123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- import collections
- from datetime import timedelta
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- DatetimeIndex,
- Index,
- Interval,
- IntervalIndex,
- MultiIndex,
- Series,
- Timedelta,
- TimedeltaIndex,
- )
- import pandas._testing as tm
- from pandas.tests.base.common import allow_na_ops
- def test_value_counts(index_or_series_obj):
- obj = index_or_series_obj
- obj = np.repeat(obj, range(1, len(obj) + 1))
- result = obj.value_counts()
- counter = collections.Counter(obj)
- expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
- if obj.dtype != np.float16:
- expected.index = expected.index.astype(obj.dtype)
- else:
- with pytest.raises(NotImplementedError, match="float16 indexes are not "):
- expected.index.astype(obj.dtype)
- return
- if isinstance(expected.index, MultiIndex):
- expected.index.names = obj.names
- else:
- expected.index.name = obj.name
- if not isinstance(result.dtype, np.dtype):
- if getattr(obj.dtype, "storage", "") == "pyarrow":
- expected = expected.astype("int64[pyarrow]")
- else:
- # i.e IntegerDtype
- expected = expected.astype("Int64")
- # TODO(GH#32514): Order of entries with the same count is inconsistent
- # on CI (gh-32449)
- if obj.duplicated().any():
- result = result.sort_index()
- expected = expected.sort_index()
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("null_obj", [np.nan, None])
- def test_value_counts_null(null_obj, index_or_series_obj):
- orig = index_or_series_obj
- obj = orig.copy()
- if not allow_na_ops(obj):
- pytest.skip("type doesn't allow for NA operations")
- elif len(obj) < 1:
- pytest.skip("Test doesn't make sense on empty data")
- elif isinstance(orig, MultiIndex):
- pytest.skip(f"MultiIndex can't hold '{null_obj}'")
- values = obj._values
- values[0:2] = null_obj
- klass = type(obj)
- repeated_values = np.repeat(values, range(1, len(values) + 1))
- obj = klass(repeated_values, dtype=obj.dtype)
- # because np.nan == np.nan is False, but None == None is True
- # np.nan would be duplicated, whereas None wouldn't
- counter = collections.Counter(obj.dropna())
- expected = Series(dict(counter.most_common()), dtype=np.int64, name="count")
- if obj.dtype != np.float16:
- expected.index = expected.index.astype(obj.dtype)
- else:
- with pytest.raises(NotImplementedError, match="float16 indexes are not "):
- expected.index.astype(obj.dtype)
- return
- expected.index.name = obj.name
- result = obj.value_counts()
- if obj.duplicated().any():
- # TODO(GH#32514):
- # Order of entries with the same count is inconsistent on CI (gh-32449)
- expected = expected.sort_index()
- result = result.sort_index()
- if not isinstance(result.dtype, np.dtype):
- if getattr(obj.dtype, "storage", "") == "pyarrow":
- expected = expected.astype("int64[pyarrow]")
- else:
- # i.e IntegerDtype
- expected = expected.astype("Int64")
- tm.assert_series_equal(result, expected)
- expected[null_obj] = 3
- result = obj.value_counts(dropna=False)
- if obj.duplicated().any():
- # TODO(GH#32514):
- # Order of entries with the same count is inconsistent on CI (gh-32449)
- expected = expected.sort_index()
- result = result.sort_index()
- tm.assert_series_equal(result, expected)
- def test_value_counts_inferred(index_or_series):
- klass = index_or_series
- s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
- s = klass(s_values)
- expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"], name="count")
- tm.assert_series_equal(s.value_counts(), expected)
- if isinstance(s, Index):
- exp = Index(np.unique(np.array(s_values, dtype=np.object_)))
- tm.assert_index_equal(s.unique(), exp)
- else:
- exp = np.unique(np.array(s_values, dtype=np.object_))
- tm.assert_numpy_array_equal(s.unique(), exp)
- assert s.nunique() == 4
- # don't sort, have to sort after the fact as not sorting is
- # platform-dep
- hist = s.value_counts(sort=False).sort_values()
- expected = Series([3, 1, 4, 2], index=list("acbd"), name="count").sort_values()
- tm.assert_series_equal(hist, expected)
- # sort ascending
- hist = s.value_counts(ascending=True)
- expected = Series([1, 2, 3, 4], index=list("cdab"), name="count")
- tm.assert_series_equal(hist, expected)
- # relative histogram.
- hist = s.value_counts(normalize=True)
- expected = Series(
- [0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"], name="proportion"
- )
- tm.assert_series_equal(hist, expected)
- def test_value_counts_bins(index_or_series):
- klass = index_or_series
- s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"]
- s = klass(s_values)
- # bins
- msg = "bins argument only works with numeric data"
- with pytest.raises(TypeError, match=msg):
- s.value_counts(bins=1)
- s1 = Series([1, 1, 2, 3])
- res1 = s1.value_counts(bins=1)
- exp1 = Series({Interval(0.997, 3.0): 4}, name="count")
- tm.assert_series_equal(res1, exp1)
- res1n = s1.value_counts(bins=1, normalize=True)
- exp1n = Series({Interval(0.997, 3.0): 1.0}, name="proportion")
- tm.assert_series_equal(res1n, exp1n)
- if isinstance(s1, Index):
- tm.assert_index_equal(s1.unique(), Index([1, 2, 3]))
- else:
- exp = np.array([1, 2, 3], dtype=np.int64)
- tm.assert_numpy_array_equal(s1.unique(), exp)
- assert s1.nunique() == 3
- # these return the same
- res4 = s1.value_counts(bins=4, dropna=True)
- intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
- exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
- tm.assert_series_equal(res4, exp4)
- res4 = s1.value_counts(bins=4, dropna=False)
- intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0])
- exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 1, 3, 2]), name="count")
- tm.assert_series_equal(res4, exp4)
- res4n = s1.value_counts(bins=4, normalize=True)
- exp4n = Series(
- [0.5, 0.25, 0.25, 0], index=intervals.take([0, 1, 3, 2]), name="proportion"
- )
- tm.assert_series_equal(res4n, exp4n)
- # handle NA's properly
- s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"]
- s = klass(s_values)
- expected = Series([4, 3, 2], index=["b", "a", "d"], name="count")
- tm.assert_series_equal(s.value_counts(), expected)
- if isinstance(s, Index):
- exp = Index(["a", "b", np.nan, "d"])
- tm.assert_index_equal(s.unique(), exp)
- else:
- exp = np.array(["a", "b", np.nan, "d"], dtype=object)
- tm.assert_numpy_array_equal(s.unique(), exp)
- assert s.nunique() == 3
- s = klass({}) if klass is dict else klass({}, dtype=object)
- expected = Series([], dtype=np.int64, name="count")
- tm.assert_series_equal(s.value_counts(), expected, check_index_type=False)
- # returned dtype differs depending on original
- if isinstance(s, Index):
- tm.assert_index_equal(s.unique(), Index([]), exact=False)
- else:
- tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False)
- assert s.nunique() == 0
- def test_value_counts_datetime64(index_or_series):
- klass = index_or_series
- # GH 3002, datetime64[ns]
- # don't test names though
- df = pd.DataFrame(
- {
- "person_id": ["xxyyzz", "xxyyzz", "xxyyzz", "xxyyww", "foofoo", "foofoo"],
- "dt": pd.to_datetime(
- [
- "2010-01-01",
- "2010-01-01",
- "2010-01-01",
- "2009-01-01",
- "2008-09-09",
- "2008-09-09",
- ]
- ),
- "food": ["PIE", "GUM", "EGG", "EGG", "PIE", "GUM"],
- }
- )
- s = klass(df["dt"].copy())
- s.name = None
- idx = pd.to_datetime(
- ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"]
- )
- expected_s = Series([3, 2, 1], index=idx, name="count")
- tm.assert_series_equal(s.value_counts(), expected_s)
- expected = pd.array(
- np.array(
- ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"],
- dtype="datetime64[ns]",
- )
- )
- if isinstance(s, Index):
- tm.assert_index_equal(s.unique(), DatetimeIndex(expected))
- else:
- tm.assert_extension_array_equal(s.unique(), expected)
- assert s.nunique() == 3
- # with NaT
- s = df["dt"].copy()
- s = klass(list(s.values) + [pd.NaT] * 4)
- result = s.value_counts()
- assert result.index.dtype == "datetime64[ns]"
- tm.assert_series_equal(result, expected_s)
- result = s.value_counts(dropna=False)
- expected_s = pd.concat(
- [Series([4], index=DatetimeIndex([pd.NaT]), name="count"), expected_s]
- )
- tm.assert_series_equal(result, expected_s)
- assert s.dtype == "datetime64[ns]"
- unique = s.unique()
- assert unique.dtype == "datetime64[ns]"
- # numpy_array_equal cannot compare pd.NaT
- if isinstance(s, Index):
- exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT])
- tm.assert_index_equal(unique, exp_idx)
- else:
- tm.assert_extension_array_equal(unique[:3], expected)
- assert pd.isna(unique[3])
- assert s.nunique() == 3
- assert s.nunique(dropna=False) == 4
- # timedelta64[ns]
- td = df.dt - df.dt + timedelta(1)
- td = klass(td, name="dt")
- result = td.value_counts()
- expected_s = Series([6], index=Index([Timedelta("1day")], name="dt"), name="count")
- tm.assert_series_equal(result, expected_s)
- expected = TimedeltaIndex(["1 days"], name="dt")
- if isinstance(td, Index):
- tm.assert_index_equal(td.unique(), expected)
- else:
- tm.assert_extension_array_equal(td.unique(), expected._values)
- td2 = timedelta(1) + (df.dt - df.dt)
- td2 = klass(td2, name="dt")
- result2 = td2.value_counts()
- tm.assert_series_equal(result2, expected_s)
- @pytest.mark.parametrize("dropna", [True, False])
- def test_value_counts_with_nan(dropna, index_or_series):
- # GH31944
- klass = index_or_series
- values = [True, pd.NA, np.nan]
- obj = klass(values)
- res = obj.value_counts(dropna=dropna)
- if dropna is True:
- expected = Series([1], index=Index([True], dtype=obj.dtype), name="count")
- else:
- expected = Series([1, 1, 1], index=[True, pd.NA, np.nan], name="count")
- tm.assert_series_equal(res, expected)
|