123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- import numpy as np
- import pytest
- import pandas as pd
- import pandas._testing as tm
- @pytest.mark.parametrize(
- "ufunc", [np.add, np.logical_or, np.logical_and, np.logical_xor]
- )
- def test_ufuncs_binary(ufunc):
- # two BooleanArrays
- a = pd.array([True, False, None], dtype="boolean")
- result = ufunc(a, a)
- expected = pd.array(ufunc(a._data, a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- s = pd.Series(a)
- result = ufunc(s, a)
- expected = pd.Series(ufunc(a._data, a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_series_equal(result, expected)
- # Boolean with numpy array
- arr = np.array([True, True, False])
- result = ufunc(a, arr)
- expected = pd.array(ufunc(a._data, arr), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- result = ufunc(arr, a)
- expected = pd.array(ufunc(arr, a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- # BooleanArray with scalar
- result = ufunc(a, True)
- expected = pd.array(ufunc(a._data, True), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- result = ufunc(True, a)
- expected = pd.array(ufunc(True, a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- # not handled types
- msg = r"operand type\(s\) all returned NotImplemented from __array_ufunc__"
- with pytest.raises(TypeError, match=msg):
- ufunc(a, "test")
- @pytest.mark.parametrize("ufunc", [np.logical_not])
- def test_ufuncs_unary(ufunc):
- a = pd.array([True, False, None], dtype="boolean")
- result = ufunc(a)
- expected = pd.array(ufunc(a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_extension_array_equal(result, expected)
- ser = pd.Series(a)
- result = ufunc(ser)
- expected = pd.Series(ufunc(a._data), dtype="boolean")
- expected[a._mask] = np.nan
- tm.assert_series_equal(result, expected)
- def test_ufunc_numeric():
- # np.sqrt on np.bool_ returns float16, which we upcast to Float32
- # bc we do not have Float16
- arr = pd.array([True, False, None], dtype="boolean")
- res = np.sqrt(arr)
- expected = pd.array([1, 0, None], dtype="Float32")
- tm.assert_extension_array_equal(res, expected)
- @pytest.mark.parametrize("values", [[True, False], [True, None]])
- def test_ufunc_reduce_raises(values):
- arr = pd.array(values, dtype="boolean")
- res = np.add.reduce(arr)
- if arr[-1] is pd.NA:
- expected = pd.NA
- else:
- expected = arr._data.sum()
- tm.assert_almost_equal(res, expected)
- def test_value_counts_na():
- arr = pd.array([True, False, pd.NA], dtype="boolean")
- result = arr.value_counts(dropna=False)
- expected = pd.Series([1, 1, 1], index=arr, dtype="Int64", name="count")
- assert expected.index.dtype == arr.dtype
- tm.assert_series_equal(result, expected)
- result = arr.value_counts(dropna=True)
- expected = pd.Series([1, 1], index=arr[:-1], dtype="Int64", name="count")
- assert expected.index.dtype == arr.dtype
- tm.assert_series_equal(result, expected)
- def test_value_counts_with_normalize():
- ser = pd.Series([True, False, pd.NA], dtype="boolean")
- result = ser.value_counts(normalize=True)
- expected = pd.Series([1, 1], index=ser[:-1], dtype="Float64", name="proportion") / 2
- assert expected.index.dtype == "boolean"
- tm.assert_series_equal(result, expected)
- def test_diff():
- a = pd.array(
- [True, True, False, False, True, None, True, None, False], dtype="boolean"
- )
- result = pd.core.algorithms.diff(a, 1)
- expected = pd.array(
- [None, False, True, False, True, None, None, None, None], dtype="boolean"
- )
- tm.assert_extension_array_equal(result, expected)
- ser = pd.Series(a)
- result = ser.diff()
- expected = pd.Series(expected)
- tm.assert_series_equal(result, expected)
|