allows this.
- super().test_sort_values_frame()
- @pytest.mark.parametrize("ascending", [True, False])
- def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
- super().test_sort_values(data_for_sorting, ascending, sort_by_key)
- @pytest.mark.parametrize("ascending", [True, False])
- def test_sort_values_missing(
- self, data_missing_for_sorting, ascending, sort_by_key
- ):
- super().test_sort_values_missing(
- data_missing_for_sorting, ascending, sort_by_key
- )
- @pytest.mark.xfail(reason="combine for JSONArray not supported")
- def test_combine_le(self, data_repeated):
- super().test_combine_le(data_repeated)
- @pytest.mark.xfail(reason="combine for JSONArray not supported")
- def test_combine_add(self, data_repeated):
- super().test_combine_add(data_repeated)
- @pytest.mark.xfail(
- reason="combine for JSONArray not supported - "
- "may pass depending on random data",
- strict=False,
- raises=AssertionError,
- )
- def test_combine_first(self, data):
- super().test_combine_first(data)
- @unhashable
- def test_hash_pandas_object_works(self, data, kind):
- super().test_hash_pandas_object_works(data, kind)
- @pytest.mark.xfail(reason="broadcasting error")
- def test_where_series(self, data, na_value):
- # Fails with
- # *** ValueError: operands could not be broadcast together
- # with shapes (4,) (4,) (0,)
- super().test_where_series(data, na_value)
- @pytest.mark.xfail(reason="Can't compare dicts.")
- def test_searchsorted(self, data_for_sorting):
- super().test_searchsorted(data_for_sorting)
- @pytest.mark.xfail(reason="Can't compare dicts.")
- def test_equals(self, data, na_value, as_series):
- super().test_equals(data, na_value, as_series)
- @pytest.mark.skip("fill-value is interpreted as a dict of values")
- def test_fillna_copy_frame(self, data_missing):
- super().test_fillna_copy_frame(data_missing)
- class TestCasting(BaseJSON, base.BaseCastingTests):
- @pytest.mark.xfail(reason="failing on np.array(self, dtype=str)")
- def test_astype_str(self):
- """This currently fails in NumPy on np.array(self, dtype=str) with
- *** ValueError: setting an array element with a sequence
- """
- super().test_astype_str()
- # We intentionally don't run base.BaseSetitemTests because pandas'
- # internals has trouble setting sequences of values into scalar positions.
- class TestGroupby(BaseJSON, base.BaseGroupbyTests):
- @unhashable
- def test_groupby_extension_transform(self):
- """
- This currently fails in Series.name.setter, since the
- name must be hashable, but the value is a dictionary.
- I think this is what we want, i.e. `.name` should be the original
- values, and not the values for factorization.
- """
- super().test_groupby_extension_transform()
- @unhashable
- def test_groupby_extension_apply(self):
- """
- This fails in Index._do_unique_check with
- > hash(val)
- E TypeError: unhashable type: 'UserDict' with
- I suspect that once we support Index[ExtensionArray],
- we'll be able to dispatch unique.
- """
- super().test_groupby_extension_apply()
- @unhashable
- def test_groupby_extension_agg(self):
- """
- This fails when we get to tm.assert_series_equal when left.index
- contains dictionaries, which are not hashable.
- """
- super().test_groupby_extension_agg()
- @unhashable
- def test_groupby_extension_no_sort(self):
- """
- This fails when we get to tm.assert_series_equal when left.index
- contains dictionaries, which are not hashable.
- """
- super().test_groupby_extension_no_sort()
- @pytest.mark.xfail(reason="GH#39098: Converts agg result to object")
- def test_groupby_agg_extension(self, data_for_grouping):
- super().test_groupby_agg_extension(data_for_grouping)
- class TestArithmeticOps(BaseJSON, base.BaseArithmeticOpsTests):
- def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
- if len(data[0]) != 1:
- mark = pytest.mark.xfail(reason="raises in coercing to Series")
- request.node.add_marker(mark)
- super().test_arith_frame_with_scalar(data, all_arithmetic_operators)
- def test_add_series_with_extension_array(self, data):
- ser = pd.Series(data)
- with pytest.raises(TypeError, match="unsupported"):
- ser + data
- @pytest.mark.xfail(reason="not implemented")
- def test_divmod_series_array(self):
- # GH 23287
- # skipping because it is not implemented
- super().test_divmod_series_array()
- def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
- return super()._check_divmod_op(s, op, other, exc=TypeError)
- class TestComparisonOps(BaseJSON, base.BaseComparisonOpsTests):
- pass
- class TestPrinting(BaseJSON, base.BasePrintingTests):
- pass
|