123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- import operator
- import numpy as np
- import pytest
- import pandas as pd
- import pandas._testing as tm
- from pandas.core.arrays import FloatingArray
- @pytest.mark.parametrize(
- "opname, exp",
- [
- ("add", [1.1, 2.2, None, None, 5.5]),
- ("mul", [0.1, 0.4, None, None, 2.5]),
- ("sub", [0.9, 1.8, None, None, 4.5]),
- ("truediv", [10.0, 10.0, None, None, 10.0]),
- ("floordiv", [9.0, 9.0, None, None, 10.0]),
- ("mod", [0.1, 0.2, None, None, 0.0]),
- ],
- ids=["add", "mul", "sub", "div", "floordiv", "mod"],
- )
- def test_array_op(dtype, opname, exp):
- a = pd.array([1.0, 2.0, None, 4.0, 5.0], dtype=dtype)
- b = pd.array([0.1, 0.2, 0.3, None, 0.5], dtype=dtype)
- op = getattr(operator, opname)
- result = op(a, b)
- expected = pd.array(exp, dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)])
- def test_divide_by_zero(dtype, zero, negative):
-
-
- a = pd.array([0, 1, -1, None], dtype=dtype)
- result = a / zero
- expected = FloatingArray(
- np.array([np.nan, np.inf, -np.inf, np.nan], dtype=dtype.numpy_dtype),
- np.array([False, False, False, True]),
- )
- if negative:
- expected *= -1
- tm.assert_extension_array_equal(result, expected)
- def test_pow_scalar(dtype):
- a = pd.array([-1, 0, 1, None, 2], dtype=dtype)
- result = a**0
- expected = pd.array([1, 1, 1, 1, 1], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = a**1
- expected = pd.array([-1, 0, 1, None, 2], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = a**pd.NA
- expected = pd.array([None, None, 1, None, None], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = a**np.nan
-
- expected = FloatingArray(
- np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype=dtype.numpy_dtype),
- mask=a._mask,
- )
- tm.assert_extension_array_equal(result, expected)
-
- a = a[1:]
- result = 0**a
- expected = pd.array([1, 0, None, 0], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = 1**a
- expected = pd.array([1, 1, 1, 1], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = pd.NA**a
- expected = pd.array([1, None, None, None], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- result = np.nan**a
- expected = FloatingArray(
- np.array([1, np.nan, np.nan, np.nan], dtype=dtype.numpy_dtype), mask=a._mask
- )
- tm.assert_extension_array_equal(result, expected)
- def test_pow_array(dtype):
- a = pd.array([0, 0, 0, 1, 1, 1, None, None, None], dtype=dtype)
- b = pd.array([0, 1, None, 0, 1, None, 0, 1, None], dtype=dtype)
- result = a**b
- expected = pd.array([1, 0, None, 1, 1, 1, 1, None, None], dtype=dtype)
- tm.assert_extension_array_equal(result, expected)
- def test_rpow_one_to_na():
-
-
- arr = pd.array([np.nan, np.nan], dtype="Float64")
- result = np.array([1.0, 2.0]) ** arr
- expected = pd.array([1.0, np.nan], dtype="Float64")
- tm.assert_extension_array_equal(result, expected)
- @pytest.mark.parametrize("other", [0, 0.5])
- def test_arith_zero_dim_ndarray(other):
- arr = pd.array([1, None, 2], dtype="Float64")
- result = arr + np.array(other)
- expected = arr + other
- tm.assert_equal(result, expected)
- def test_error_invalid_values(data, all_arithmetic_operators):
- op = all_arithmetic_operators
- s = pd.Series(data)
- ops = getattr(s, op)
-
- msg = "|".join(
- [
- r"can only perform ops with numeric values",
- r"FloatingArray cannot perform the operation mod",
- "unsupported operand type",
- "not all arguments converted during string formatting",
- "can't multiply sequence by non-int of type 'float'",
- "ufunc 'subtract' cannot use operands with types dtype",
- r"can only concatenate str \(not \"float\"\) to str",
- "ufunc '.*' not supported for the input types, and the inputs could not",
- "ufunc '.*' did not contain a loop with signature matching types",
- "Concatenation operation is not implemented for NumPy arrays",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- ops("foo")
- with pytest.raises(TypeError, match=msg):
- ops(pd.Timestamp("20180101"))
-
- with pytest.raises(TypeError, match=msg):
- ops(pd.Series("foo", index=s.index))
- msg = "|".join(
- [
- "can only perform ops with numeric values",
- "cannot perform .* with this index type: DatetimeArray",
- "Addition/subtraction of integers and integer-arrays "
- "with DatetimeArray is no longer supported. *",
- "unsupported operand type",
- "not all arguments converted during string formatting",
- "can't multiply sequence by non-int of type 'float'",
- "ufunc 'subtract' cannot use operands with types dtype",
- (
- "ufunc 'add' cannot use operands with types "
- rf"dtype\('{tm.ENDIAN}M8\[ns\]'\)"
- ),
- r"ufunc 'add' cannot use operands with types dtype\('float\d{2}'\)",
- "cannot subtract DatetimeArray from ndarray",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- ops(pd.Series(pd.date_range("20180101", periods=len(s))))
- def test_cross_type_arithmetic():
- df = pd.DataFrame(
- {
- "A": pd.array([1, 2, np.nan], dtype="Float64"),
- "B": pd.array([1, np.nan, 3], dtype="Float32"),
- "C": np.array([1, 2, 3], dtype="float64"),
- }
- )
- result = df.A + df.C
- expected = pd.Series([2, 4, np.nan], dtype="Float64")
- tm.assert_series_equal(result, expected)
- result = (df.A + df.C) * 3 == 12
- expected = pd.Series([False, True, None], dtype="boolean")
- tm.assert_series_equal(result, expected)
- result = df.A + df.B
- expected = pd.Series([2, np.nan, np.nan], dtype="Float64")
- tm.assert_series_equal(result, expected)
- @pytest.mark.parametrize(
- "source, neg_target, abs_target",
- [
- ([1.1, 2.2, 3.3], [-1.1, -2.2, -3.3], [1.1, 2.2, 3.3]),
- ([1.1, 2.2, None], [-1.1, -2.2, None], [1.1, 2.2, None]),
- ([-1.1, 0.0, 1.1], [1.1, 0.0, -1.1], [1.1, 0.0, 1.1]),
- ],
- )
- def test_unary_float_operators(float_ea_dtype, source, neg_target, abs_target):
-
- dtype = float_ea_dtype
- arr = pd.array(source, dtype=dtype)
- neg_result, pos_result, abs_result = -arr, +arr, abs(arr)
- neg_target = pd.array(neg_target, dtype=dtype)
- abs_target = pd.array(abs_target, dtype=dtype)
- tm.assert_extension_array_equal(neg_result, neg_target)
- tm.assert_extension_array_equal(pos_result, arr)
- assert not tm.shares_memory(pos_result, arr)
- tm.assert_extension_array_equal(abs_result, abs_target)
- def test_bitwise(dtype):
- left = pd.array([1, None, 3, 4], dtype=dtype)
- right = pd.array([None, 3, 5, 4], dtype=dtype)
- with pytest.raises(TypeError, match="unsupported operand type"):
- left | right
- with pytest.raises(TypeError, match="unsupported operand type"):
- left & right
- with pytest.raises(TypeError, match="unsupported operand type"):
- left ^ right
|