1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894 |
- from __future__ import annotations
- from functools import reduce
- from itertools import product
- import operator
- import random
- import warnings
- import numpy as np
- import pytest
- from pandas.errors import (
- NumExprClobberingError,
- PerformanceWarning,
- UndefinedVariableError,
- )
- import pandas.util._test_decorators as td
- from pandas.core.dtypes.common import (
- is_bool,
- is_float,
- is_list_like,
- is_scalar,
- )
- import pandas as pd
- from pandas import (
- DataFrame,
- Series,
- date_range,
- )
- import pandas._testing as tm
- from pandas.core.computation import (
- expr,
- pytables,
- )
- from pandas.core.computation.engines import ENGINES
- from pandas.core.computation.expr import (
- BaseExprVisitor,
- PandasExprVisitor,
- PythonExprVisitor,
- )
- from pandas.core.computation.expressions import (
- NUMEXPR_INSTALLED,
- USE_NUMEXPR,
- )
- from pandas.core.computation.ops import (
- ARITH_OPS_SYMS,
- SPECIAL_CASE_ARITH_OPS_SYMS,
- _binary_math_ops,
- _binary_ops_dict,
- _unary_math_ops,
- )
- from pandas.core.computation.scope import DEFAULT_GLOBALS
- @pytest.fixture(
- params=(
- pytest.param(
- engine,
- marks=[
- pytest.mark.skipif(
- engine == "numexpr" and not USE_NUMEXPR,
- reason=f"numexpr enabled->{USE_NUMEXPR}, "
- f"installed->{NUMEXPR_INSTALLED}",
- ),
- td.skip_if_no_ne,
- ],
- )
- for engine in ENGINES
- )
- )
- def engine(request):
- return request.param
- @pytest.fixture(params=expr.PARSERS)
- def parser(request):
- return request.param
- def _eval_single_bin(lhs, cmp1, rhs, engine):
- c = _binary_ops_dict[cmp1]
- if ENGINES[engine].has_neg_frac:
- try:
- return c(lhs, rhs)
- except ValueError as e:
- if str(e).startswith(
- "negative number cannot be raised to a fractional power"
- ):
- return np.nan
- raise
- return c(lhs, rhs)
- # TODO: using range(5) here is a kludge
- @pytest.fixture(
- params=list(range(5)),
- ids=["DataFrame", "Series", "SeriesNaN", "DataFrameNaN", "float"],
- )
- def lhs(request):
- nan_df1 = DataFrame(np.random.rand(10, 5))
- nan_df1[nan_df1 > 0.5] = np.nan
- opts = (
- DataFrame(np.random.randn(10, 5)),
- Series(np.random.randn(5)),
- Series([1, 2, np.nan, np.nan, 5]),
- nan_df1,
- np.random.randn(),
- )
- return opts[request.param]
- rhs = lhs
- midhs = lhs
- class TestEval:
- @pytest.mark.parametrize(
- "cmp1",
- ["!=", "==", "<=", ">=", "<", ">"],
- ids=["ne", "eq", "le", "ge", "lt", "gt"],
- )
- @pytest.mark.parametrize("cmp2", [">", "<"], ids=["gt", "lt"])
- @pytest.mark.parametrize("binop", expr.BOOL_OPS_SYMS)
- def test_complex_cmp_ops(self, cmp1, cmp2, binop, lhs, rhs, engine, parser):
- if parser == "python" and binop in ["and", "or"]:
- msg = "'BoolOp' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
- pd.eval(ex, engine=engine, parser=parser)
- return
- lhs_new = _eval_single_bin(lhs, cmp1, rhs, engine)
- rhs_new = _eval_single_bin(lhs, cmp2, rhs, engine)
- expected = _eval_single_bin(lhs_new, binop, rhs_new, engine)
- ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
- result = pd.eval(ex, engine=engine, parser=parser)
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("cmp_op", expr.CMP_OPS_SYMS)
- def test_simple_cmp_ops(self, cmp_op, lhs, rhs, engine, parser):
- lhs = lhs < 0
- rhs = rhs < 0
- if parser == "python" and cmp_op in ["in", "not in"]:
- msg = "'(In|NotIn)' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- ex = f"lhs {cmp_op} rhs"
- pd.eval(ex, engine=engine, parser=parser)
- return
- ex = f"lhs {cmp_op} rhs"
- msg = "|".join(
- [
- r"only list-like( or dict-like)? objects are allowed to be "
- r"passed to (DataFrame\.)?isin\(\), you passed a "
- r"(\[|')bool(\]|')",
- "argument of type 'bool' is not iterable",
- ]
- )
- if cmp_op in ("in", "not in") and not is_list_like(rhs):
- with pytest.raises(TypeError, match=msg):
- pd.eval(
- ex,
- engine=engine,
- parser=parser,
- local_dict={"lhs": lhs, "rhs": rhs},
- )
- else:
- expected = _eval_single_bin(lhs, cmp_op, rhs, engine)
- result = pd.eval(ex, engine=engine, parser=parser)
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("op", expr.CMP_OPS_SYMS)
- def test_compound_invert_op(self, op, lhs, rhs, request, engine, parser):
- if parser == "python" and op in ["in", "not in"]:
- msg = "'(In|NotIn)' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- ex = f"~(lhs {op} rhs)"
- pd.eval(ex, engine=engine, parser=parser)
- return
- if (
- is_float(lhs)
- and not is_float(rhs)
- and op in ["in", "not in"]
- and engine == "python"
- and parser == "pandas"
- ):
- mark = pytest.mark.xfail(
- reason="Looks like expected is negative, unclear whether "
- "expected is incorrect or result is incorrect"
- )
- request.node.add_marker(mark)
- skip_these = ["in", "not in"]
- ex = f"~(lhs {op} rhs)"
- msg = "|".join(
- [
- r"only list-like( or dict-like)? objects are allowed to be "
- r"passed to (DataFrame\.)?isin\(\), you passed a "
- r"(\[|')float(\]|')",
- "argument of type 'float' is not iterable",
- ]
- )
- if is_scalar(rhs) and op in skip_these:
- with pytest.raises(TypeError, match=msg):
- pd.eval(
- ex,
- engine=engine,
- parser=parser,
- local_dict={"lhs": lhs, "rhs": rhs},
- )
- else:
- # compound
- if is_scalar(lhs) and is_scalar(rhs):
- lhs, rhs = map(lambda x: np.array([x]), (lhs, rhs))
- expected = _eval_single_bin(lhs, op, rhs, engine)
- if is_scalar(expected):
- expected = not expected
- else:
- expected = ~expected
- result = pd.eval(ex, engine=engine, parser=parser)
- tm.assert_almost_equal(expected, result)
- @pytest.mark.parametrize("cmp1", ["<", ">"])
- @pytest.mark.parametrize("cmp2", ["<", ">"])
- def test_chained_cmp_op(self, cmp1, cmp2, lhs, midhs, rhs, engine, parser):
- mid = midhs
- if parser == "python":
- ex1 = f"lhs {cmp1} mid {cmp2} rhs"
- msg = "'BoolOp' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(ex1, engine=engine, parser=parser)
- return
- lhs_new = _eval_single_bin(lhs, cmp1, mid, engine)
- rhs_new = _eval_single_bin(mid, cmp2, rhs, engine)
- if lhs_new is not None and rhs_new is not None:
- ex1 = f"lhs {cmp1} mid {cmp2} rhs"
- ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs"
- ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)"
- expected = _eval_single_bin(lhs_new, "&", rhs_new, engine)
- for ex in (ex1, ex2, ex3):
- result = pd.eval(ex, engine=engine, parser=parser)
- tm.assert_almost_equal(result, expected)
- @pytest.mark.parametrize(
- "arith1", sorted(set(ARITH_OPS_SYMS).difference(SPECIAL_CASE_ARITH_OPS_SYMS))
- )
- def test_binary_arith_ops(self, arith1, lhs, rhs, engine, parser):
- ex = f"lhs {arith1} rhs"
- result = pd.eval(ex, engine=engine, parser=parser)
- expected = _eval_single_bin(lhs, arith1, rhs, engine)
- tm.assert_almost_equal(result, expected)
- ex = f"lhs {arith1} rhs {arith1} rhs"
- result = pd.eval(ex, engine=engine, parser=parser)
- nlhs = _eval_single_bin(lhs, arith1, rhs, engine)
- try:
- nlhs, ghs = nlhs.align(rhs)
- except (ValueError, TypeError, AttributeError):
- # ValueError: series frame or frame series align
- # TypeError, AttributeError: series or frame with scalar align
- return
- else:
- if engine == "numexpr":
- import numexpr as ne
- # direct numpy comparison
- expected = ne.evaluate(f"nlhs {arith1} ghs")
- # Update assert statement due to unreliable numerical
- # precision component (GH37328)
- # TODO: update testing code so that assert_almost_equal statement
- # can be replaced again by the assert_numpy_array_equal statement
- tm.assert_almost_equal(result.values, expected)
- else:
- expected = eval(f"nlhs {arith1} ghs")
- tm.assert_almost_equal(result, expected)
- # modulus, pow, and floor division require special casing
- def test_modulus(self, lhs, rhs, engine, parser):
- ex = r"lhs % rhs"
- result = pd.eval(ex, engine=engine, parser=parser)
- expected = lhs % rhs
- tm.assert_almost_equal(result, expected)
- if engine == "numexpr":
- import numexpr as ne
- expected = ne.evaluate(r"expected % rhs")
- if isinstance(result, (DataFrame, Series)):
- tm.assert_almost_equal(result.values, expected)
- else:
- tm.assert_almost_equal(result, expected.item())
- else:
- expected = _eval_single_bin(expected, "%", rhs, engine)
- tm.assert_almost_equal(result, expected)
- def test_floor_division(self, lhs, rhs, engine, parser):
- ex = "lhs // rhs"
- if engine == "python":
- res = pd.eval(ex, engine=engine, parser=parser)
- expected = lhs // rhs
- tm.assert_equal(res, expected)
- else:
- msg = (
- r"unsupported operand type\(s\) for //: 'VariableNode' and "
- "'VariableNode'"
- )
- with pytest.raises(TypeError, match=msg):
- pd.eval(
- ex,
- local_dict={"lhs": lhs, "rhs": rhs},
- engine=engine,
- parser=parser,
- )
- @td.skip_if_windows
- def test_pow(self, lhs, rhs, engine, parser):
- # odd failure on win32 platform, so skip
- ex = "lhs ** rhs"
- expected = _eval_single_bin(lhs, "**", rhs, engine)
- result = pd.eval(ex, engine=engine, parser=parser)
- if (
- is_scalar(lhs)
- and is_scalar(rhs)
- and isinstance(expected, (complex, np.complexfloating))
- and np.isnan(result)
- ):
- msg = "(DataFrame.columns|numpy array) are different"
- with pytest.raises(AssertionError, match=msg):
- tm.assert_numpy_array_equal(result, expected)
- else:
- tm.assert_almost_equal(result, expected)
- ex = "(lhs ** rhs) ** rhs"
- result = pd.eval(ex, engine=engine, parser=parser)
- middle = _eval_single_bin(lhs, "**", rhs, engine)
- expected = _eval_single_bin(middle, "**", rhs, engine)
- tm.assert_almost_equal(result, expected)
- def test_check_single_invert_op(self, lhs, engine, parser):
- # simple
- try:
- elb = lhs.astype(bool)
- except AttributeError:
- elb = np.array([bool(lhs)])
- expected = ~elb
- result = pd.eval("~elb", engine=engine, parser=parser)
- tm.assert_almost_equal(expected, result)
- def test_frame_invert(self, engine, parser):
- expr = "~lhs"
- # ~ ##
- # frame
- # float always raises
- lhs = DataFrame(np.random.randn(5, 2))
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'invert_dd'"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- msg = "ufunc 'invert' not supported for the input types"
- with pytest.raises(TypeError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- # int raises on numexpr
- lhs = DataFrame(np.random.randint(5, size=(5, 2)))
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'invert"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- expect = ~lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- # bool always works
- lhs = DataFrame(np.random.rand(5, 2) > 0.5)
- expect = ~lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- # object raises
- lhs = DataFrame({"b": ["a", 1, 2.0], "c": np.random.rand(3) > 0.5})
- if engine == "numexpr":
- with pytest.raises(ValueError, match="unknown type object"):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- msg = "bad operand type for unary ~: 'str'"
- with pytest.raises(TypeError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- def test_series_invert(self, engine, parser):
- # ~ ####
- expr = "~lhs"
- # series
- # float raises
- lhs = Series(np.random.randn(5))
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'invert_dd'"
- with pytest.raises(NotImplementedError, match=msg):
- result = pd.eval(expr, engine=engine, parser=parser)
- else:
- msg = "ufunc 'invert' not supported for the input types"
- with pytest.raises(TypeError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- # int raises on numexpr
- lhs = Series(np.random.randint(5, size=5))
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'invert"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- expect = ~lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- # bool
- lhs = Series(np.random.rand(5) > 0.5)
- expect = ~lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- # float
- # int
- # bool
- # object
- lhs = Series(["a", 1, 2.0])
- if engine == "numexpr":
- with pytest.raises(ValueError, match="unknown type object"):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- msg = "bad operand type for unary ~: 'str'"
- with pytest.raises(TypeError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- def test_frame_negate(self, engine, parser):
- expr = "-lhs"
- # float
- lhs = DataFrame(np.random.randn(5, 2))
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- # int
- lhs = DataFrame(np.random.randint(5, size=(5, 2)))
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- # bool doesn't work with numexpr but works elsewhere
- lhs = DataFrame(np.random.rand(5, 2) > 0.5)
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'neg_bb'"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- def test_series_negate(self, engine, parser):
- expr = "-lhs"
- # float
- lhs = Series(np.random.randn(5))
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- # int
- lhs = Series(np.random.randint(5, size=5))
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- # bool doesn't work with numexpr but works elsewhere
- lhs = Series(np.random.rand(5) > 0.5)
- if engine == "numexpr":
- msg = "couldn't find matching opcode for 'neg_bb'"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(expr, engine=engine, parser=parser)
- else:
- expect = -lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- @pytest.mark.parametrize(
- "lhs",
- [
- # Float
- DataFrame(np.random.randn(5, 2)),
- # Int
- DataFrame(np.random.randint(5, size=(5, 2))),
- # bool doesn't work with numexpr but works elsewhere
- DataFrame(np.random.rand(5, 2) > 0.5),
- ],
- )
- def test_frame_pos(self, lhs, engine, parser):
- expr = "+lhs"
- expect = lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_frame_equal(expect, result)
- @pytest.mark.parametrize(
- "lhs",
- [
- # Float
- Series(np.random.randn(5)),
- # Int
- Series(np.random.randint(5, size=5)),
- # bool doesn't work with numexpr but works elsewhere
- Series(np.random.rand(5) > 0.5),
- ],
- )
- def test_series_pos(self, lhs, engine, parser):
- expr = "+lhs"
- expect = lhs
- result = pd.eval(expr, engine=engine, parser=parser)
- tm.assert_series_equal(expect, result)
- def test_scalar_unary(self, engine, parser):
- msg = "bad operand type for unary ~: 'float'"
- with pytest.raises(TypeError, match=msg):
- pd.eval("~1.0", engine=engine, parser=parser)
- assert pd.eval("-1.0", parser=parser, engine=engine) == -1.0
- assert pd.eval("+1.0", parser=parser, engine=engine) == +1.0
- assert pd.eval("~1", parser=parser, engine=engine) == ~1
- assert pd.eval("-1", parser=parser, engine=engine) == -1
- assert pd.eval("+1", parser=parser, engine=engine) == +1
- assert pd.eval("~True", parser=parser, engine=engine) == ~True
- assert pd.eval("~False", parser=parser, engine=engine) == ~False
- assert pd.eval("-True", parser=parser, engine=engine) == -True
- assert pd.eval("-False", parser=parser, engine=engine) == -False
- assert pd.eval("+True", parser=parser, engine=engine) == +True
- assert pd.eval("+False", parser=parser, engine=engine) == +False
- def test_unary_in_array(self):
- # GH 11235
- # TODO: 2022-01-29: result return list with numexpr 2.7.3 in CI
- # but cannot reproduce locally
- result = np.array(
- pd.eval(
- "[-True, True, ~True, +True,"
- "-False, False, ~False, +False,"
- "-37, 37, ~37, +37]"
- ),
- dtype=np.object_,
- )
- expected = np.array(
- [
- -True,
- True,
- ~True,
- +True,
- -False,
- False,
- ~False,
- +False,
- -37,
- 37,
- ~37,
- +37,
- ],
- dtype=np.object_,
- )
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("dtype", [np.float32, np.float64])
- @pytest.mark.parametrize("expr", ["x < -0.1", "-5 > x"])
- def test_float_comparison_bin_op(self, dtype, expr):
- # GH 16363
- df = DataFrame({"x": np.array([0], dtype=dtype)})
- res = df.eval(expr)
- assert res.values == np.array([False])
- def test_unary_in_function(self):
- # GH 46471
- df = DataFrame({"x": [0, 1, np.nan]})
- result = df.eval("x.fillna(-1)")
- expected = df.x.fillna(-1)
- # column name becomes None if using numexpr
- # only check names when the engine is not numexpr
- tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
- result = df.eval("x.shift(1, fill_value=-1)")
- expected = df.x.shift(1, fill_value=-1)
- tm.assert_series_equal(result, expected, check_names=not USE_NUMEXPR)
- @pytest.mark.parametrize(
- "ex",
- (
- "1 or 2",
- "1 and 2",
- "a and b",
- "a or b",
- "1 or 2 and (3 + 2) > 3",
- "2 * x > 2 or 1 and 2",
- "2 * df > 3 and 1 or a",
- ),
- )
- def test_disallow_scalar_bool_ops(self, ex, engine, parser):
- x, a, b = np.random.randn(3), 1, 2 # noqa:F841
- df = DataFrame(np.random.randn(3, 2)) # noqa:F841
- msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(ex, engine=engine, parser=parser)
- def test_identical(self, engine, parser):
- # see gh-10546
- x = 1
- result = pd.eval("x", engine=engine, parser=parser)
- assert result == 1
- assert is_scalar(result)
- x = 1.5
- result = pd.eval("x", engine=engine, parser=parser)
- assert result == 1.5
- assert is_scalar(result)
- x = False
- result = pd.eval("x", engine=engine, parser=parser)
- assert not result
- assert is_bool(result)
- assert is_scalar(result)
- x = np.array([1])
- result = pd.eval("x", engine=engine, parser=parser)
- tm.assert_numpy_array_equal(result, np.array([1]))
- assert result.shape == (1,)
- x = np.array([1.5])
- result = pd.eval("x", engine=engine, parser=parser)
- tm.assert_numpy_array_equal(result, np.array([1.5]))
- assert result.shape == (1,)
- x = np.array([False]) # noqa:F841
- result = pd.eval("x", engine=engine, parser=parser)
- tm.assert_numpy_array_equal(result, np.array([False]))
- assert result.shape == (1,)
- def test_line_continuation(self, engine, parser):
- # GH 11149
- exp = """1 + 2 * \
- 5 - 1 + 2 """
- result = pd.eval(exp, engine=engine, parser=parser)
- assert result == 12
- def test_float_truncation(self, engine, parser):
- # GH 14241
- exp = "1000000000.006"
- result = pd.eval(exp, engine=engine, parser=parser)
- expected = np.float64(exp)
- assert result == expected
- df = DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]})
- cutoff = 1000000000.0006
- result = df.query(f"A < {cutoff:.4f}")
- assert result.empty
- cutoff = 1000000000.0010
- result = df.query(f"A > {cutoff:.4f}")
- expected = df.loc[[1, 2], :]
- tm.assert_frame_equal(expected, result)
- exact = 1000000000.0011
- result = df.query(f"A == {exact:.4f}")
- expected = df.loc[[1], :]
- tm.assert_frame_equal(expected, result)
- def test_disallow_python_keywords(self):
- # GH 18221
- df = DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"])
- msg = "Python keyword not valid identifier in numexpr query"
- with pytest.raises(SyntaxError, match=msg):
- df.query("class == 0")
- df = DataFrame()
- df.index.name = "lambda"
- with pytest.raises(SyntaxError, match=msg):
- df.query("lambda == 0")
- def test_true_false_logic(self):
- # GH 25823
- assert pd.eval("not True") == -2
- assert pd.eval("not False") == -1
- assert pd.eval("True and not True") == 0
- def test_and_logic_string_match(self):
- # GH 25823
- event = Series({"a": "hello"})
- assert pd.eval(f"{event.str.match('hello').a}")
- assert pd.eval(f"{event.str.match('hello').a and event.str.match('hello').a}")
- f = lambda *args, **kwargs: np.random.randn()
- # -------------------------------------
- # gh-12388: Typecasting rules consistency with python
- class TestTypeCasting:
- @pytest.mark.parametrize("op", ["+", "-", "*", "**", "/"])
- # maybe someday... numexpr has too many upcasting rules now
- # chain(*(np.sctypes[x] for x in ['uint', 'int', 'float']))
- @pytest.mark.parametrize("dt", [np.float32, np.float64])
- @pytest.mark.parametrize("left_right", [("df", "3"), ("3", "df")])
- def test_binop_typecasting(self, engine, parser, op, dt, left_right):
- df = tm.makeCustomDataframe(5, 3, data_gen_f=f, dtype=dt)
- left, right = left_right
- s = f"{left} {op} {right}"
- res = pd.eval(s, engine=engine, parser=parser)
- assert df.values.dtype == dt
- assert res.values.dtype == dt
- tm.assert_frame_equal(res, eval(s))
- # -------------------------------------
- # Basic and complex alignment
- def should_warn(*args):
- not_mono = not any(map(operator.attrgetter("is_monotonic_increasing"), args))
- only_one_dt = reduce(
- operator.xor, map(lambda x: issubclass(x.dtype.type, np.datetime64), args)
- )
- return not_mono and only_one_dt
- class TestAlignment:
- index_types = ["i", "s", "dt"]
- lhs_index_types = index_types + ["s"] # 'p'
- def test_align_nested_unary_op(self, engine, parser):
- s = "df * ~2"
- df = tm.makeCustomDataframe(5, 3, data_gen_f=f)
- res = pd.eval(s, engine=engine, parser=parser)
- tm.assert_frame_equal(res, df * ~2)
- @pytest.mark.parametrize("lr_idx_type", lhs_index_types)
- @pytest.mark.parametrize("rr_idx_type", index_types)
- @pytest.mark.parametrize("c_idx_type", index_types)
- def test_basic_frame_alignment(
- self, engine, parser, lr_idx_type, rr_idx_type, c_idx_type
- ):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always", RuntimeWarning)
- df = tm.makeCustomDataframe(
- 10, 10, data_gen_f=f, r_idx_type=lr_idx_type, c_idx_type=c_idx_type
- )
- df2 = tm.makeCustomDataframe(
- 20, 10, data_gen_f=f, r_idx_type=rr_idx_type, c_idx_type=c_idx_type
- )
- # only warns if not monotonic and not sortable
- if should_warn(df.index, df2.index):
- with tm.assert_produces_warning(RuntimeWarning):
- res = pd.eval("df + df2", engine=engine, parser=parser)
- else:
- res = pd.eval("df + df2", engine=engine, parser=parser)
- tm.assert_frame_equal(res, df + df2)
- @pytest.mark.parametrize("r_idx_type", lhs_index_types)
- @pytest.mark.parametrize("c_idx_type", lhs_index_types)
- def test_frame_comparison(self, engine, parser, r_idx_type, c_idx_type):
- df = tm.makeCustomDataframe(
- 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
- )
- res = pd.eval("df < 2", engine=engine, parser=parser)
- tm.assert_frame_equal(res, df < 2)
- df3 = DataFrame(np.random.randn(*df.shape), index=df.index, columns=df.columns)
- res = pd.eval("df < df3", engine=engine, parser=parser)
- tm.assert_frame_equal(res, df < df3)
- @pytest.mark.parametrize("r1", lhs_index_types)
- @pytest.mark.parametrize("c1", index_types)
- @pytest.mark.parametrize("r2", index_types)
- @pytest.mark.parametrize("c2", index_types)
- def test_medium_complex_frame_alignment(self, engine, parser, r1, c1, r2, c2):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always", RuntimeWarning)
- df = tm.makeCustomDataframe(
- 3, 2, data_gen_f=f, r_idx_type=r1, c_idx_type=c1
- )
- df2 = tm.makeCustomDataframe(
- 4, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
- )
- df3 = tm.makeCustomDataframe(
- 5, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
- )
- if should_warn(df.index, df2.index, df3.index):
- with tm.assert_produces_warning(RuntimeWarning):
- res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
- else:
- res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
- tm.assert_frame_equal(res, df + df2 + df3)
- @pytest.mark.parametrize("index_name", ["index", "columns"])
- @pytest.mark.parametrize("c_idx_type", index_types)
- @pytest.mark.parametrize("r_idx_type", lhs_index_types)
- def test_basic_frame_series_alignment(
- self, engine, parser, index_name, r_idx_type, c_idx_type
- ):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always", RuntimeWarning)
- df = tm.makeCustomDataframe(
- 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
- )
- index = getattr(df, index_name)
- s = Series(np.random.randn(5), index[:5])
- if should_warn(df.index, s.index):
- with tm.assert_produces_warning(RuntimeWarning):
- res = pd.eval("df + s", engine=engine, parser=parser)
- else:
- res = pd.eval("df + s", engine=engine, parser=parser)
- if r_idx_type == "dt" or c_idx_type == "dt":
- expected = df.add(s) if engine == "numexpr" else df + s
- else:
- expected = df + s
- tm.assert_frame_equal(res, expected)
- @pytest.mark.parametrize("index_name", ["index", "columns"])
- @pytest.mark.parametrize(
- "r_idx_type, c_idx_type",
- list(product(["i", "s"], ["i", "s"])) + [("dt", "dt")],
- )
- @pytest.mark.filterwarnings("ignore::RuntimeWarning")
- def test_basic_series_frame_alignment(
- self, request, engine, parser, index_name, r_idx_type, c_idx_type
- ):
- if (
- engine == "numexpr"
- and parser in ("pandas", "python")
- and index_name == "index"
- and r_idx_type == "i"
- and c_idx_type == "s"
- ):
- reason = (
- f"Flaky column ordering when engine={engine}, "
- f"parser={parser}, index_name={index_name}, "
- f"r_idx_type={r_idx_type}, c_idx_type={c_idx_type}"
- )
- request.node.add_marker(pytest.mark.xfail(reason=reason, strict=False))
- df = tm.makeCustomDataframe(
- 10, 7, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
- )
- index = getattr(df, index_name)
- s = Series(np.random.randn(5), index[:5])
- if should_warn(s.index, df.index):
- with tm.assert_produces_warning(RuntimeWarning):
- res = pd.eval("s + df", engine=engine, parser=parser)
- else:
- res = pd.eval("s + df", engine=engine, parser=parser)
- if r_idx_type == "dt" or c_idx_type == "dt":
- expected = df.add(s) if engine == "numexpr" else s + df
- else:
- expected = s + df
- tm.assert_frame_equal(res, expected)
- @pytest.mark.parametrize("c_idx_type", index_types)
- @pytest.mark.parametrize("r_idx_type", lhs_index_types)
- @pytest.mark.parametrize("index_name", ["index", "columns"])
- @pytest.mark.parametrize("op", ["+", "*"])
- def test_series_frame_commutativity(
- self, engine, parser, index_name, op, r_idx_type, c_idx_type
- ):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always", RuntimeWarning)
- df = tm.makeCustomDataframe(
- 10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
- )
- index = getattr(df, index_name)
- s = Series(np.random.randn(5), index[:5])
- lhs = f"s {op} df"
- rhs = f"df {op} s"
- if should_warn(df.index, s.index):
- with tm.assert_produces_warning(RuntimeWarning):
- a = pd.eval(lhs, engine=engine, parser=parser)
- with tm.assert_produces_warning(RuntimeWarning):
- b = pd.eval(rhs, engine=engine, parser=parser)
- else:
- a = pd.eval(lhs, engine=engine, parser=parser)
- b = pd.eval(rhs, engine=engine, parser=parser)
- if r_idx_type != "dt" and c_idx_type != "dt":
- if engine == "numexpr":
- tm.assert_frame_equal(a, b)
- @pytest.mark.parametrize("r1", lhs_index_types)
- @pytest.mark.parametrize("c1", index_types)
- @pytest.mark.parametrize("r2", index_types)
- @pytest.mark.parametrize("c2", index_types)
- def test_complex_series_frame_alignment(self, engine, parser, r1, c1, r2, c2):
- n = 3
- m1 = 5
- m2 = 2 * m1
- with warnings.catch_warnings(record=True):
- warnings.simplefilter("always", RuntimeWarning)
- index_name = random.choice(["index", "columns"])
- obj_name = random.choice(["df", "df2"])
- df = tm.makeCustomDataframe(
- m1, n, data_gen_f=f, r_idx_type=r1, c_idx_type=c1
- )
- df2 = tm.makeCustomDataframe(
- m2, n, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
- )
- index = getattr(locals().get(obj_name), index_name)
- ser = Series(np.random.randn(n), index[:n])
- if r2 == "dt" or c2 == "dt":
- if engine == "numexpr":
- expected2 = df2.add(ser)
- else:
- expected2 = df2 + ser
- else:
- expected2 = df2 + ser
- if r1 == "dt" or c1 == "dt":
- if engine == "numexpr":
- expected = expected2.add(df)
- else:
- expected = expected2 + df
- else:
- expected = expected2 + df
- if should_warn(df2.index, ser.index, df.index):
- with tm.assert_produces_warning(RuntimeWarning):
- res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
- else:
- res = pd.eval("df2 + ser + df", engine=engine, parser=parser)
- assert res.shape == expected.shape
- tm.assert_frame_equal(res, expected)
- def test_performance_warning_for_poor_alignment(self, engine, parser):
- df = DataFrame(np.random.randn(1000, 10))
- s = Series(np.random.randn(10000))
- if engine == "numexpr":
- seen = PerformanceWarning
- else:
- seen = False
- with tm.assert_produces_warning(seen):
- pd.eval("df + s", engine=engine, parser=parser)
- s = Series(np.random.randn(1000))
- with tm.assert_produces_warning(False):
- pd.eval("df + s", engine=engine, parser=parser)
- df = DataFrame(np.random.randn(10, 10000))
- s = Series(np.random.randn(10000))
- with tm.assert_produces_warning(False):
- pd.eval("df + s", engine=engine, parser=parser)
- df = DataFrame(np.random.randn(10, 10))
- s = Series(np.random.randn(10000))
- is_python_engine = engine == "python"
- if not is_python_engine:
- wrn = PerformanceWarning
- else:
- wrn = False
- with tm.assert_produces_warning(wrn) as w:
- pd.eval("df + s", engine=engine, parser=parser)
- if not is_python_engine:
- assert len(w) == 1
- msg = str(w[0].message)
- logged = np.log10(s.size - df.shape[1])
- expected = (
- f"Alignment difference on axis 1 is larger "
- f"than an order of magnitude on term 'df', "
- f"by more than {logged:.4g}; performance may suffer."
- )
- assert msg == expected
- # ------------------------------------
- # Slightly more complex ops
- class TestOperations:
- def eval(self, *args, **kwargs):
- kwargs["level"] = kwargs.pop("level", 0) + 1
- return pd.eval(*args, **kwargs)
- def test_simple_arith_ops(self, engine, parser):
- exclude_arith = []
- if parser == "python":
- exclude_arith = ["in", "not in"]
- arith_ops = [
- op
- for op in expr.ARITH_OPS_SYMS + expr.CMP_OPS_SYMS
- if op not in exclude_arith
- ]
- ops = (op for op in arith_ops if op != "//")
- for op in ops:
- ex = f"1 {op} 1"
- ex2 = f"x {op} 1"
- ex3 = f"1 {op} (x + 1)"
- if op in ("in", "not in"):
- msg = "argument of type 'int' is not iterable"
- with pytest.raises(TypeError, match=msg):
- pd.eval(ex, engine=engine, parser=parser)
- else:
- expec = _eval_single_bin(1, op, 1, engine)
- x = self.eval(ex, engine=engine, parser=parser)
- assert x == expec
- expec = _eval_single_bin(x, op, 1, engine)
- y = self.eval(ex2, local_dict={"x": x}, engine=engine, parser=parser)
- assert y == expec
- expec = _eval_single_bin(1, op, x + 1, engine)
- y = self.eval(ex3, local_dict={"x": x}, engine=engine, parser=parser)
- assert y == expec
- @pytest.mark.parametrize("rhs", [True, False])
- @pytest.mark.parametrize("lhs", [True, False])
- @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
- def test_simple_bool_ops(self, rhs, lhs, op):
- ex = f"{lhs} {op} {rhs}"
- if parser == "python" and op in ["and", "or"]:
- msg = "'BoolOp' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- self.eval(ex)
- return
- res = self.eval(ex)
- exp = eval(ex)
- assert res == exp
- @pytest.mark.parametrize("rhs", [True, False])
- @pytest.mark.parametrize("lhs", [True, False])
- @pytest.mark.parametrize("op", expr.BOOL_OPS_SYMS)
- def test_bool_ops_with_constants(self, rhs, lhs, op):
- ex = f"{lhs} {op} {rhs}"
- if parser == "python" and op in ["and", "or"]:
- msg = "'BoolOp' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- self.eval(ex)
- return
- res = self.eval(ex)
- exp = eval(ex)
- assert res == exp
- def test_4d_ndarray_fails(self):
- x = np.random.randn(3, 4, 5, 6)
- y = Series(np.random.randn(10))
- msg = "N-dimensional objects, where N > 2, are not supported with eval"
- with pytest.raises(NotImplementedError, match=msg):
- self.eval("x + y", local_dict={"x": x, "y": y})
- def test_constant(self):
- x = self.eval("1")
- assert x == 1
- def test_single_variable(self):
- df = DataFrame(np.random.randn(10, 2))
- df2 = self.eval("df", local_dict={"df": df})
- tm.assert_frame_equal(df, df2)
- def test_failing_subscript_with_name_error(self):
- df = DataFrame(np.random.randn(5, 3)) # noqa:F841
- with pytest.raises(NameError, match="name 'x' is not defined"):
- self.eval("df[x > 2] > 2")
- def test_lhs_expression_subscript(self):
- df = DataFrame(np.random.randn(5, 3))
- result = self.eval("(df + 1)[df > 2]", local_dict={"df": df})
- expected = (df + 1)[df > 2]
- tm.assert_frame_equal(result, expected)
- def test_attr_expression(self):
- df = DataFrame(np.random.randn(5, 3), columns=list("abc"))
- expr1 = "df.a < df.b"
- expec1 = df.a < df.b
- expr2 = "df.a + df.b + df.c"
- expec2 = df.a + df.b + df.c
- expr3 = "df.a + df.b + df.c[df.b < 0]"
- expec3 = df.a + df.b + df.c[df.b < 0]
- exprs = expr1, expr2, expr3
- expecs = expec1, expec2, expec3
- for e, expec in zip(exprs, expecs):
- tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df}))
- def test_assignment_fails(self):
- df = DataFrame(np.random.randn(5, 3), columns=list("abc"))
- df2 = DataFrame(np.random.randn(5, 3))
- expr1 = "df = df2"
- msg = "cannot assign without a target object"
- with pytest.raises(ValueError, match=msg):
- self.eval(expr1, local_dict={"df": df, "df2": df2})
- def test_assignment_column_multiple_raise(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # multiple assignees
- with pytest.raises(SyntaxError, match="invalid syntax"):
- df.eval("d c = a + b")
- def test_assignment_column_invalid_assign(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # invalid assignees
- msg = "left hand side of an assignment must be a single name"
- with pytest.raises(SyntaxError, match=msg):
- df.eval("d,c = a + b")
- def test_assignment_column_invalid_assign_function_call(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- msg = "cannot assign to function call"
- with pytest.raises(SyntaxError, match=msg):
- df.eval('Timestamp("20131001") = a + b')
- def test_assignment_single_assign_existing(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # single assignment - existing variable
- expected = df.copy()
- expected["a"] = expected["a"] + expected["b"]
- df.eval("a = a + b", inplace=True)
- tm.assert_frame_equal(df, expected)
- def test_assignment_single_assign_new(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # single assignment - new variable
- expected = df.copy()
- expected["c"] = expected["a"] + expected["b"]
- df.eval("c = a + b", inplace=True)
- tm.assert_frame_equal(df, expected)
- def test_assignment_single_assign_local_overlap(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- df = df.copy()
- a = 1 # noqa:F841
- df.eval("a = 1 + b", inplace=True)
- expected = df.copy()
- expected["a"] = 1 + expected["b"]
- tm.assert_frame_equal(df, expected)
- def test_assignment_single_assign_name(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- a = 1 # noqa:F841
- old_a = df.a.copy()
- df.eval("a = a + b", inplace=True)
- result = old_a + df.b
- tm.assert_series_equal(result, df.a, check_names=False)
- assert result.name is None
- def test_assignment_multiple_raises(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # multiple assignment
- df.eval("c = a + b", inplace=True)
- msg = "can only assign a single expression"
- with pytest.raises(SyntaxError, match=msg):
- df.eval("c = a = b")
- def test_assignment_explicit(self):
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- # explicit targets
- self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True)
- expected = df.copy()
- expected["c"] = expected["a"] + expected["b"]
- tm.assert_frame_equal(df, expected)
- def test_column_in(self):
- # GH 11235
- df = DataFrame({"a": [11], "b": [-32]})
- result = df.eval("a in [11, -32]")
- expected = Series([True])
- # TODO: 2022-01-29: Name check failed with numexpr 2.7.3 in CI
- # but cannot reproduce locally
- tm.assert_series_equal(result, expected, check_names=False)
- @pytest.mark.xfail(reason="Unknown: Omitted test_ in name prior.")
- def test_assignment_not_inplace(self):
- # see gh-9297
- df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
- actual = df.eval("c = a + b", inplace=False)
- assert actual is not None
- expected = df.copy()
- expected["c"] = expected["a"] + expected["b"]
- tm.assert_frame_equal(df, expected)
- def test_multi_line_expression(self):
- # GH 11149
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- expected = df.copy()
- expected["c"] = expected["a"] + expected["b"]
- expected["d"] = expected["c"] + expected["b"]
- answer = df.eval(
- """
- c = a + b
- d = c + b""",
- inplace=True,
- )
- tm.assert_frame_equal(expected, df)
- assert answer is None
- expected["a"] = expected["a"] - 1
- expected["e"] = expected["a"] + 2
- answer = df.eval(
- """
- a = a - 1
- e = a + 2""",
- inplace=True,
- )
- tm.assert_frame_equal(expected, df)
- assert answer is None
- # multi-line not valid if not all assignments
- msg = "Multi-line expressions are only valid if all expressions contain"
- with pytest.raises(ValueError, match=msg):
- df.eval(
- """
- a = b + 2
- b - 2""",
- inplace=False,
- )
- def test_multi_line_expression_not_inplace(self):
- # GH 11149
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- expected = df.copy()
- expected["c"] = expected["a"] + expected["b"]
- expected["d"] = expected["c"] + expected["b"]
- df = df.eval(
- """
- c = a + b
- d = c + b""",
- inplace=False,
- )
- tm.assert_frame_equal(expected, df)
- expected["a"] = expected["a"] - 1
- expected["e"] = expected["a"] + 2
- df = df.eval(
- """
- a = a - 1
- e = a + 2""",
- inplace=False,
- )
- tm.assert_frame_equal(expected, df)
- def test_multi_line_expression_local_variable(self):
- # GH 15342
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- expected = df.copy()
- local_var = 7
- expected["c"] = expected["a"] * local_var
- expected["d"] = expected["c"] + local_var
- answer = df.eval(
- """
- c = a * @local_var
- d = c + @local_var
- """,
- inplace=True,
- )
- tm.assert_frame_equal(expected, df)
- assert answer is None
- def test_multi_line_expression_callable_local_variable(self):
- # 26426
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- def local_func(a, b):
- return b
- expected = df.copy()
- expected["c"] = expected["a"] * local_func(1, 7)
- expected["d"] = expected["c"] + local_func(1, 7)
- answer = df.eval(
- """
- c = a * @local_func(1, 7)
- d = c + @local_func(1, 7)
- """,
- inplace=True,
- )
- tm.assert_frame_equal(expected, df)
- assert answer is None
- def test_multi_line_expression_callable_local_variable_with_kwargs(self):
- # 26426
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- def local_func(a, b):
- return b
- expected = df.copy()
- expected["c"] = expected["a"] * local_func(b=7, a=1)
- expected["d"] = expected["c"] + local_func(b=7, a=1)
- answer = df.eval(
- """
- c = a * @local_func(b=7, a=1)
- d = c + @local_func(b=7, a=1)
- """,
- inplace=True,
- )
- tm.assert_frame_equal(expected, df)
- assert answer is None
- def test_assignment_in_query(self):
- # GH 8664
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- df_orig = df.copy()
- msg = "cannot assign without a target object"
- with pytest.raises(ValueError, match=msg):
- df.query("a = 1")
- tm.assert_frame_equal(df, df_orig)
- def test_query_inplace(self):
- # see gh-11149
- df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
- expected = df.copy()
- expected = expected[expected["a"] == 2]
- df.query("a == 2", inplace=True)
- tm.assert_frame_equal(expected, df)
- df = {}
- expected = {"a": 3}
- self.eval("a = 1 + 2", target=df, inplace=True)
- tm.assert_dict_equal(df, expected)
- @pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2], np.array([]), (1, 3)])
- def test_cannot_item_assign(self, invalid_target):
- msg = "Cannot assign expression output to target"
- expression = "a = 1 + 2"
- with pytest.raises(ValueError, match=msg):
- self.eval(expression, target=invalid_target, inplace=True)
- if hasattr(invalid_target, "copy"):
- with pytest.raises(ValueError, match=msg):
- self.eval(expression, target=invalid_target, inplace=False)
- @pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)])
- def test_cannot_copy_item(self, invalid_target):
- msg = "Cannot return a copy of the target"
- expression = "a = 1 + 2"
- with pytest.raises(ValueError, match=msg):
- self.eval(expression, target=invalid_target, inplace=False)
- @pytest.mark.parametrize("target", [1, "cat", [1, 2], np.array([]), (1, 3), {1: 2}])
- def test_inplace_no_assignment(self, target):
- expression = "1 + 2"
- assert self.eval(expression, target=target, inplace=False) == 3
- msg = "Cannot operate inplace if there is no assignment"
- with pytest.raises(ValueError, match=msg):
- self.eval(expression, target=target, inplace=True)
- def test_basic_period_index_boolean_expression(self):
- df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
- e = df < 2
- r = self.eval("df < 2", local_dict={"df": df})
- x = df < 2
- tm.assert_frame_equal(r, e)
- tm.assert_frame_equal(x, e)
- def test_basic_period_index_subscript_expression(self):
- df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
- r = self.eval("df[df < 2 + 3]", local_dict={"df": df})
- e = df[df < 2 + 3]
- tm.assert_frame_equal(r, e)
- def test_nested_period_index_subscript_expression(self):
- df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
- r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df})
- e = df[df[df < 2] < 2] + df * 2
- tm.assert_frame_equal(r, e)
- def test_date_boolean(self, engine, parser):
- df = DataFrame(np.random.randn(5, 3))
- df["dates1"] = date_range("1/1/2012", periods=5)
- res = self.eval(
- "df.dates1 < 20130101",
- local_dict={"df": df},
- engine=engine,
- parser=parser,
- )
- expec = df.dates1 < "20130101"
- tm.assert_series_equal(res, expec, check_names=False)
- def test_simple_in_ops(self, engine, parser):
- if parser != "python":
- res = pd.eval("1 in [1, 2]", engine=engine, parser=parser)
- assert res
- res = pd.eval("2 in (1, 2)", engine=engine, parser=parser)
- assert res
- res = pd.eval("3 in (1, 2)", engine=engine, parser=parser)
- assert not res
- res = pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
- assert res
- res = pd.eval("[3] not in (1, 2)", engine=engine, parser=parser)
- assert res
- res = pd.eval("[3] in ([3], 2)", engine=engine, parser=parser)
- assert res
- res = pd.eval("[[3]] in [[[3]], 2]", engine=engine, parser=parser)
- assert res
- res = pd.eval("(3,) in [(3,), 2]", engine=engine, parser=parser)
- assert res
- res = pd.eval("(3,) not in [(3,), 2]", engine=engine, parser=parser)
- assert not res
- res = pd.eval("[(3,)] in [[(3,)], 2]", engine=engine, parser=parser)
- assert res
- else:
- msg = "'In' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("1 in [1, 2]", engine=engine, parser=parser)
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("2 in (1, 2)", engine=engine, parser=parser)
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("3 in (1, 2)", engine=engine, parser=parser)
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("[(3,)] in (1, 2, [(3,)])", engine=engine, parser=parser)
- msg = "'NotIn' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("3 not in (1, 2)", engine=engine, parser=parser)
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval("[3] not in (1, 2, [[3]])", engine=engine, parser=parser)
- def test_check_many_exprs(self, engine, parser):
- a = 1 # noqa:F841
- expr = " * ".join("a" * 33)
- expected = 1
- res = pd.eval(expr, engine=engine, parser=parser)
- assert res == expected
- @pytest.mark.parametrize(
- "expr",
- [
- "df > 2 and df > 3",
- "df > 2 or df > 3",
- "not df > 2",
- ],
- )
- def test_fails_and_or_not(self, expr, engine, parser):
- df = DataFrame(np.random.randn(5, 3))
- if parser == "python":
- msg = "'BoolOp' nodes are not implemented"
- if "not" in expr:
- msg = "'Not' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(
- expr,
- local_dict={"df": df},
- parser=parser,
- engine=engine,
- )
- else:
- # smoke-test, should not raise
- pd.eval(
- expr,
- local_dict={"df": df},
- parser=parser,
- engine=engine,
- )
- @pytest.mark.parametrize("char", ["|", "&"])
- def test_fails_ampersand_pipe(self, char, engine, parser):
- df = DataFrame(np.random.randn(5, 3)) # noqa:F841
- ex = f"(df + 2)[df > 1] > 0 {char} (df > 0)"
- if parser == "python":
- msg = "cannot evaluate scalar only bool ops"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(ex, parser=parser, engine=engine)
- else:
- # smoke-test, should not raise
- pd.eval(ex, parser=parser, engine=engine)
- class TestMath:
- def eval(self, *args, **kwargs):
- kwargs["level"] = kwargs.pop("level", 0) + 1
- return pd.eval(*args, **kwargs)
- @pytest.mark.skipif(
- not NUMEXPR_INSTALLED, reason="Unary ops only implemented for numexpr"
- )
- @pytest.mark.parametrize("fn", _unary_math_ops)
- def test_unary_functions(self, fn):
- df = DataFrame({"a": np.random.randn(10)})
- a = df.a
- expr = f"{fn}(a)"
- got = self.eval(expr)
- with np.errstate(all="ignore"):
- expect = getattr(np, fn)(a)
- tm.assert_series_equal(got, expect, check_names=False)
- @pytest.mark.parametrize("fn", _binary_math_ops)
- def test_binary_functions(self, fn):
- df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
- a = df.a
- b = df.b
- expr = f"{fn}(a, b)"
- got = self.eval(expr)
- with np.errstate(all="ignore"):
- expect = getattr(np, fn)(a, b)
- tm.assert_almost_equal(got, expect, check_names=False)
- def test_df_use_case(self, engine, parser):
- df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
- df.eval(
- "e = arctan2(sin(a), b)",
- engine=engine,
- parser=parser,
- inplace=True,
- )
- got = df.e
- expect = np.arctan2(np.sin(df.a), df.b)
- tm.assert_series_equal(got, expect, check_names=False)
- def test_df_arithmetic_subexpression(self, engine, parser):
- df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
- df.eval("e = sin(a + b)", engine=engine, parser=parser, inplace=True)
- got = df.e
- expect = np.sin(df.a + df.b)
- tm.assert_series_equal(got, expect, check_names=False)
- @pytest.mark.parametrize(
- "dtype, expect_dtype",
- [
- (np.int32, np.float64),
- (np.int64, np.float64),
- (np.float32, np.float32),
- (np.float64, np.float64),
- pytest.param(np.complex128, np.complex128, marks=td.skip_if_windows),
- ],
- )
- def test_result_types(self, dtype, expect_dtype, engine, parser):
- # xref https://github.com/pandas-dev/pandas/issues/12293
- # this fails on Windows, apparently a floating point precision issue
- # Did not test complex64 because DataFrame is converting it to
- # complex128. Due to https://github.com/pandas-dev/pandas/issues/10952
- df = DataFrame({"a": np.random.randn(10).astype(dtype)})
- assert df.a.dtype == dtype
- df.eval("b = sin(a)", engine=engine, parser=parser, inplace=True)
- got = df.b
- expect = np.sin(df.a)
- assert expect.dtype == got.dtype
- assert expect_dtype == got.dtype
- tm.assert_series_equal(got, expect, check_names=False)
- def test_undefined_func(self, engine, parser):
- df = DataFrame({"a": np.random.randn(10)})
- msg = '"mysin" is not a supported function'
- with pytest.raises(ValueError, match=msg):
- df.eval("mysin(a)", engine=engine, parser=parser)
- def test_keyword_arg(self, engine, parser):
- df = DataFrame({"a": np.random.randn(10)})
- msg = 'Function "sin" does not support keyword arguments'
- with pytest.raises(TypeError, match=msg):
- df.eval("sin(x=a)", engine=engine, parser=parser)
- _var_s = np.random.randn(10)
- class TestScope:
- def test_global_scope(self, engine, parser):
- e = "_var_s * 2"
- tm.assert_numpy_array_equal(
- _var_s * 2, pd.eval(e, engine=engine, parser=parser)
- )
- def test_no_new_locals(self, engine, parser):
- x = 1
- lcls = locals().copy()
- pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser)
- lcls2 = locals().copy()
- lcls2.pop("lcls")
- assert lcls == lcls2
- def test_no_new_globals(self, engine, parser):
- x = 1 # noqa:F841
- gbls = globals().copy()
- pd.eval("x + 1", engine=engine, parser=parser)
- gbls2 = globals().copy()
- assert gbls == gbls2
- def test_empty_locals(self, engine, parser):
- # GH 47084
- x = 1 # noqa: F841
- msg = "name 'x' is not defined"
- with pytest.raises(UndefinedVariableError, match=msg):
- pd.eval("x + 1", engine=engine, parser=parser, local_dict={})
- def test_empty_globals(self, engine, parser):
- # GH 47084
- msg = "name '_var_s' is not defined"
- e = "_var_s * 2"
- with pytest.raises(UndefinedVariableError, match=msg):
- pd.eval(e, engine=engine, parser=parser, global_dict={})
- @td.skip_if_no_ne
- def test_invalid_engine():
- msg = "Invalid engine 'asdf' passed"
- with pytest.raises(KeyError, match=msg):
- pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf")
- @td.skip_if_no_ne
- @pytest.mark.parametrize(
- ("use_numexpr", "expected"),
- (
- (True, "numexpr"),
- (False, "python"),
- ),
- )
- def test_numexpr_option_respected(use_numexpr, expected):
- # GH 32556
- from pandas.core.computation.eval import _check_engine
- with pd.option_context("compute.use_numexpr", use_numexpr):
- result = _check_engine(None)
- assert result == expected
- @td.skip_if_no_ne
- def test_numexpr_option_incompatible_op():
- # GH 32556
- with pd.option_context("compute.use_numexpr", False):
- df = DataFrame(
- {"A": [True, False, True, False, None, None], "B": [1, 2, 3, 4, 5, 6]}
- )
- result = df.query("A.isnull()")
- expected = DataFrame({"A": [None, None], "B": [5, 6]}, index=[4, 5])
- tm.assert_frame_equal(result, expected)
- @td.skip_if_no_ne
- def test_invalid_parser():
- msg = "Invalid parser 'asdf' passed"
- with pytest.raises(KeyError, match=msg):
- pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf")
- _parsers: dict[str, type[BaseExprVisitor]] = {
- "python": PythonExprVisitor,
- "pytables": pytables.PyTablesExprVisitor,
- "pandas": PandasExprVisitor,
- }
- @pytest.mark.parametrize("engine", ENGINES)
- @pytest.mark.parametrize("parser", _parsers)
- def test_disallowed_nodes(engine, parser):
- VisitorClass = _parsers[parser]
- inst = VisitorClass("x + 1", engine, parser)
- for ops in VisitorClass.unsupported_nodes:
- msg = "nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- getattr(inst, ops)()
- def test_syntax_error_exprs(engine, parser):
- e = "s +"
- with pytest.raises(SyntaxError, match="invalid syntax"):
- pd.eval(e, engine=engine, parser=parser)
- def test_name_error_exprs(engine, parser):
- e = "s + t"
- msg = "name 's' is not defined"
- with pytest.raises(NameError, match=msg):
- pd.eval(e, engine=engine, parser=parser)
- @pytest.mark.parametrize("express", ["a + @b", "@a + b", "@a + @b"])
- def test_invalid_local_variable_reference(engine, parser, express):
- a, b = 1, 2 # noqa:F841
- if parser != "pandas":
- with pytest.raises(SyntaxError, match="The '@' prefix is only"):
- pd.eval(express, engine=engine, parser=parser)
- else:
- with pytest.raises(SyntaxError, match="The '@' prefix is not"):
- pd.eval(express, engine=engine, parser=parser)
- def test_numexpr_builtin_raises(engine, parser):
- sin, dotted_line = 1, 2
- if engine == "numexpr":
- msg = "Variables in expression .+"
- with pytest.raises(NumExprClobberingError, match=msg):
- pd.eval("sin + dotted_line", engine=engine, parser=parser)
- else:
- res = pd.eval("sin + dotted_line", engine=engine, parser=parser)
- assert res == sin + dotted_line
- def test_bad_resolver_raises(engine, parser):
- cannot_resolve = 42, 3.0
- with pytest.raises(TypeError, match="Resolver of type .+"):
- pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser)
- def test_empty_string_raises(engine, parser):
- # GH 13139
- with pytest.raises(ValueError, match="expr cannot be an empty string"):
- pd.eval("", engine=engine, parser=parser)
- def test_more_than_one_expression_raises(engine, parser):
- with pytest.raises(SyntaxError, match="only a single expression is allowed"):
- pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser)
- @pytest.mark.parametrize("cmp", ("and", "or"))
- @pytest.mark.parametrize("lhs", (int, float))
- @pytest.mark.parametrize("rhs", (int, float))
- def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
- gen = {int: lambda: np.random.randint(10), float: np.random.randn}
- mid = gen[lhs]() # noqa:F841
- lhs = gen[lhs]()
- rhs = gen[rhs]()
- ex1 = f"lhs {cmp} mid {cmp} rhs"
- ex2 = f"lhs {cmp} mid and mid {cmp} rhs"
- ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)"
- for ex in (ex1, ex2, ex3):
- msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
- with pytest.raises(NotImplementedError, match=msg):
- pd.eval(ex, engine=engine, parser=parser)
- @pytest.mark.parametrize(
- "other",
- [
- "'x'",
- "...",
- ],
- )
- def test_equals_various(other):
- df = DataFrame({"A": ["a", "b", "c"]})
- result = df.eval(f"A == {other}")
- expected = Series([False, False, False], name="A")
- if USE_NUMEXPR:
- # https://github.com/pandas-dev/pandas/issues/10239
- # lose name with numexpr engine. Remove when that's fixed.
- expected.name = None
- tm.assert_series_equal(result, expected)
- def test_inf(engine, parser):
- s = "inf + 1"
- expected = np.inf
- result = pd.eval(s, engine=engine, parser=parser)
- assert result == expected
- @pytest.mark.parametrize("column", ["Temp(°C)", "Capacitance(μF)"])
- def test_query_token(engine, column):
- # See: https://github.com/pandas-dev/pandas/pull/42826
- df = DataFrame(np.random.randn(5, 2), columns=[column, "b"])
- expected = df[df[column] > 5]
- query_string = f"`{column}` > 5"
- result = df.query(query_string, engine=engine)
- tm.assert_frame_equal(result, expected)
- def test_negate_lt_eq_le(engine, parser):
- df = DataFrame([[0, 10], [1, 20]], columns=["cat", "count"])
- expected = df[~(df.cat > 0)]
- result = df.query("~(cat > 0)", engine=engine, parser=parser)
- tm.assert_frame_equal(result, expected)
- if parser == "python":
- msg = "'Not' nodes are not implemented"
- with pytest.raises(NotImplementedError, match=msg):
- df.query("not (cat > 0)", engine=engine, parser=parser)
- else:
- result = df.query("not (cat > 0)", engine=engine, parser=parser)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize(
- "column",
- DEFAULT_GLOBALS.keys(),
- )
- def test_eval_no_support_column_name(request, column):
- # GH 44603
- if column in ["True", "False", "inf", "Inf"]:
- request.node.add_marker(
- pytest.mark.xfail(
- raises=KeyError,
- reason=f"GH 47859 DataFrame eval not supported with {column}",
- )
- )
- df = DataFrame(np.random.randint(0, 100, size=(10, 2)), columns=[column, "col1"])
- expected = df[df[column] > 6]
- result = df.query(f"{column}>6")
- tm.assert_frame_equal(result, expected)
- def test_set_inplace(using_copy_on_write):
- # https://github.com/pandas-dev/pandas/issues/47449
- # Ensure we don't only update the DataFrame inplace, but also the actual
- # column values, such that references to this column also get updated
- df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
- result_view = df[:]
- ser = df["A"]
- df.eval("A = B + C", inplace=True)
- expected = DataFrame({"A": [11, 13, 15], "B": [4, 5, 6], "C": [7, 8, 9]})
- tm.assert_frame_equal(df, expected)
- if not using_copy_on_write:
- tm.assert_series_equal(ser, expected["A"])
- tm.assert_series_equal(result_view["A"], expected["A"])
- else:
- expected = Series([1, 2, 3], name="A")
- tm.assert_series_equal(ser, expected)
- tm.assert_series_equal(result_view["A"], expected)
- class TestValidate:
- @pytest.mark.parametrize("value", [1, "True", [1, 2, 3], 5.0])
- def test_validate_bool_args(self, value):
- msg = 'For argument "inplace" expected type bool, received type'
- with pytest.raises(ValueError, match=msg):
- pd.eval("2+2", inplace=value)
|