123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- import pytest
- from pandas.core.dtypes.common import (
- is_bool_dtype,
- is_numeric_dtype,
- is_object_dtype,
- is_string_dtype,
- )
- import pandas as pd
- import pandas._testing as tm
- from pandas.tests.extension.base.base import BaseExtensionTests
- class BaseGroupbyTests(BaseExtensionTests):
- """Groupby-specific tests."""
- def test_grouping_grouper(self, data_for_grouping):
- df = pd.DataFrame(
- {"A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping}
- )
- gr1 = df.groupby("A").grouper.groupings[0]
- gr2 = df.groupby("B").grouper.groupings[0]
- tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values)
- tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
- @pytest.mark.parametrize("as_index", [True, False])
- def test_groupby_extension_agg(self, as_index, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
- result = df.groupby("B", as_index=as_index).A.mean()
- _, uniques = pd.factorize(data_for_grouping, sort=True)
- if as_index:
- index = pd.Index(uniques, name="B")
- expected = pd.Series([3.0, 1.0, 4.0], index=index, name="A")
- self.assert_series_equal(result, expected)
- else:
- expected = pd.DataFrame({"B": uniques, "A": [3.0, 1.0, 4.0]})
- self.assert_frame_equal(result, expected)
- def test_groupby_agg_extension(self, data_for_grouping):
- # GH#38980 groupby agg on extension type fails for non-numeric types
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
- expected = df.iloc[[0, 2, 4, 7]]
- expected = expected.set_index("A")
- result = df.groupby("A").agg({"B": "first"})
- self.assert_frame_equal(result, expected)
- result = df.groupby("A").agg("first")
- self.assert_frame_equal(result, expected)
- result = df.groupby("A").first()
- self.assert_frame_equal(result, expected)
- def test_groupby_agg_extension_timedelta_cumsum_with_named_aggregation(self):
- # GH#41720
- expected = pd.DataFrame(
- {
- "td": {
- 0: pd.Timedelta("0 days 01:00:00"),
- 1: pd.Timedelta("0 days 01:15:00"),
- 2: pd.Timedelta("0 days 01:15:00"),
- }
- }
- )
- df = pd.DataFrame(
- {
- "td": pd.Series(
- ["0 days 01:00:00", "0 days 00:15:00", "0 days 01:15:00"],
- dtype="timedelta64[ns]",
- ),
- "grps": ["a", "a", "b"],
- }
- )
- gb = df.groupby("grps")
- result = gb.agg(td=("td", "cumsum"))
- self.assert_frame_equal(result, expected)
- def test_groupby_extension_no_sort(self, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
- result = df.groupby("B", sort=False).A.mean()
- _, index = pd.factorize(data_for_grouping, sort=False)
- index = pd.Index(index, name="B")
- expected = pd.Series([1.0, 3.0, 4.0], index=index, name="A")
- self.assert_series_equal(result, expected)
- def test_groupby_extension_transform(self, data_for_grouping):
- valid = data_for_grouping[~data_for_grouping.isna()]
- df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid})
- result = df.groupby("B").A.transform(len)
- expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
- self.assert_series_equal(result, expected)
- def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
- df.groupby("B", group_keys=False).apply(groupby_apply_op)
- df.groupby("B", group_keys=False).A.apply(groupby_apply_op)
- df.groupby("A", group_keys=False).apply(groupby_apply_op)
- df.groupby("A", group_keys=False).B.apply(groupby_apply_op)
- def test_groupby_apply_identity(self, data_for_grouping):
- df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
- result = df.groupby("A").B.apply(lambda x: x.array)
- expected = pd.Series(
- [
- df.B.iloc[[0, 1, 6]].array,
- df.B.iloc[[2, 3]].array,
- df.B.iloc[[4, 5]].array,
- df.B.iloc[[7]].array,
- ],
- index=pd.Index([1, 2, 3, 4], name="A"),
- name="B",
- )
- self.assert_series_equal(result, expected)
- def test_in_numeric_groupby(self, data_for_grouping):
- df = pd.DataFrame(
- {
- "A": [1, 1, 2, 2, 3, 3, 1, 4],
- "B": data_for_grouping,
- "C": [1, 1, 1, 1, 1, 1, 1, 1],
- }
- )
- dtype = data_for_grouping.dtype
- if (
- is_numeric_dtype(dtype)
- or is_bool_dtype(dtype)
- or dtype.name == "decimal"
- or is_string_dtype(dtype)
- or is_object_dtype(dtype)
- or dtype.kind == "m" # in particular duration[*][pyarrow]
- ):
- expected = pd.Index(["B", "C"])
- result = df.groupby("A").sum().columns
- else:
- expected = pd.Index(["C"])
- with pytest.raises(TypeError, match="does not support"):
- df.groupby("A").sum().columns
- result = df.groupby("A").sum(numeric_only=True).columns
- tm.assert_index_equal(result, expected)
|