123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742 |
- """
- Tests for DatetimeArray
- """
- from datetime import timedelta
- import operator
- try:
- from zoneinfo import ZoneInfo
- except ImportError:
- ZoneInfo = None
- import numpy as np
- import pytest
- from pandas._libs.tslibs import (
- npy_unit_to_abbrev,
- tz_compare,
- )
- from pandas.core.dtypes.dtypes import DatetimeTZDtype
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.arrays import (
- DatetimeArray,
- TimedeltaArray,
- )
- class TestNonNano:
- @pytest.fixture(params=["s", "ms", "us"])
- def unit(self, request):
- """Fixture returning parametrized time units"""
- return request.param
- @pytest.fixture
- def dtype(self, unit, tz_naive_fixture):
- tz = tz_naive_fixture
- if tz is None:
- return np.dtype(f"datetime64[{unit}]")
- else:
- return DatetimeTZDtype(unit=unit, tz=tz)
- @pytest.fixture
- def dta_dti(self, unit, dtype):
- tz = getattr(dtype, "tz", None)
- dti = pd.date_range("2016-01-01", periods=55, freq="D", tz=tz)
- if tz is None:
- arr = np.asarray(dti).astype(f"M8[{unit}]")
- else:
- arr = np.asarray(dti.tz_convert("UTC").tz_localize(None)).astype(
- f"M8[{unit}]"
- )
- dta = DatetimeArray._simple_new(arr, dtype=dtype)
- return dta, dti
- @pytest.fixture
- def dta(self, dta_dti):
- dta, dti = dta_dti
- return dta
- def test_non_nano(self, unit, dtype):
- arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
- dta = DatetimeArray._simple_new(arr, dtype=dtype)
- assert dta.dtype == dtype
- assert dta[0].unit == unit
- assert tz_compare(dta.tz, dta[0].tz)
- assert (dta[0] == dta[:1]).all()
- @pytest.mark.parametrize(
- "field", DatetimeArray._field_ops + DatetimeArray._bool_ops
- )
- def test_fields(self, unit, field, dtype, dta_dti):
- dta, dti = dta_dti
- assert (dti == dta).all()
- res = getattr(dta, field)
- expected = getattr(dti._data, field)
- tm.assert_numpy_array_equal(res, expected)
- def test_normalize(self, unit):
- dti = pd.date_range("2016-01-01 06:00:00", periods=55, freq="D")
- arr = np.asarray(dti).astype(f"M8[{unit}]")
- dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
- assert not dta.is_normalized
- # TODO: simplify once we can just .astype to other unit
- exp = np.asarray(dti.normalize()).astype(f"M8[{unit}]")
- expected = DatetimeArray._simple_new(exp, dtype=exp.dtype)
- res = dta.normalize()
- tm.assert_extension_array_equal(res, expected)
- def test_simple_new_requires_match(self, unit):
- arr = np.arange(5, dtype=np.int64).view(f"M8[{unit}]")
- dtype = DatetimeTZDtype(unit, "UTC")
- dta = DatetimeArray._simple_new(arr, dtype=dtype)
- assert dta.dtype == dtype
- wrong = DatetimeTZDtype("ns", "UTC")
- with pytest.raises(AssertionError, match=""):
- DatetimeArray._simple_new(arr, dtype=wrong)
- def test_std_non_nano(self, unit):
- dti = pd.date_range("2016-01-01", periods=55, freq="D")
- arr = np.asarray(dti).astype(f"M8[{unit}]")
- dta = DatetimeArray._simple_new(arr, dtype=arr.dtype)
- # we should match the nano-reso std, but floored to our reso.
- res = dta.std()
- assert res._creso == dta._creso
- assert res == dti.std().floor(unit)
- @pytest.mark.filterwarnings("ignore:Converting to PeriodArray.*:UserWarning")
- def test_to_period(self, dta_dti):
- dta, dti = dta_dti
- result = dta.to_period("D")
- expected = dti._data.to_period("D")
- tm.assert_extension_array_equal(result, expected)
- def test_iter(self, dta):
- res = next(iter(dta))
- expected = dta[0]
- assert type(res) is pd.Timestamp
- assert res._value == expected._value
- assert res._creso == expected._creso
- assert res == expected
- def test_astype_object(self, dta):
- result = dta.astype(object)
- assert all(x._creso == dta._creso for x in result)
- assert all(x == y for x, y in zip(result, dta))
- def test_to_pydatetime(self, dta_dti):
- dta, dti = dta_dti
- result = dta.to_pydatetime()
- expected = dti.to_pydatetime()
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("meth", ["time", "timetz", "date"])
- def test_time_date(self, dta_dti, meth):
- dta, dti = dta_dti
- result = getattr(dta, meth)
- expected = getattr(dti, meth)
- tm.assert_numpy_array_equal(result, expected)
- def test_format_native_types(self, unit, dtype, dta_dti):
- # In this case we should get the same formatted values with our nano
- # version dti._data as we do with the non-nano dta
- dta, dti = dta_dti
- res = dta._format_native_types()
- exp = dti._data._format_native_types()
- tm.assert_numpy_array_equal(res, exp)
- def test_repr(self, dta_dti, unit):
- dta, dti = dta_dti
- assert repr(dta) == repr(dti._data).replace("[ns", f"[{unit}")
- # TODO: tests with td64
- def test_compare_mismatched_resolutions(self, comparison_op):
- # comparison that numpy gets wrong bc of silent overflows
- op = comparison_op
- iinfo = np.iinfo(np.int64)
- vals = np.array([iinfo.min, iinfo.min + 1, iinfo.max], dtype=np.int64)
- # Construct so that arr2[1] < arr[1] < arr[2] < arr2[2]
- arr = np.array(vals).view("M8[ns]")
- arr2 = arr.view("M8[s]")
- left = DatetimeArray._simple_new(arr, dtype=arr.dtype)
- right = DatetimeArray._simple_new(arr2, dtype=arr2.dtype)
- if comparison_op is operator.eq:
- expected = np.array([False, False, False])
- elif comparison_op is operator.ne:
- expected = np.array([True, True, True])
- elif comparison_op in [operator.lt, operator.le]:
- expected = np.array([False, False, True])
- else:
- expected = np.array([False, True, False])
- result = op(left, right)
- tm.assert_numpy_array_equal(result, expected)
- result = op(left[1], right)
- tm.assert_numpy_array_equal(result, expected)
- if op not in [operator.eq, operator.ne]:
- # check that numpy still gets this wrong; if it is fixed we may be
- # able to remove compare_mismatched_resolutions
- np_res = op(left._ndarray, right._ndarray)
- tm.assert_numpy_array_equal(np_res[1:], ~expected[1:])
- def test_add_mismatched_reso_doesnt_downcast(self):
- # https://github.com/pandas-dev/pandas/pull/48748#issuecomment-1260181008
- td = pd.Timedelta(microseconds=1)
- dti = pd.date_range("2016-01-01", periods=3) - td
- dta = dti._data.as_unit("us")
- res = dta + td.as_unit("us")
- # even though the result is an even number of days
- # (so we _could_ downcast to unit="s"), we do not.
- assert res.unit == "us"
- @pytest.mark.parametrize(
- "scalar",
- [
- timedelta(hours=2),
- pd.Timedelta(hours=2),
- np.timedelta64(2, "h"),
- np.timedelta64(2 * 3600 * 1000, "ms"),
- pd.offsets.Minute(120),
- pd.offsets.Hour(2),
- ],
- )
- def test_add_timedeltalike_scalar_mismatched_reso(self, dta_dti, scalar):
- dta, dti = dta_dti
- td = pd.Timedelta(scalar)
- exp_reso = max(dta._creso, td._creso)
- exp_unit = npy_unit_to_abbrev(exp_reso)
- expected = (dti + td)._data.as_unit(exp_unit)
- result = dta + scalar
- tm.assert_extension_array_equal(result, expected)
- result = scalar + dta
- tm.assert_extension_array_equal(result, expected)
- expected = (dti - td)._data.as_unit(exp_unit)
- result = dta - scalar
- tm.assert_extension_array_equal(result, expected)
- def test_sub_datetimelike_scalar_mismatch(self):
- dti = pd.date_range("2016-01-01", periods=3)
- dta = dti._data.as_unit("us")
- ts = dta[0].as_unit("s")
- result = dta - ts
- expected = (dti - dti[0])._data.as_unit("us")
- assert result.dtype == "m8[us]"
- tm.assert_extension_array_equal(result, expected)
- def test_sub_datetime64_reso_mismatch(self):
- dti = pd.date_range("2016-01-01", periods=3)
- left = dti._data.as_unit("s")
- right = left.as_unit("ms")
- result = left - right
- exp_values = np.array([0, 0, 0], dtype="m8[ms]")
- expected = TimedeltaArray._simple_new(
- exp_values,
- dtype=exp_values.dtype,
- )
- tm.assert_extension_array_equal(result, expected)
- result2 = right - left
- tm.assert_extension_array_equal(result2, expected)
- class TestDatetimeArrayComparisons:
- # TODO: merge this into tests/arithmetic/test_datetime64 once it is
- # sufficiently robust
- def test_cmp_dt64_arraylike_tznaive(self, comparison_op):
- # arbitrary tz-naive DatetimeIndex
- op = comparison_op
- dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None)
- arr = DatetimeArray(dti)
- assert arr.freq == dti.freq
- assert arr.tz == dti.tz
- right = dti
- expected = np.ones(len(arr), dtype=bool)
- if comparison_op.__name__ in ["ne", "gt", "lt"]:
- # for these the comparisons should be all-False
- expected = ~expected
- result = op(arr, arr)
- tm.assert_numpy_array_equal(result, expected)
- for other in [
- right,
- np.array(right),
- list(right),
- tuple(right),
- right.astype(object),
- ]:
- result = op(arr, other)
- tm.assert_numpy_array_equal(result, expected)
- result = op(other, arr)
- tm.assert_numpy_array_equal(result, expected)
- class TestDatetimeArray:
- def test_astype_non_nano_tznaive(self):
- dti = pd.date_range("2016-01-01", periods=3)
- res = dti.astype("M8[s]")
- assert res.dtype == "M8[s]"
- dta = dti._data
- res = dta.astype("M8[s]")
- assert res.dtype == "M8[s]"
- assert isinstance(res, pd.core.arrays.DatetimeArray) # used to be ndarray
- def test_astype_non_nano_tzaware(self):
- dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
- res = dti.astype("M8[s, US/Pacific]")
- assert res.dtype == "M8[s, US/Pacific]"
- dta = dti._data
- res = dta.astype("M8[s, US/Pacific]")
- assert res.dtype == "M8[s, US/Pacific]"
- # from non-nano to non-nano, preserving reso
- res2 = res.astype("M8[s, UTC]")
- assert res2.dtype == "M8[s, UTC]"
- assert not tm.shares_memory(res2, res)
- res3 = res.astype("M8[s, UTC]", copy=False)
- assert res2.dtype == "M8[s, UTC]"
- assert tm.shares_memory(res3, res)
- def test_astype_to_same(self):
- arr = DatetimeArray._from_sequence(
- ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
- )
- result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False)
- assert result is arr
- @pytest.mark.parametrize("dtype", ["datetime64[ns]", "datetime64[ns, UTC]"])
- @pytest.mark.parametrize(
- "other", ["datetime64[ns]", "datetime64[ns, UTC]", "datetime64[ns, CET]"]
- )
- def test_astype_copies(self, dtype, other):
- # https://github.com/pandas-dev/pandas/pull/32490
- ser = pd.Series([1, 2], dtype=dtype)
- orig = ser.copy()
- err = False
- if (dtype == "datetime64[ns]") ^ (other == "datetime64[ns]"):
- # deprecated in favor of tz_localize
- err = True
- if err:
- if dtype == "datetime64[ns]":
- msg = "Use obj.tz_localize instead or series.dt.tz_localize instead"
- else:
- msg = "from timezone-aware dtype to timezone-naive dtype"
- with pytest.raises(TypeError, match=msg):
- ser.astype(other)
- else:
- t = ser.astype(other)
- t[:] = pd.NaT
- tm.assert_series_equal(ser, orig)
- @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
- def test_astype_int(self, dtype):
- arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")])
- if np.dtype(dtype) != np.int64:
- with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
- arr.astype(dtype)
- return
- result = arr.astype(dtype)
- expected = arr._ndarray.view("i8")
- tm.assert_numpy_array_equal(result, expected)
- def test_astype_to_sparse_dt64(self):
- # GH#50082
- dti = pd.date_range("2016-01-01", periods=4)
- dta = dti._data
- result = dta.astype("Sparse[datetime64[ns]]")
- assert result.dtype == "Sparse[datetime64[ns]]"
- assert (result == dta).all()
- def test_tz_setter_raises(self):
- arr = DatetimeArray._from_sequence(
- ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
- )
- with pytest.raises(AttributeError, match="tz_localize"):
- arr.tz = "UTC"
- def test_setitem_str_impute_tz(self, tz_naive_fixture):
- # Like for getitem, if we are passed a naive-like string, we impute
- # our own timezone.
- tz = tz_naive_fixture
- data = np.array([1, 2, 3], dtype="M8[ns]")
- dtype = data.dtype if tz is None else DatetimeTZDtype(tz=tz)
- arr = DatetimeArray(data, dtype=dtype)
- expected = arr.copy()
- ts = pd.Timestamp("2020-09-08 16:50").tz_localize(tz)
- setter = str(ts.tz_localize(None))
- # Setting a scalar tznaive string
- expected[0] = ts
- arr[0] = setter
- tm.assert_equal(arr, expected)
- # Setting a listlike of tznaive strings
- expected[1] = ts
- arr[:2] = [setter, setter]
- tm.assert_equal(arr, expected)
- def test_setitem_different_tz_raises(self):
- # pre-2.0 we required exact tz match, in 2.0 we require only
- # tzawareness-match
- data = np.array([1, 2, 3], dtype="M8[ns]")
- arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central"))
- with pytest.raises(TypeError, match="Cannot compare tz-naive and tz-aware"):
- arr[0] = pd.Timestamp("2000")
- ts = pd.Timestamp("2000", tz="US/Eastern")
- arr[0] = ts
- assert arr[0] == ts.tz_convert("US/Central")
- def test_setitem_clears_freq(self):
- a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
- a[0] = pd.Timestamp("2000", tz="US/Central")
- assert a.freq is None
- @pytest.mark.parametrize(
- "obj",
- [
- pd.Timestamp("2021-01-01"),
- pd.Timestamp("2021-01-01").to_datetime64(),
- pd.Timestamp("2021-01-01").to_pydatetime(),
- ],
- )
- def test_setitem_objects(self, obj):
- # make sure we accept datetime64 and datetime in addition to Timestamp
- dti = pd.date_range("2000", periods=2, freq="D")
- arr = dti._data
- arr[0] = obj
- assert arr[0] == obj
- def test_repeat_preserves_tz(self):
- dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
- arr = DatetimeArray(dti)
- repeated = arr.repeat([1, 1])
- # preserves tz and values, but not freq
- expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype)
- tm.assert_equal(repeated, expected)
- def test_value_counts_preserves_tz(self):
- dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central")
- arr = DatetimeArray(dti).repeat([4, 3])
- result = arr.value_counts()
- # Note: not tm.assert_index_equal, since `freq`s do not match
- assert result.index.equals(dti)
- arr[-2] = pd.NaT
- result = arr.value_counts(dropna=False)
- expected = pd.Series([4, 2, 1], index=[dti[0], dti[1], pd.NaT], name="count")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize("method", ["pad", "backfill"])
- def test_fillna_preserves_tz(self, method):
- dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central")
- arr = DatetimeArray(dti, copy=True)
- arr[2] = pd.NaT
- fill_val = dti[1] if method == "pad" else dti[3]
- expected = DatetimeArray._from_sequence(
- [dti[0], dti[1], fill_val, dti[3], dti[4]],
- dtype=DatetimeTZDtype(tz="US/Central"),
- )
- result = arr.fillna(method=method)
- tm.assert_extension_array_equal(result, expected)
- # assert that arr and dti were not modified in-place
- assert arr[2] is pd.NaT
- assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")
- def test_fillna_2d(self):
- dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
- dta = dti._data.reshape(3, 2).copy()
- dta[0, 1] = pd.NaT
- dta[1, 0] = pd.NaT
- res1 = dta.fillna(method="pad")
- expected1 = dta.copy()
- expected1[1, 0] = dta[0, 0]
- tm.assert_extension_array_equal(res1, expected1)
- res2 = dta.fillna(method="backfill")
- expected2 = dta.copy()
- expected2 = dta.copy()
- expected2[1, 0] = dta[2, 0]
- expected2[0, 1] = dta[1, 1]
- tm.assert_extension_array_equal(res2, expected2)
- # with different ordering for underlying ndarray; behavior should
- # be unchanged
- dta2 = dta._from_backing_data(dta._ndarray.copy(order="F"))
- assert dta2._ndarray.flags["F_CONTIGUOUS"]
- assert not dta2._ndarray.flags["C_CONTIGUOUS"]
- tm.assert_extension_array_equal(dta, dta2)
- res3 = dta2.fillna(method="pad")
- tm.assert_extension_array_equal(res3, expected1)
- res4 = dta2.fillna(method="backfill")
- tm.assert_extension_array_equal(res4, expected2)
- # test the DataFrame method while we're here
- df = pd.DataFrame(dta)
- res = df.fillna(method="pad")
- expected = pd.DataFrame(expected1)
- tm.assert_frame_equal(res, expected)
- res = df.fillna(method="backfill")
- expected = pd.DataFrame(expected2)
- tm.assert_frame_equal(res, expected)
- def test_array_interface_tz(self):
- tz = "US/Central"
- data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz))
- result = np.asarray(data)
- expected = np.array(
- [
- pd.Timestamp("2017-01-01T00:00:00", tz=tz),
- pd.Timestamp("2017-01-02T00:00:00", tz=tz),
- ],
- dtype=object,
- )
- tm.assert_numpy_array_equal(result, expected)
- result = np.asarray(data, dtype=object)
- tm.assert_numpy_array_equal(result, expected)
- result = np.asarray(data, dtype="M8[ns]")
- expected = np.array(
- ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]"
- )
- tm.assert_numpy_array_equal(result, expected)
- def test_array_interface(self):
- data = DatetimeArray(pd.date_range("2017", periods=2))
- expected = np.array(
- ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]"
- )
- result = np.asarray(data)
- tm.assert_numpy_array_equal(result, expected)
- result = np.asarray(data, dtype=object)
- expected = np.array(
- [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")],
- dtype=object,
- )
- tm.assert_numpy_array_equal(result, expected)
- @pytest.mark.parametrize("index", [True, False])
- def test_searchsorted_different_tz(self, index):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
- arr = DatetimeArray(data, freq="D").tz_localize("Asia/Tokyo")
- if index:
- arr = pd.Index(arr)
- expected = arr.searchsorted(arr[2])
- result = arr.searchsorted(arr[2].tz_convert("UTC"))
- assert result == expected
- expected = arr.searchsorted(arr[2:6])
- result = arr.searchsorted(arr[2:6].tz_convert("UTC"))
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("index", [True, False])
- def test_searchsorted_tzawareness_compat(self, index):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
- arr = DatetimeArray(data, freq="D")
- if index:
- arr = pd.Index(arr)
- mismatch = arr.tz_localize("Asia/Tokyo")
- msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
- with pytest.raises(TypeError, match=msg):
- arr.searchsorted(mismatch[0])
- with pytest.raises(TypeError, match=msg):
- arr.searchsorted(mismatch)
- with pytest.raises(TypeError, match=msg):
- mismatch.searchsorted(arr[0])
- with pytest.raises(TypeError, match=msg):
- mismatch.searchsorted(arr)
- @pytest.mark.parametrize(
- "other",
- [
- 1,
- np.int64(1),
- 1.0,
- np.timedelta64("NaT"),
- pd.Timedelta(days=2),
- "invalid",
- np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
- np.arange(10).view("timedelta64[ns]") * 24 * 3600 * 10**9,
- pd.Timestamp("2021-01-01").to_period("D"),
- ],
- )
- @pytest.mark.parametrize("index", [True, False])
- def test_searchsorted_invalid_types(self, other, index):
- data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
- arr = DatetimeArray(data, freq="D")
- if index:
- arr = pd.Index(arr)
- msg = "|".join(
- [
- "searchsorted requires compatible dtype or scalar",
- "value should be a 'Timestamp', 'NaT', or array of those. Got",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- arr.searchsorted(other)
- def test_shift_fill_value(self):
- dti = pd.date_range("2016-01-01", periods=3)
- dta = dti._data
- expected = DatetimeArray(np.roll(dta._ndarray, 1))
- fv = dta[-1]
- for fill_value in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
- result = dta.shift(1, fill_value=fill_value)
- tm.assert_datetime_array_equal(result, expected)
- dta = dta.tz_localize("UTC")
- expected = expected.tz_localize("UTC")
- fv = dta[-1]
- for fill_value in [fv, fv.to_pydatetime()]:
- result = dta.shift(1, fill_value=fill_value)
- tm.assert_datetime_array_equal(result, expected)
- def test_shift_value_tzawareness_mismatch(self):
- dti = pd.date_range("2016-01-01", periods=3)
- dta = dti._data
- fv = dta[-1].tz_localize("UTC")
- for invalid in [fv, fv.to_pydatetime()]:
- with pytest.raises(TypeError, match="Cannot compare"):
- dta.shift(1, fill_value=invalid)
- dta = dta.tz_localize("UTC")
- fv = dta[-1].tz_localize(None)
- for invalid in [fv, fv.to_pydatetime(), fv.to_datetime64()]:
- with pytest.raises(TypeError, match="Cannot compare"):
- dta.shift(1, fill_value=invalid)
- def test_shift_requires_tzmatch(self):
- # pre-2.0 we required exact tz match, in 2.0 we require just
- # matching tzawareness
- dti = pd.date_range("2016-01-01", periods=3, tz="UTC")
- dta = dti._data
- fill_value = pd.Timestamp("2020-10-18 18:44", tz="US/Pacific")
- result = dta.shift(1, fill_value=fill_value)
- expected = dta.shift(1, fill_value=fill_value.tz_convert("UTC"))
- tm.assert_equal(result, expected)
- def test_tz_localize_t2d(self):
- dti = pd.date_range("1994-05-12", periods=12, tz="US/Pacific")
- dta = dti._data.reshape(3, 4)
- result = dta.tz_localize(None)
- expected = dta.ravel().tz_localize(None).reshape(dta.shape)
- tm.assert_datetime_array_equal(result, expected)
- roundtrip = expected.tz_localize("US/Pacific")
- tm.assert_datetime_array_equal(roundtrip, dta)
- easts = ["US/Eastern", "dateutil/US/Eastern"]
- if ZoneInfo is not None:
- try:
- tz = ZoneInfo("US/Eastern")
- except KeyError:
- # no tzdata
- pass
- else:
- easts.append(tz)
- @pytest.mark.parametrize("tz", easts)
- def test_iter_zoneinfo_fold(self, tz):
- # GH#49684
- utc_vals = np.array(
- [1320552000, 1320555600, 1320559200, 1320562800], dtype=np.int64
- )
- utc_vals *= 1_000_000_000
- dta = DatetimeArray(utc_vals).tz_localize("UTC").tz_convert(tz)
- left = dta[2]
- right = list(dta)[2]
- assert str(left) == str(right)
- # previously there was a bug where with non-pytz right would be
- # Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern')
- # while left would be
- # Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern')
- # The .value's would match (so they would compare as equal),
- # but the folds would not
- assert left.utcoffset() == right.utcoffset()
- # The same bug in ints_to_pydatetime affected .astype, so we test
- # that here.
- right2 = dta.astype(object)[2]
- assert str(left) == str(right2)
- assert left.utcoffset() == right2.utcoffset()
|