123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163 |
- # Arithmetic tests for DataFrame/Series/Index/Array classes that should
- # behave identically.
- from datetime import (
- datetime,
- timedelta,
- )
- import numpy as np
- import pytest
- from pandas.errors import (
- OutOfBoundsDatetime,
- PerformanceWarning,
- )
- import pandas as pd
- from pandas import (
- DataFrame,
- DatetimeIndex,
- Index,
- NaT,
- Series,
- Timedelta,
- TimedeltaIndex,
- Timestamp,
- offsets,
- timedelta_range,
- )
- import pandas._testing as tm
- from pandas.core.arrays import PandasArray
- from pandas.tests.arithmetic.common import (
- assert_invalid_addsub_type,
- assert_invalid_comparison,
- get_upcast_box,
- )
- def assert_dtype(obj, expected_dtype):
- """
- Helper to check the dtype for a Series, Index, or single-column DataFrame.
- """
- dtype = tm.get_dtype(obj)
- assert dtype == expected_dtype
- def get_expected_name(box, names):
- if box is DataFrame:
- # Since we are operating with a DataFrame and a non-DataFrame,
- # the non-DataFrame is cast to Series and its name ignored.
- exname = names[0]
- elif box in [tm.to_array, pd.array]:
- exname = names[1]
- else:
- exname = names[2]
- return exname
- # ------------------------------------------------------------------
- # Timedelta64[ns] dtype Comparisons
- class TestTimedelta64ArrayLikeComparisons:
- # Comparison tests for timedelta64[ns] vectors fully parametrized over
- # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison
- # tests will eventually end up here.
- def test_compare_timedelta64_zerodim(self, box_with_array):
- # GH#26689 should unbox when comparing with zerodim array
- box = box_with_array
- xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray
- tdi = timedelta_range("2H", periods=4)
- other = np.array(tdi.to_numpy()[0])
- tdi = tm.box_expected(tdi, box)
- res = tdi <= other
- expected = np.array([True, False, False, False])
- expected = tm.box_expected(expected, xbox)
- tm.assert_equal(res, expected)
- @pytest.mark.parametrize(
- "td_scalar",
- [
- timedelta(days=1),
- Timedelta(days=1),
- Timedelta(days=1).to_timedelta64(),
- offsets.Hour(24),
- ],
- )
- def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar):
- # regression test for GH#5963
- box = box_with_array
- xbox = box if box not in [Index, pd.array] else np.ndarray
- ser = Series([timedelta(days=1), timedelta(days=2)])
- ser = tm.box_expected(ser, box)
- actual = ser > td_scalar
- expected = Series([False, True])
- expected = tm.box_expected(expected, xbox)
- tm.assert_equal(actual, expected)
- @pytest.mark.parametrize(
- "invalid",
- [
- 345600000000000,
- "a",
- Timestamp("2021-01-01"),
- Timestamp("2021-01-01").now("UTC"),
- Timestamp("2021-01-01").now().to_datetime64(),
- Timestamp("2021-01-01").now().to_pydatetime(),
- Timestamp("2021-01-01").date(),
- np.array(4), # zero-dim mismatched dtype
- ],
- )
- def test_td64_comparisons_invalid(self, box_with_array, invalid):
- # GH#13624 for str
- box = box_with_array
- rng = timedelta_range("1 days", periods=10)
- obj = tm.box_expected(rng, box)
- assert_invalid_comparison(obj, invalid, box)
- @pytest.mark.parametrize(
- "other",
- [
- list(range(10)),
- np.arange(10),
- np.arange(10).astype(np.float32),
- np.arange(10).astype(object),
- pd.date_range("1970-01-01", periods=10, tz="UTC").array,
- np.array(pd.date_range("1970-01-01", periods=10)),
- list(pd.date_range("1970-01-01", periods=10)),
- pd.date_range("1970-01-01", periods=10).astype(object),
- pd.period_range("1971-01-01", freq="D", periods=10).array,
- pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
- ],
- )
- def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array):
- # We don't parametrize this over box_with_array because listlike
- # other plays poorly with assert_invalid_comparison reversed checks
- rng = timedelta_range("1 days", periods=10)._data
- rng = tm.box_expected(rng, box_with_array)
- assert_invalid_comparison(rng, other, box_with_array)
- def test_td64arr_cmp_mixed_invalid(self):
- rng = timedelta_range("1 days", periods=5)._data
- other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")])
- result = rng == other
- expected = np.array([False, False, False, True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = rng != other
- tm.assert_numpy_array_equal(result, ~expected)
- msg = "Invalid comparison between|Cannot compare type|not supported between"
- with pytest.raises(TypeError, match=msg):
- rng < other
- with pytest.raises(TypeError, match=msg):
- rng > other
- with pytest.raises(TypeError, match=msg):
- rng <= other
- with pytest.raises(TypeError, match=msg):
- rng >= other
- class TestTimedelta64ArrayComparisons:
- # TODO: All of these need to be parametrized over box
- @pytest.mark.parametrize("dtype", [None, object])
- def test_comp_nat(self, dtype):
- left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")])
- right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")])
- lhs, rhs = left, right
- if dtype is object:
- lhs, rhs = left.astype(object), right.astype(object)
- result = rhs == lhs
- expected = np.array([False, False, True])
- tm.assert_numpy_array_equal(result, expected)
- result = rhs != lhs
- expected = np.array([True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- expected = np.array([False, False, False])
- tm.assert_numpy_array_equal(lhs == NaT, expected)
- tm.assert_numpy_array_equal(NaT == rhs, expected)
- expected = np.array([True, True, True])
- tm.assert_numpy_array_equal(lhs != NaT, expected)
- tm.assert_numpy_array_equal(NaT != lhs, expected)
- expected = np.array([False, False, False])
- tm.assert_numpy_array_equal(lhs < NaT, expected)
- tm.assert_numpy_array_equal(NaT > lhs, expected)
- @pytest.mark.parametrize(
- "idx2",
- [
- TimedeltaIndex(
- ["2 day", "2 day", NaT, NaT, "1 day 00:00:02", "5 days 00:00:03"]
- ),
- np.array(
- [
- np.timedelta64(2, "D"),
- np.timedelta64(2, "D"),
- np.timedelta64("nat"),
- np.timedelta64("nat"),
- np.timedelta64(1, "D") + np.timedelta64(2, "s"),
- np.timedelta64(5, "D") + np.timedelta64(3, "s"),
- ]
- ),
- ],
- )
- def test_comparisons_nat(self, idx2):
- idx1 = TimedeltaIndex(
- [
- "1 day",
- NaT,
- "1 day 00:00:01",
- NaT,
- "1 day 00:00:01",
- "5 day 00:00:03",
- ]
- )
- # Check pd.NaT is handles as the same as np.nan
- result = idx1 < idx2
- expected = np.array([True, False, False, False, True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = idx2 > idx1
- expected = np.array([True, False, False, False, True, False])
- tm.assert_numpy_array_equal(result, expected)
- result = idx1 <= idx2
- expected = np.array([True, False, False, False, True, True])
- tm.assert_numpy_array_equal(result, expected)
- result = idx2 >= idx1
- expected = np.array([True, False, False, False, True, True])
- tm.assert_numpy_array_equal(result, expected)
- result = idx1 == idx2
- expected = np.array([False, False, False, False, False, True])
- tm.assert_numpy_array_equal(result, expected)
- result = idx1 != idx2
- expected = np.array([True, True, True, True, True, False])
- tm.assert_numpy_array_equal(result, expected)
- # TODO: better name
- def test_comparisons_coverage(self):
- rng = timedelta_range("1 days", periods=10)
- result = rng < rng[3]
- expected = np.array([True, True, True] + [False] * 7)
- tm.assert_numpy_array_equal(result, expected)
- result = rng == list(rng)
- exp = rng == rng
- tm.assert_numpy_array_equal(result, exp)
- # ------------------------------------------------------------------
- # Timedelta64[ns] dtype Arithmetic Operations
- class TestTimedelta64ArithmeticUnsorted:
- # Tests moved from type-specific test files but not
- # yet sorted/parametrized/de-duplicated
- def test_ufunc_coercions(self):
- # normal ops are also tested in tseries/test_timedeltas.py
- idx = TimedeltaIndex(["2H", "4H", "6H", "8H", "10H"], freq="2H", name="x")
- for result in [idx * 2, np.multiply(idx, 2)]:
- assert isinstance(result, TimedeltaIndex)
- exp = TimedeltaIndex(["4H", "8H", "12H", "16H", "20H"], freq="4H", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "4H"
- for result in [idx / 2, np.divide(idx, 2)]:
- assert isinstance(result, TimedeltaIndex)
- exp = TimedeltaIndex(["1H", "2H", "3H", "4H", "5H"], freq="H", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "H"
- for result in [-idx, np.negative(idx)]:
- assert isinstance(result, TimedeltaIndex)
- exp = TimedeltaIndex(
- ["-2H", "-4H", "-6H", "-8H", "-10H"], freq="-2H", name="x"
- )
- tm.assert_index_equal(result, exp)
- assert result.freq == "-2H"
- idx = TimedeltaIndex(["-2H", "-1H", "0H", "1H", "2H"], freq="H", name="x")
- for result in [abs(idx), np.absolute(idx)]:
- assert isinstance(result, TimedeltaIndex)
- exp = TimedeltaIndex(["2H", "1H", "0H", "1H", "2H"], freq=None, name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq is None
- def test_subtraction_ops(self):
- # with datetimes/timedelta and tdi/dti
- tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
- dti = pd.date_range("20130101", periods=3, name="bar")
- td = Timedelta("1 days")
- dt = Timestamp("20130101")
- msg = "cannot subtract a datelike from a TimedeltaArray"
- with pytest.raises(TypeError, match=msg):
- tdi - dt
- with pytest.raises(TypeError, match=msg):
- tdi - dti
- msg = r"unsupported operand type\(s\) for -"
- with pytest.raises(TypeError, match=msg):
- td - dt
- msg = "(bad|unsupported) operand type for unary"
- with pytest.raises(TypeError, match=msg):
- td - dti
- result = dt - dti
- expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar")
- tm.assert_index_equal(result, expected)
- result = dti - dt
- expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar")
- tm.assert_index_equal(result, expected)
- result = tdi - td
- expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo")
- tm.assert_index_equal(result, expected, check_names=False)
- result = td - tdi
- expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo")
- tm.assert_index_equal(result, expected, check_names=False)
- result = dti - td
- expected = DatetimeIndex(
- ["20121231", "20130101", "20130102"], freq="D", name="bar"
- )
- tm.assert_index_equal(result, expected, check_names=False)
- result = dt - tdi
- expected = DatetimeIndex(["20121231", NaT, "20121230"], name="foo")
- tm.assert_index_equal(result, expected)
- def test_subtraction_ops_with_tz(self, box_with_array):
- # check that dt/dti subtraction ops with tz are validated
- dti = pd.date_range("20130101", periods=3)
- dti = tm.box_expected(dti, box_with_array)
- ts = Timestamp("20130101")
- dt = ts.to_pydatetime()
- dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern")
- dti_tz = tm.box_expected(dti_tz, box_with_array)
- ts_tz = Timestamp("20130101").tz_localize("US/Eastern")
- ts_tz2 = Timestamp("20130101").tz_localize("CET")
- dt_tz = ts_tz.to_pydatetime()
- td = Timedelta("1 days")
- def _check(result, expected):
- assert result == expected
- assert isinstance(result, Timedelta)
- # scalars
- result = ts - ts
- expected = Timedelta("0 days")
- _check(result, expected)
- result = dt_tz - ts_tz
- expected = Timedelta("0 days")
- _check(result, expected)
- result = ts_tz - dt_tz
- expected = Timedelta("0 days")
- _check(result, expected)
- # tz mismatches
- msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
- with pytest.raises(TypeError, match=msg):
- dt_tz - ts
- msg = "can't subtract offset-naive and offset-aware datetimes"
- with pytest.raises(TypeError, match=msg):
- dt_tz - dt
- msg = "can't subtract offset-naive and offset-aware datetimes"
- with pytest.raises(TypeError, match=msg):
- dt - dt_tz
- msg = "Cannot subtract tz-naive and tz-aware datetime-like objects."
- with pytest.raises(TypeError, match=msg):
- ts - dt_tz
- with pytest.raises(TypeError, match=msg):
- ts_tz2 - ts
- with pytest.raises(TypeError, match=msg):
- ts_tz2 - dt
- msg = "Cannot subtract tz-naive and tz-aware"
- # with dti
- with pytest.raises(TypeError, match=msg):
- dti - ts_tz
- with pytest.raises(TypeError, match=msg):
- dti_tz - ts
- result = dti_tz - dt_tz
- expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(result, expected)
- result = dt_tz - dti_tz
- expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(result, expected)
- result = dti_tz - ts_tz
- expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(result, expected)
- result = ts_tz - dti_tz
- expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(result, expected)
- result = td - td
- expected = Timedelta("0 days")
- _check(result, expected)
- result = dti_tz - td
- expected = DatetimeIndex(["20121231", "20130101", "20130102"], tz="US/Eastern")
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(result, expected)
- def test_dti_tdi_numeric_ops(self):
- # These are normally union/diff set-like ops
- tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
- dti = pd.date_range("20130101", periods=3, name="bar")
- result = tdi - tdi
- expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo")
- tm.assert_index_equal(result, expected)
- result = tdi + tdi
- expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo")
- tm.assert_index_equal(result, expected)
- result = dti - tdi # name will be reset
- expected = DatetimeIndex(["20121231", NaT, "20130101"])
- tm.assert_index_equal(result, expected)
- def test_addition_ops(self):
- # with datetimes/timedelta and tdi/dti
- tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
- dti = pd.date_range("20130101", periods=3, name="bar")
- td = Timedelta("1 days")
- dt = Timestamp("20130101")
- result = tdi + dt
- expected = DatetimeIndex(["20130102", NaT, "20130103"], name="foo")
- tm.assert_index_equal(result, expected)
- result = dt + tdi
- expected = DatetimeIndex(["20130102", NaT, "20130103"], name="foo")
- tm.assert_index_equal(result, expected)
- result = td + tdi
- expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
- tm.assert_index_equal(result, expected)
- result = tdi + td
- expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo")
- tm.assert_index_equal(result, expected)
- # unequal length
- msg = "cannot add indices of unequal length"
- with pytest.raises(ValueError, match=msg):
- tdi + dti[0:1]
- with pytest.raises(ValueError, match=msg):
- tdi[0:1] + dti
- # random indexes
- msg = "Addition/subtraction of integers and integer-arrays"
- with pytest.raises(TypeError, match=msg):
- tdi + Index([1, 2, 3], dtype=np.int64)
- # this is a union!
- # pytest.raises(TypeError, lambda : Index([1,2,3]) + tdi)
- result = tdi + dti # name will be reset
- expected = DatetimeIndex(["20130102", NaT, "20130105"])
- tm.assert_index_equal(result, expected)
- result = dti + tdi # name will be reset
- expected = DatetimeIndex(["20130102", NaT, "20130105"])
- tm.assert_index_equal(result, expected)
- result = dt + td
- expected = Timestamp("20130102")
- assert result == expected
- result = td + dt
- expected = Timestamp("20130102")
- assert result == expected
- # TODO: Needs more informative name, probably split up into
- # more targeted tests
- @pytest.mark.parametrize("freq", ["D", "B"])
- def test_timedelta(self, freq):
- index = pd.date_range("1/1/2000", periods=50, freq=freq)
- shifted = index + timedelta(1)
- back = shifted + timedelta(-1)
- back = back._with_freq("infer")
- tm.assert_index_equal(index, back)
- if freq == "D":
- expected = pd.tseries.offsets.Day(1)
- assert index.freq == expected
- assert shifted.freq == expected
- assert back.freq == expected
- else: # freq == 'B'
- assert index.freq == pd.tseries.offsets.BusinessDay(1)
- assert shifted.freq is None
- assert back.freq == pd.tseries.offsets.BusinessDay(1)
- result = index - timedelta(1)
- expected = index + timedelta(-1)
- tm.assert_index_equal(result, expected)
- def test_timedelta_tick_arithmetic(self):
- # GH#4134, buggy with timedeltas
- rng = pd.date_range("2013", "2014")
- s = Series(rng)
- result1 = rng - offsets.Hour(1)
- result2 = DatetimeIndex(s - np.timedelta64(100000000))
- result3 = rng - np.timedelta64(100000000)
- result4 = DatetimeIndex(s - offsets.Hour(1))
- assert result1.freq == rng.freq
- result1 = result1._with_freq(None)
- tm.assert_index_equal(result1, result4)
- assert result3.freq == rng.freq
- result3 = result3._with_freq(None)
- tm.assert_index_equal(result2, result3)
- def test_tda_add_sub_index(self):
- # Check that TimedeltaArray defers to Index on arithmetic ops
- tdi = TimedeltaIndex(["1 days", NaT, "2 days"])
- tda = tdi.array
- dti = pd.date_range("1999-12-31", periods=3, freq="D")
- result = tda + dti
- expected = tdi + dti
- tm.assert_index_equal(result, expected)
- result = tda + tdi
- expected = tdi + tdi
- tm.assert_index_equal(result, expected)
- result = tda - tdi
- expected = tdi - tdi
- tm.assert_index_equal(result, expected)
- def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture):
- # Result should be cast back to DatetimeArray
- box = box_with_array
- dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
- dti = dti._with_freq(None)
- tdi = dti - dti
- obj = tm.box_expected(tdi, box)
- other = tm.box_expected(dti, box)
- with tm.assert_produces_warning(PerformanceWarning):
- result = obj + other.astype(object)
- tm.assert_equal(result, other.astype(object))
- # -------------------------------------------------------------
- # Binary operations TimedeltaIndex and timedelta-like
- def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array):
- # only test adding/sub offsets as + is now numeric
- rng = timedelta_range("1 days", "10 days")
- expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
- rng = tm.box_expected(rng, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- orig_rng = rng
- rng += two_hours
- tm.assert_equal(rng, expected)
- if box_with_array is not Index:
- # Check that operation is actually inplace
- tm.assert_equal(orig_rng, expected)
- def test_tdi_isub_timedeltalike(self, two_hours, box_with_array):
- # only test adding/sub offsets as - is now numeric
- rng = timedelta_range("1 days", "10 days")
- expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
- rng = tm.box_expected(rng, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- orig_rng = rng
- rng -= two_hours
- tm.assert_equal(rng, expected)
- if box_with_array is not Index:
- # Check that operation is actually inplace
- tm.assert_equal(orig_rng, expected)
- # -------------------------------------------------------------
- def test_tdi_ops_attributes(self):
- rng = timedelta_range("2 days", periods=5, freq="2D", name="x")
- result = rng + 1 * rng.freq
- exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "2D"
- result = rng - 2 * rng.freq
- exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "2D"
- result = rng * 2
- exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "4D"
- result = rng / 2
- exp = timedelta_range("1 days", periods=5, freq="D", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "D"
- result = -rng
- exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
- tm.assert_index_equal(result, exp)
- assert result.freq == "-2D"
- rng = timedelta_range("-2 days", periods=5, freq="D", name="x")
- result = abs(rng)
- exp = TimedeltaIndex(
- ["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
- )
- tm.assert_index_equal(result, exp)
- assert result.freq is None
- class TestAddSubNaTMasking:
- # TODO: parametrize over boxes
- @pytest.mark.parametrize("str_ts", ["1950-01-01", "1980-01-01"])
- def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts):
- # GH#17991 checking for overflow-masking with NaT
- tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"])
- tdobj = tm.box_expected(tdinat, box_with_array)
- ts = Timestamp(str_ts)
- ts_variants = [
- ts,
- ts.to_pydatetime(),
- ts.to_datetime64().astype("datetime64[ns]"),
- ts.to_datetime64().astype("datetime64[D]"),
- ]
- for variant in ts_variants:
- res = tdobj + variant
- if box_with_array is DataFrame:
- assert res.iloc[1, 1] is NaT
- else:
- assert res[1] is NaT
- def test_tdi_add_overflow(self):
- # See GH#14068
- # preliminary test scalar analogue of vectorized tests below
- # TODO: Make raised error message more informative and test
- with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
- pd.to_timedelta(106580, "D") + Timestamp("2000")
- with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
- Timestamp("2000") + pd.to_timedelta(106580, "D")
- _NaT = NaT._value + 1
- msg = "Overflow in int64 addition"
- with pytest.raises(OverflowError, match=msg):
- pd.to_timedelta([106580], "D") + Timestamp("2000")
- with pytest.raises(OverflowError, match=msg):
- Timestamp("2000") + pd.to_timedelta([106580], "D")
- with pytest.raises(OverflowError, match=msg):
- pd.to_timedelta([_NaT]) - Timedelta("1 days")
- with pytest.raises(OverflowError, match=msg):
- pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days")
- with pytest.raises(OverflowError, match=msg):
- (
- pd.to_timedelta([_NaT, "5 days", "1 hours"])
- - pd.to_timedelta(["7 seconds", _NaT, "4 hours"])
- )
- # These should not overflow!
- exp = TimedeltaIndex([NaT])
- result = pd.to_timedelta([NaT]) - Timedelta("1 days")
- tm.assert_index_equal(result, exp)
- exp = TimedeltaIndex(["4 days", NaT])
- result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days")
- tm.assert_index_equal(result, exp)
- exp = TimedeltaIndex([NaT, NaT, "5 hours"])
- result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta(
- ["7 seconds", NaT, "4 hours"]
- )
- tm.assert_index_equal(result, exp)
- class TestTimedeltaArraylikeAddSubOps:
- # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__
- def test_sub_nat_retain_unit(self):
- ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]")
- result = ser - NaT
- expected = Series([NaT], dtype="m8[s]")
- tm.assert_series_equal(result, expected)
- # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs
- # parametrization+de-duplication
- def test_timedelta_ops_with_missing_values(self):
- # setup
- s1 = pd.to_timedelta(Series(["00:00:01"]))
- s2 = pd.to_timedelta(Series(["00:00:02"]))
- msg = r"dtype datetime64\[ns\] cannot be converted to timedelta64\[ns\]"
- with pytest.raises(TypeError, match=msg):
- # Passing datetime64-dtype data to TimedeltaIndex is no longer
- # supported GH#29794
- pd.to_timedelta(Series([NaT])) # TODO: belongs elsewhere?
- sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]"))
- df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta)
- df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta)
- with pytest.raises(TypeError, match=msg):
- # Passing datetime64-dtype data to TimedeltaIndex is no longer
- # supported GH#29794
- DataFrame([NaT]).apply(pd.to_timedelta) # TODO: belongs elsewhere?
- dfn = DataFrame([NaT._value]).apply(pd.to_timedelta)
- scalar1 = pd.to_timedelta("00:00:01")
- scalar2 = pd.to_timedelta("00:00:02")
- timedelta_NaT = pd.to_timedelta("NaT")
- actual = scalar1 + scalar1
- assert actual == scalar2
- actual = scalar2 - scalar1
- assert actual == scalar1
- actual = s1 + s1
- tm.assert_series_equal(actual, s2)
- actual = s2 - s1
- tm.assert_series_equal(actual, s1)
- actual = s1 + scalar1
- tm.assert_series_equal(actual, s2)
- actual = scalar1 + s1
- tm.assert_series_equal(actual, s2)
- actual = s2 - scalar1
- tm.assert_series_equal(actual, s1)
- actual = -scalar1 + s2
- tm.assert_series_equal(actual, s1)
- actual = s1 + timedelta_NaT
- tm.assert_series_equal(actual, sn)
- actual = timedelta_NaT + s1
- tm.assert_series_equal(actual, sn)
- actual = s1 - timedelta_NaT
- tm.assert_series_equal(actual, sn)
- actual = -timedelta_NaT + s1
- tm.assert_series_equal(actual, sn)
- msg = "unsupported operand type"
- with pytest.raises(TypeError, match=msg):
- s1 + np.nan
- with pytest.raises(TypeError, match=msg):
- np.nan + s1
- with pytest.raises(TypeError, match=msg):
- s1 - np.nan
- with pytest.raises(TypeError, match=msg):
- -np.nan + s1
- actual = s1 + NaT
- tm.assert_series_equal(actual, sn)
- actual = s2 - NaT
- tm.assert_series_equal(actual, sn)
- actual = s1 + df1
- tm.assert_frame_equal(actual, df2)
- actual = s2 - df1
- tm.assert_frame_equal(actual, df1)
- actual = df1 + s1
- tm.assert_frame_equal(actual, df2)
- actual = df2 - s1
- tm.assert_frame_equal(actual, df1)
- actual = df1 + df1
- tm.assert_frame_equal(actual, df2)
- actual = df2 - df1
- tm.assert_frame_equal(actual, df1)
- actual = df1 + scalar1
- tm.assert_frame_equal(actual, df2)
- actual = df2 - scalar1
- tm.assert_frame_equal(actual, df1)
- actual = df1 + timedelta_NaT
- tm.assert_frame_equal(actual, dfn)
- actual = df1 - timedelta_NaT
- tm.assert_frame_equal(actual, dfn)
- msg = "cannot subtract a datelike from|unsupported operand type"
- with pytest.raises(TypeError, match=msg):
- df1 + np.nan
- with pytest.raises(TypeError, match=msg):
- df1 - np.nan
- actual = df1 + NaT # NaT is datetime, not timedelta
- tm.assert_frame_equal(actual, dfn)
- actual = df1 - NaT
- tm.assert_frame_equal(actual, dfn)
- # TODO: moved from tests.series.test_operators, needs splitting, cleanup,
- # de-duplication, box-parametrization...
- def test_operators_timedelta64(self):
- # series ops
- v1 = pd.date_range("2012-1-1", periods=3, freq="D")
- v2 = pd.date_range("2012-1-2", periods=3, freq="D")
- rs = Series(v2) - Series(v1)
- xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]")
- tm.assert_series_equal(rs, xp)
- assert rs.dtype == "timedelta64[ns]"
- df = DataFrame({"A": v1})
- td = Series([timedelta(days=i) for i in range(3)])
- assert td.dtype == "timedelta64[ns]"
- # series on the rhs
- result = df["A"] - df["A"].shift()
- assert result.dtype == "timedelta64[ns]"
- result = df["A"] + td
- assert result.dtype == "M8[ns]"
- # scalar Timestamp on rhs
- maxa = df["A"].max()
- assert isinstance(maxa, Timestamp)
- resultb = df["A"] - df["A"].max()
- assert resultb.dtype == "timedelta64[ns]"
- # timestamp on lhs
- result = resultb + df["A"]
- values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")]
- expected = Series(values, name="A")
- tm.assert_series_equal(result, expected)
- # datetimes on rhs
- result = df["A"] - datetime(2001, 1, 1)
- expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A")
- tm.assert_series_equal(result, expected)
- assert result.dtype == "m8[ns]"
- d = datetime(2001, 1, 1, 3, 4)
- resulta = df["A"] - d
- assert resulta.dtype == "m8[ns]"
- # roundtrip
- resultb = resulta + d
- tm.assert_series_equal(df["A"], resultb)
- # timedeltas on rhs
- td = timedelta(days=1)
- resulta = df["A"] + td
- resultb = resulta - td
- tm.assert_series_equal(resultb, df["A"])
- assert resultb.dtype == "M8[ns]"
- # roundtrip
- td = timedelta(minutes=5, seconds=3)
- resulta = df["A"] + td
- resultb = resulta - td
- tm.assert_series_equal(df["A"], resultb)
- assert resultb.dtype == "M8[ns]"
- # inplace
- value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1))
- rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1))
- assert rs[2] == value
- def test_timedelta64_ops_nat(self):
- # GH 11349
- timedelta_series = Series([NaT, Timedelta("1s")])
- nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
- single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")
- # subtraction
- tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta)
- tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta)
- tm.assert_series_equal(
- timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- -single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
- )
- # addition
- tm.assert_series_equal(
- nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- nat_series_dtype_timedelta + single_nat_dtype_timedelta,
- nat_series_dtype_timedelta,
- )
- tm.assert_series_equal(
- single_nat_dtype_timedelta + nat_series_dtype_timedelta,
- nat_series_dtype_timedelta,
- )
- tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta)
- tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta)
- tm.assert_series_equal(
- timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- nat_series_dtype_timedelta + single_nat_dtype_timedelta,
- nat_series_dtype_timedelta,
- )
- tm.assert_series_equal(
- single_nat_dtype_timedelta + nat_series_dtype_timedelta,
- nat_series_dtype_timedelta,
- )
- # multiplication
- tm.assert_series_equal(
- nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(
- 1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta
- )
- tm.assert_series_equal(timedelta_series * 1, timedelta_series)
- tm.assert_series_equal(1 * timedelta_series, timedelta_series)
- tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")]))
- tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")]))
- tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta)
- tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta)
- # division
- tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")]))
- tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")]))
- tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta)
- # -------------------------------------------------------------
- # Binary operations td64 arraylike and datetime-like
- @pytest.mark.parametrize("cls", [Timestamp, datetime, np.datetime64])
- def test_td64arr_add_sub_datetimelike_scalar(
- self, cls, box_with_array, tz_naive_fixture
- ):
- # GH#11925, GH#29558, GH#23215
- tz = tz_naive_fixture
- dt_scalar = Timestamp("2012-01-01", tz=tz)
- if cls is datetime:
- ts = dt_scalar.to_pydatetime()
- elif cls is np.datetime64:
- if tz_naive_fixture is not None:
- return
- ts = dt_scalar.to_datetime64()
- else:
- ts = dt_scalar
- tdi = timedelta_range("1 day", periods=3)
- expected = pd.date_range("2012-01-02", periods=3, tz=tz)
- tdarr = tm.box_expected(tdi, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(ts + tdarr, expected)
- tm.assert_equal(tdarr + ts, expected)
- expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz)
- expected2 = tm.box_expected(expected2, box_with_array)
- tm.assert_equal(ts - tdarr, expected2)
- tm.assert_equal(ts + (-tdarr), expected2)
- msg = "cannot subtract a datelike"
- with pytest.raises(TypeError, match=msg):
- tdarr - ts
- def test_td64arr_add_datetime64_nat(self, box_with_array):
- # GH#23215
- other = np.datetime64("NaT")
- tdi = timedelta_range("1 day", periods=3)
- expected = DatetimeIndex(["NaT", "NaT", "NaT"])
- tdser = tm.box_expected(tdi, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- tm.assert_equal(tdser + other, expected)
- tm.assert_equal(other + tdser, expected)
- def test_td64arr_sub_dt64_array(self, box_with_array):
- dti = pd.date_range("2016-01-01", periods=3)
- tdi = TimedeltaIndex(["-1 Day"] * 3)
- dtarr = dti.values
- expected = DatetimeIndex(dtarr) - tdi
- tdi = tm.box_expected(tdi, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- msg = "cannot subtract a datelike from"
- with pytest.raises(TypeError, match=msg):
- tdi - dtarr
- # TimedeltaIndex.__rsub__
- result = dtarr - tdi
- tm.assert_equal(result, expected)
- def test_td64arr_add_dt64_array(self, box_with_array):
- dti = pd.date_range("2016-01-01", periods=3)
- tdi = TimedeltaIndex(["-1 Day"] * 3)
- dtarr = dti.values
- expected = DatetimeIndex(dtarr) + tdi
- tdi = tm.box_expected(tdi, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = tdi + dtarr
- tm.assert_equal(result, expected)
- result = dtarr + tdi
- tm.assert_equal(result, expected)
- # ------------------------------------------------------------------
- # Invalid __add__/__sub__ operations
- @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"])
- @pytest.mark.parametrize("tdi_freq", [None, "H"])
- def test_td64arr_sub_periodlike(
- self, box_with_array, box_with_array2, tdi_freq, pi_freq
- ):
- # GH#20049 subtracting PeriodIndex should raise TypeError
- tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
- dti = Timestamp("2018-03-07 17:16:40") + tdi
- pi = dti.to_period(pi_freq)
- per = pi[0]
- tdi = tm.box_expected(tdi, box_with_array)
- pi = tm.box_expected(pi, box_with_array2)
- msg = "cannot subtract|unsupported operand type"
- with pytest.raises(TypeError, match=msg):
- tdi - pi
- # GH#13078 subtraction of Period scalar not supported
- with pytest.raises(TypeError, match=msg):
- tdi - per
- @pytest.mark.parametrize(
- "other",
- [
- # GH#12624 for str case
- "a",
- # GH#19123
- 1,
- 1.5,
- np.array(2),
- ],
- )
- def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other):
- # vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- tdarr = tm.box_expected(tdser, box_with_array)
- assert_invalid_addsub_type(tdarr, other)
- @pytest.mark.parametrize(
- "vec",
- [
- np.array([1, 2, 3]),
- Index([1, 2, 3]),
- Series([1, 2, 3]),
- DataFrame([[1, 2, 3]]),
- ],
- ids=lambda x: type(x).__name__,
- )
- def test_td64arr_addsub_numeric_arr_invalid(
- self, box_with_array, vec, any_real_numpy_dtype
- ):
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- tdarr = tm.box_expected(tdser, box_with_array)
- vector = vec.astype(any_real_numpy_dtype)
- assert_invalid_addsub_type(tdarr, vector)
- def test_td64arr_add_sub_int(self, box_with_array, one):
- # Variants of `one` for #19012, deprecated GH#22535
- rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
- tdarr = tm.box_expected(rng, box_with_array)
- msg = "Addition/subtraction of integers"
- assert_invalid_addsub_type(tdarr, one, msg)
- # TODO: get inplace ops into assert_invalid_addsub_type
- with pytest.raises(TypeError, match=msg):
- tdarr += one
- with pytest.raises(TypeError, match=msg):
- tdarr -= one
- def test_td64arr_add_sub_integer_array(self, box_with_array):
- # GH#19959, deprecated GH#22535
- # GH#22696 for DataFrame case, check that we don't dispatch to numpy
- # implementation, which treats int64 as m8[ns]
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- rng = timedelta_range("1 days 09:00:00", freq="H", periods=3)
- tdarr = tm.box_expected(rng, box)
- other = tm.box_expected([4, 3, 2], xbox)
- msg = "Addition/subtraction of integers and integer-arrays"
- assert_invalid_addsub_type(tdarr, other, msg)
- def test_td64arr_addsub_integer_array_no_freq(self, box_with_array):
- # GH#19959
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
- tdarr = tm.box_expected(tdi, box)
- other = tm.box_expected([14, -1, 16], xbox)
- msg = "Addition/subtraction of integers"
- assert_invalid_addsub_type(tdarr, other, msg)
- # ------------------------------------------------------------------
- # Operations with timedelta-like others
- def test_td64arr_add_sub_td64_array(self, box_with_array):
- box = box_with_array
- dti = pd.date_range("2016-01-01", periods=3)
- tdi = dti - dti.shift(1)
- tdarr = tdi.values
- expected = 2 * tdi
- tdi = tm.box_expected(tdi, box)
- expected = tm.box_expected(expected, box)
- result = tdi + tdarr
- tm.assert_equal(result, expected)
- result = tdarr + tdi
- tm.assert_equal(result, expected)
- expected_sub = 0 * tdi
- result = tdi - tdarr
- tm.assert_equal(result, expected_sub)
- result = tdarr - tdi
- tm.assert_equal(result, expected_sub)
- def test_td64arr_add_sub_tdi(self, box_with_array, names):
- # GH#17250 make sure result dtype is correct
- # GH#19043 make sure names are propagated correctly
- box = box_with_array
- exname = get_expected_name(box, names)
- tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1])
- tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi
- ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0])
- expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname)
- ser = tm.box_expected(ser, box)
- expected = tm.box_expected(expected, box)
- result = tdi + ser
- tm.assert_equal(result, expected)
- assert_dtype(result, "timedelta64[ns]")
- result = ser + tdi
- tm.assert_equal(result, expected)
- assert_dtype(result, "timedelta64[ns]")
- expected = Series(
- [Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname
- )
- expected = tm.box_expected(expected, box)
- result = tdi - ser
- tm.assert_equal(result, expected)
- assert_dtype(result, "timedelta64[ns]")
- result = ser - tdi
- tm.assert_equal(result, -expected)
- assert_dtype(result, "timedelta64[ns]")
- @pytest.mark.parametrize("tdnat", [np.timedelta64("NaT"), NaT])
- def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat):
- # GH#18808, GH#23320 special handling for timedelta64("NaT")
- box = box_with_array
- tdi = TimedeltaIndex([NaT, Timedelta("1s")])
- expected = TimedeltaIndex(["NaT"] * 2)
- obj = tm.box_expected(tdi, box)
- expected = tm.box_expected(expected, box)
- result = obj + tdnat
- tm.assert_equal(result, expected)
- result = tdnat + obj
- tm.assert_equal(result, expected)
- result = obj - tdnat
- tm.assert_equal(result, expected)
- result = tdnat - obj
- tm.assert_equal(result, expected)
- def test_td64arr_add_timedeltalike(self, two_hours, box_with_array):
- # only test adding/sub offsets as + is now numeric
- # GH#10699 for Tick cases
- box = box_with_array
- rng = timedelta_range("1 days", "10 days")
- expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
- rng = tm.box_expected(rng, box)
- expected = tm.box_expected(expected, box)
- result = rng + two_hours
- tm.assert_equal(result, expected)
- result = two_hours + rng
- tm.assert_equal(result, expected)
- def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array):
- # only test adding/sub offsets as - is now numeric
- # GH#10699 for Tick cases
- box = box_with_array
- rng = timedelta_range("1 days", "10 days")
- expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
- rng = tm.box_expected(rng, box)
- expected = tm.box_expected(expected, box)
- result = rng - two_hours
- tm.assert_equal(result, expected)
- result = two_hours - rng
- tm.assert_equal(result, -expected)
- # ------------------------------------------------------------------
- # __add__/__sub__ with DateOffsets and arrays of DateOffsets
- def test_td64arr_add_sub_offset_index(self, names, box_with_array):
- # GH#18849, GH#19744
- box = box_with_array
- exname = get_expected_name(box, names)
- tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
- other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
- other = np.array(other) if box in [tm.to_array, pd.array] else other
- expected = TimedeltaIndex(
- [tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname
- )
- expected_sub = TimedeltaIndex(
- [tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname
- )
- tdi = tm.box_expected(tdi, box)
- expected = tm.box_expected(expected, box).astype(object, copy=False)
- expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False)
- with tm.assert_produces_warning(PerformanceWarning):
- res = tdi + other
- tm.assert_equal(res, expected)
- with tm.assert_produces_warning(PerformanceWarning):
- res2 = other + tdi
- tm.assert_equal(res2, expected)
- with tm.assert_produces_warning(PerformanceWarning):
- res_sub = tdi - other
- tm.assert_equal(res_sub, expected_sub)
- def test_td64arr_add_sub_offset_array(self, box_with_array):
- # GH#18849, GH#18824
- box = box_with_array
- tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
- other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)])
- expected = TimedeltaIndex(
- [tdi[n] + other[n] for n in range(len(tdi))], freq="infer"
- )
- expected_sub = TimedeltaIndex(
- [tdi[n] - other[n] for n in range(len(tdi))], freq="infer"
- )
- tdi = tm.box_expected(tdi, box)
- expected = tm.box_expected(expected, box).astype(object)
- with tm.assert_produces_warning(PerformanceWarning):
- res = tdi + other
- tm.assert_equal(res, expected)
- with tm.assert_produces_warning(PerformanceWarning):
- res2 = other + tdi
- tm.assert_equal(res2, expected)
- expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object)
- with tm.assert_produces_warning(PerformanceWarning):
- res_sub = tdi - other
- tm.assert_equal(res_sub, expected_sub)
- def test_td64arr_with_offset_series(self, names, box_with_array):
- # GH#18849
- box = box_with_array
- box2 = Series if box in [Index, tm.to_array, pd.array] else box
- exname = get_expected_name(box, names)
- tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
- other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1])
- expected_add = Series(
- [tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object
- )
- obj = tm.box_expected(tdi, box)
- expected_add = tm.box_expected(expected_add, box2).astype(object)
- with tm.assert_produces_warning(PerformanceWarning):
- res = obj + other
- tm.assert_equal(res, expected_add)
- with tm.assert_produces_warning(PerformanceWarning):
- res2 = other + obj
- tm.assert_equal(res2, expected_add)
- expected_sub = Series(
- [tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object
- )
- expected_sub = tm.box_expected(expected_sub, box2).astype(object)
- with tm.assert_produces_warning(PerformanceWarning):
- res3 = obj - other
- tm.assert_equal(res3, expected_sub)
- @pytest.mark.parametrize("obox", [np.array, Index, Series])
- def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array):
- # GH#18824
- tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
- tdi = tm.box_expected(tdi, box_with_array)
- anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)])
- # addition/subtraction ops with anchored offsets should issue
- # a PerformanceWarning and _then_ raise a TypeError.
- msg = "has incorrect type|cannot add the type MonthEnd"
- with pytest.raises(TypeError, match=msg):
- with tm.assert_produces_warning(PerformanceWarning):
- tdi + anchored
- with pytest.raises(TypeError, match=msg):
- with tm.assert_produces_warning(PerformanceWarning):
- anchored + tdi
- with pytest.raises(TypeError, match=msg):
- with tm.assert_produces_warning(PerformanceWarning):
- tdi - anchored
- with pytest.raises(TypeError, match=msg):
- with tm.assert_produces_warning(PerformanceWarning):
- anchored - tdi
- # ------------------------------------------------------------------
- # Unsorted
- def test_td64arr_add_sub_object_array(self, box_with_array):
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- tdi = timedelta_range("1 day", periods=3, freq="D")
- tdarr = tm.box_expected(tdi, box)
- other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")])
- with tm.assert_produces_warning(PerformanceWarning):
- result = tdarr + other
- expected = Index(
- [Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")]
- )
- expected = tm.box_expected(expected, xbox).astype(object)
- tm.assert_equal(result, expected)
- msg = "unsupported operand type|cannot subtract a datelike"
- with pytest.raises(TypeError, match=msg):
- with tm.assert_produces_warning(PerformanceWarning):
- tdarr - other
- with tm.assert_produces_warning(PerformanceWarning):
- result = other - tdarr
- expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")])
- expected = tm.box_expected(expected, xbox).astype(object)
- tm.assert_equal(result, expected)
- class TestTimedeltaArraylikeMulDivOps:
- # Tests for timedelta64[ns]
- # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
- # ------------------------------------------------------------------
- # Multiplication
- # organized with scalar others first, then array-like
- def test_td64arr_mul_int(self, box_with_array):
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box_with_array)
- result = idx * 1
- tm.assert_equal(result, idx)
- result = 1 * idx
- tm.assert_equal(result, idx)
- def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array):
- rng = timedelta_range("1 days", "10 days", name="foo")
- rng = tm.box_expected(rng, box_with_array)
- msg = "argument must be an integer|cannot use operands with types dtype"
- with pytest.raises(TypeError, match=msg):
- rng * two_hours
- def test_tdi_mul_int_array_zerodim(self, box_with_array):
- rng5 = np.arange(5, dtype="int64")
- idx = TimedeltaIndex(rng5)
- expected = TimedeltaIndex(rng5 * 5)
- idx = tm.box_expected(idx, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = idx * np.array(5, dtype="int64")
- tm.assert_equal(result, expected)
- def test_tdi_mul_int_array(self, box_with_array):
- rng5 = np.arange(5, dtype="int64")
- idx = TimedeltaIndex(rng5)
- expected = TimedeltaIndex(rng5**2)
- idx = tm.box_expected(idx, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = idx * rng5
- tm.assert_equal(result, expected)
- def test_tdi_mul_int_series(self, box_with_array):
- box = box_with_array
- xbox = Series if box in [Index, tm.to_array, pd.array] else box
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2)
- idx = tm.box_expected(idx, box)
- expected = tm.box_expected(expected, xbox)
- result = idx * Series(np.arange(5, dtype="int64"))
- tm.assert_equal(result, expected)
- def test_tdi_mul_float_series(self, box_with_array):
- box = box_with_array
- xbox = Series if box in [Index, tm.to_array, pd.array] else box
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box)
- rng5f = np.arange(5, dtype="float64")
- expected = TimedeltaIndex(rng5f * (rng5f + 1.0))
- expected = tm.box_expected(expected, xbox)
- result = idx * Series(rng5f + 1.0)
- tm.assert_equal(result, expected)
- # TODO: Put Series/DataFrame in others?
- @pytest.mark.parametrize(
- "other",
- [
- np.arange(1, 11),
- Index(np.arange(1, 11), np.int64),
- Index(range(1, 11), np.uint64),
- Index(range(1, 11), np.float64),
- pd.RangeIndex(1, 11),
- ],
- ids=lambda x: type(x).__name__,
- )
- def test_tdi_rmul_arraylike(self, other, box_with_array):
- box = box_with_array
- tdi = TimedeltaIndex(["1 Day"] * 10)
- expected = timedelta_range("1 days", "10 days")._with_freq(None)
- tdi = tm.box_expected(tdi, box)
- xbox = get_upcast_box(tdi, other)
- expected = tm.box_expected(expected, xbox)
- result = other * tdi
- tm.assert_equal(result, expected)
- commute = tdi * other
- tm.assert_equal(commute, expected)
- # ------------------------------------------------------------------
- # __div__, __rdiv__
- def test_td64arr_div_nat_invalid(self, box_with_array):
- # don't allow division by NaT (maybe could in the future)
- rng = timedelta_range("1 days", "10 days", name="foo")
- rng = tm.box_expected(rng, box_with_array)
- with pytest.raises(TypeError, match="unsupported operand type"):
- rng / NaT
- with pytest.raises(TypeError, match="Cannot divide NaTType by"):
- NaT / rng
- dt64nat = np.datetime64("NaT", "ns")
- msg = "|".join(
- [
- # 'divide' on npdev as of 2021-12-18
- "ufunc '(true_divide|divide)' cannot use operands",
- "cannot perform __r?truediv__",
- "Cannot divide datetime64 by TimedeltaArray",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- rng / dt64nat
- with pytest.raises(TypeError, match=msg):
- dt64nat / rng
- def test_td64arr_div_td64nat(self, box_with_array):
- # GH#23829
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- rng = timedelta_range("1 days", "10 days")
- rng = tm.box_expected(rng, box)
- other = np.timedelta64("NaT")
- expected = np.array([np.nan] * 10)
- expected = tm.box_expected(expected, xbox)
- result = rng / other
- tm.assert_equal(result, expected)
- result = other / rng
- tm.assert_equal(result, expected)
- def test_td64arr_div_int(self, box_with_array):
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box_with_array)
- result = idx / 1
- tm.assert_equal(result, idx)
- with pytest.raises(TypeError, match="Cannot divide"):
- # GH#23829
- 1 / idx
- def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array):
- # GH#20088, GH#22163 ensure DataFrame returns correct dtype
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- rng = timedelta_range("1 days", "10 days", name="foo")
- expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo")
- rng = tm.box_expected(rng, box)
- expected = tm.box_expected(expected, xbox)
- result = rng / two_hours
- tm.assert_equal(result, expected)
- result = two_hours / rng
- expected = 1 / expected
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("m", [1, 3, 10])
- @pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
- def test_td64arr_div_td64_scalar(self, m, unit, box_with_array):
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- ser = Series([Timedelta(days=59)] * 3)
- ser[2] = np.nan
- flat = ser
- ser = tm.box_expected(ser, box)
- # op
- expected = Series([x / np.timedelta64(m, unit) for x in flat])
- expected = tm.box_expected(expected, xbox)
- result = ser / np.timedelta64(m, unit)
- tm.assert_equal(result, expected)
- # reverse op
- expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat])
- expected = tm.box_expected(expected, xbox)
- result = np.timedelta64(m, unit) / ser
- tm.assert_equal(result, expected)
- def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array):
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo")
- expected = Index([12, np.nan, 24], dtype=np.float64, name="foo")
- rng = tm.box_expected(rng, box)
- expected = tm.box_expected(expected, xbox)
- result = rng / two_hours
- tm.assert_equal(result, expected)
- result = two_hours / rng
- expected = 1 / expected
- tm.assert_equal(result, expected)
- def test_td64arr_div_td64_ndarray(self, box_with_array):
- # GH#22631
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- rng = TimedeltaIndex(["1 days", NaT, "2 days"])
- expected = Index([12, np.nan, 24], dtype=np.float64)
- rng = tm.box_expected(rng, box)
- expected = tm.box_expected(expected, xbox)
- other = np.array([2, 4, 2], dtype="m8[h]")
- result = rng / other
- tm.assert_equal(result, expected)
- result = rng / tm.box_expected(other, box)
- tm.assert_equal(result, expected)
- result = rng / other.astype(object)
- tm.assert_equal(result, expected.astype(object))
- result = rng / list(other)
- tm.assert_equal(result, expected)
- # reversed op
- expected = 1 / expected
- result = other / rng
- tm.assert_equal(result, expected)
- result = tm.box_expected(other, box) / rng
- tm.assert_equal(result, expected)
- result = other.astype(object) / rng
- tm.assert_equal(result, expected)
- result = list(other) / rng
- tm.assert_equal(result, expected)
- def test_tdarr_div_length_mismatch(self, box_with_array):
- rng = TimedeltaIndex(["1 days", NaT, "2 days"])
- mismatched = [1, 2, 3, 4]
- rng = tm.box_expected(rng, box_with_array)
- msg = "Cannot divide vectors|Unable to coerce to Series"
- for obj in [mismatched, mismatched[:2]]:
- # one shorter, one longer
- for other in [obj, np.array(obj), Index(obj)]:
- with pytest.raises(ValueError, match=msg):
- rng / other
- with pytest.raises(ValueError, match=msg):
- other / rng
- def test_td64_div_object_mixed_result(self, box_with_array):
- # Case where we having a NaT in the result inseat of timedelta64("NaT")
- # is misleading
- orig = timedelta_range("1 Day", periods=3).insert(1, NaT)
- tdi = tm.box_expected(orig, box_with_array, transpose=False)
- other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object)
- other = tm.box_expected(other, box_with_array, transpose=False)
- res = tdi / other
- expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object)
- expected = tm.box_expected(expected, box_with_array, transpose=False)
- if isinstance(expected, PandasArray):
- expected = expected.to_numpy()
- tm.assert_equal(res, expected)
- if box_with_array is DataFrame:
- # We have a np.timedelta64(NaT), not pd.NaT
- assert isinstance(res.iloc[1, 0], np.timedelta64)
- res = tdi // other
- expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object)
- expected = tm.box_expected(expected, box_with_array, transpose=False)
- if isinstance(expected, PandasArray):
- expected = expected.to_numpy()
- tm.assert_equal(res, expected)
- if box_with_array is DataFrame:
- # We have a np.timedelta64(NaT), not pd.NaT
- assert isinstance(res.iloc[1, 0], np.timedelta64)
- # ------------------------------------------------------------------
- # __floordiv__, __rfloordiv__
- def test_td64arr_floordiv_td64arr_with_nat(
- self, box_with_array, using_array_manager
- ):
- # GH#35529
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- left = Series([1000, 222330, 30], dtype="timedelta64[ns]")
- right = Series([1000, 222330, None], dtype="timedelta64[ns]")
- left = tm.box_expected(left, box)
- right = tm.box_expected(right, box)
- expected = np.array([1.0, 1.0, np.nan], dtype=np.float64)
- expected = tm.box_expected(expected, xbox)
- if box is DataFrame and using_array_manager:
- # INFO(ArrayManager) floordiv returns integer, and ArrayManager
- # performs ops column-wise and thus preserves int64 dtype for
- # columns without missing values
- expected[[0, 1]] = expected[[0, 1]].astype("int64")
- with tm.maybe_produces_warning(
- RuntimeWarning, box is pd.array, check_stacklevel=False
- ):
- result = left // right
- tm.assert_equal(result, expected)
- # case that goes through __rfloordiv__ with arraylike
- with tm.maybe_produces_warning(
- RuntimeWarning, box is pd.array, check_stacklevel=False
- ):
- result = np.asarray(left) // right
- tm.assert_equal(result, expected)
- @pytest.mark.filterwarnings("ignore:invalid value encountered:RuntimeWarning")
- def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td):
- # GH#18831, GH#19125
- box = box_with_array
- xbox = np.ndarray if box is pd.array else box
- td = Timedelta("5m3s") # i.e. (scalar_td - 1sec) / 2
- td1 = Series([td, td, NaT], dtype="m8[ns]")
- td1 = tm.box_expected(td1, box, transpose=False)
- expected = Series([0, 0, np.nan])
- expected = tm.box_expected(expected, xbox, transpose=False)
- result = td1 // scalar_td
- tm.assert_equal(result, expected)
- # Reversed op
- expected = Series([2, 2, np.nan])
- expected = tm.box_expected(expected, xbox, transpose=False)
- result = scalar_td // td1
- tm.assert_equal(result, expected)
- # same thing buts let's be explicit about calling __rfloordiv__
- result = td1.__rfloordiv__(scalar_td)
- tm.assert_equal(result, expected)
- def test_td64arr_floordiv_int(self, box_with_array):
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box_with_array)
- result = idx // 1
- tm.assert_equal(result, idx)
- pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*"
- with pytest.raises(TypeError, match=pattern):
- 1 // idx
- # ------------------------------------------------------------------
- # mod, divmod
- # TODO: operations with timedelta-like arrays, numeric arrays,
- # reversed ops
- def test_td64arr_mod_tdscalar(self, box_with_array, three_days):
- tdi = timedelta_range("1 Day", "9 days")
- tdarr = tm.box_expected(tdi, box_with_array)
- expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3)
- expected = tm.box_expected(expected, box_with_array)
- result = tdarr % three_days
- tm.assert_equal(result, expected)
- warn = None
- if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset):
- warn = PerformanceWarning
- # TODO: making expected be object here a result of DataFrame.__divmod__
- # being defined in a naive way that does not dispatch to the underlying
- # array's __divmod__
- expected = expected.astype(object)
- with tm.assert_produces_warning(warn):
- result = divmod(tdarr, three_days)
- tm.assert_equal(result[1], expected)
- tm.assert_equal(result[0], tdarr // three_days)
- def test_td64arr_mod_int(self, box_with_array):
- tdi = timedelta_range("1 ns", "10 ns", periods=10)
- tdarr = tm.box_expected(tdi, box_with_array)
- expected = TimedeltaIndex(["1 ns", "0 ns"] * 5)
- expected = tm.box_expected(expected, box_with_array)
- result = tdarr % 2
- tm.assert_equal(result, expected)
- msg = "Cannot divide int by"
- with pytest.raises(TypeError, match=msg):
- 2 % tdarr
- result = divmod(tdarr, 2)
- tm.assert_equal(result[1], expected)
- tm.assert_equal(result[0], tdarr // 2)
- def test_td64arr_rmod_tdscalar(self, box_with_array, three_days):
- tdi = timedelta_range("1 Day", "9 days")
- tdarr = tm.box_expected(tdi, box_with_array)
- expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6
- expected = TimedeltaIndex(expected)
- expected = tm.box_expected(expected, box_with_array)
- result = three_days % tdarr
- tm.assert_equal(result, expected)
- result = divmod(three_days, tdarr)
- tm.assert_equal(result[1], expected)
- tm.assert_equal(result[0], three_days // tdarr)
- # ------------------------------------------------------------------
- # Operations with invalid others
- def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td):
- td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
- td1.iloc[2] = np.nan
- td1 = tm.box_expected(td1, box_with_array)
- # check that we are getting a TypeError
- # with 'operate' (from core/ops.py) for the ops that are not
- # defined
- pattern = "operate|unsupported|cannot|not supported"
- with pytest.raises(TypeError, match=pattern):
- td1 * scalar_td
- with pytest.raises(TypeError, match=pattern):
- scalar_td * td1
- def test_td64arr_mul_too_short_raises(self, box_with_array):
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box_with_array)
- msg = "|".join(
- [
- "cannot use operands with types dtype",
- "Cannot multiply with unequal lengths",
- "Unable to coerce to Series",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- # length check before dtype check
- idx * idx[:3]
- with pytest.raises(ValueError, match=msg):
- idx * np.array([1, 2])
- def test_td64arr_mul_td64arr_raises(self, box_with_array):
- idx = TimedeltaIndex(np.arange(5, dtype="int64"))
- idx = tm.box_expected(idx, box_with_array)
- msg = "cannot use operands with types dtype"
- with pytest.raises(TypeError, match=msg):
- idx * idx
- # ------------------------------------------------------------------
- # Operations with numeric others
- def test_td64arr_mul_numeric_scalar(self, box_with_array, one):
- # GH#4521
- # divide/multiply by integers
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]")
- tdser = tm.box_expected(tdser, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = tdser * (-one)
- tm.assert_equal(result, expected)
- result = (-one) * tdser
- tm.assert_equal(result, expected)
- expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]")
- expected = tm.box_expected(expected, box_with_array)
- result = tdser * (2 * one)
- tm.assert_equal(result, expected)
- result = (2 * one) * tdser
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
- def test_td64arr_div_numeric_scalar(self, box_with_array, two):
- # GH#4521
- # divide/multiply by integers
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
- tdser = tm.box_expected(tdser, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = tdser / two
- tm.assert_equal(result, expected)
- with pytest.raises(TypeError, match="Cannot divide"):
- two / tdser
- @pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
- def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two):
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
- tdser = tm.box_expected(tdser, box_with_array)
- expected = tm.box_expected(expected, box_with_array)
- result = tdser // two
- tm.assert_equal(result, expected)
- with pytest.raises(TypeError, match="Cannot divide"):
- two // tdser
- @pytest.mark.parametrize(
- "vector",
- [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
- ids=lambda x: type(x).__name__,
- )
- def test_td64arr_rmul_numeric_array(
- self,
- box_with_array,
- vector,
- any_real_numpy_dtype,
- ):
- # GH#4521
- # divide/multiply by integers
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- vector = vector.astype(any_real_numpy_dtype)
- expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]")
- tdser = tm.box_expected(tdser, box_with_array)
- xbox = get_upcast_box(tdser, vector)
- expected = tm.box_expected(expected, xbox)
- result = tdser * vector
- tm.assert_equal(result, expected)
- result = vector * tdser
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize(
- "vector",
- [np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])],
- ids=lambda x: type(x).__name__,
- )
- def test_td64arr_div_numeric_array(
- self, box_with_array, vector, any_real_numpy_dtype
- ):
- # GH#4521
- # divide/multiply by integers
- tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
- vector = vector.astype(any_real_numpy_dtype)
- expected = Series(["2.95D", "1D 23H 12m", "NaT"], dtype="timedelta64[ns]")
- tdser = tm.box_expected(tdser, box_with_array)
- xbox = get_upcast_box(tdser, vector)
- expected = tm.box_expected(expected, xbox)
- result = tdser / vector
- tm.assert_equal(result, expected)
- pattern = "|".join(
- [
- "true_divide'? cannot use operands",
- "cannot perform __div__",
- "cannot perform __truediv__",
- "unsupported operand",
- "Cannot divide",
- "ufunc 'divide' cannot use operands with types",
- ]
- )
- with pytest.raises(TypeError, match=pattern):
- vector / tdser
- result = tdser / vector.astype(object)
- if box_with_array is DataFrame:
- expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))]
- expected = tm.box_expected(expected, xbox).astype(object)
- else:
- expected = [tdser[n] / vector[n] for n in range(len(tdser))]
- expected = [
- x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected
- ]
- if xbox is tm.to_array:
- expected = tm.to_array(expected).astype(object)
- else:
- expected = xbox(expected, dtype=object)
- tm.assert_equal(result, expected)
- with pytest.raises(TypeError, match=pattern):
- vector.astype(object) / tdser
- def test_td64arr_mul_int_series(self, box_with_array, names):
- # GH#19042 test for correct name attachment
- box = box_with_array
- exname = get_expected_name(box, names)
- tdi = TimedeltaIndex(
- ["0days", "1day", "2days", "3days", "4days"], name=names[0]
- )
- # TODO: Should we be parametrizing over types for `ser` too?
- ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])
- expected = Series(
- ["0days", "1day", "4days", "9days", "16days"],
- dtype="timedelta64[ns]",
- name=exname,
- )
- tdi = tm.box_expected(tdi, box)
- xbox = get_upcast_box(tdi, ser)
- expected = tm.box_expected(expected, xbox)
- result = ser * tdi
- tm.assert_equal(result, expected)
- result = tdi * ser
- tm.assert_equal(result, expected)
- # TODO: Should we be parametrizing over types for `ser` too?
- def test_float_series_rdiv_td64arr(self, box_with_array, names):
- # GH#19042 test for correct name attachment
- box = box_with_array
- tdi = TimedeltaIndex(
- ["0days", "1day", "2days", "3days", "4days"], name=names[0]
- )
- ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1])
- xname = names[2] if box not in [tm.to_array, pd.array] else names[1]
- expected = Series(
- [tdi[n] / ser[n] for n in range(len(ser))],
- dtype="timedelta64[ns]",
- name=xname,
- )
- tdi = tm.box_expected(tdi, box)
- xbox = get_upcast_box(tdi, ser)
- expected = tm.box_expected(expected, xbox)
- result = ser.__rtruediv__(tdi)
- if box is DataFrame:
- assert result is NotImplemented
- else:
- tm.assert_equal(result, expected)
- def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array):
- # GH#39750 make sure we infer the result as td64
- tdi = TimedeltaIndex([NaT, NaT])
- left = tm.box_expected(tdi, box_with_array)
- right = np.array([2, 2.0], dtype=object)
- expected = Index([np.timedelta64("NaT", "ns")] * 2, dtype=object)
- if box_with_array is not Index:
- expected = tm.box_expected(expected, box_with_array).astype(object)
- result = left / right
- tm.assert_equal(result, expected)
- result = left // right
- tm.assert_equal(result, expected)
- class TestTimedelta64ArrayLikeArithmetic:
- # Arithmetic tests for timedelta64[ns] vectors fully parametrized over
- # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all arithmetic
- # tests will eventually end up here.
- def test_td64arr_pow_invalid(self, scalar_td, box_with_array):
- td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
- td1.iloc[2] = np.nan
- td1 = tm.box_expected(td1, box_with_array)
- # check that we are getting a TypeError
- # with 'operate' (from core/ops.py) for the ops that are not
- # defined
- pattern = "operate|unsupported|cannot|not supported"
- with pytest.raises(TypeError, match=pattern):
- scalar_td**td1
- with pytest.raises(TypeError, match=pattern):
- td1**scalar_td
- def test_add_timestamp_to_timedelta():
- # GH: 35897
- timestamp = Timestamp("2021-01-01")
- result = timestamp + timedelta_range("0s", "1s", periods=31)
- expected = DatetimeIndex(
- [
- timestamp
- + (
- pd.to_timedelta("0.033333333s") * i
- + pd.to_timedelta("0.000000001s") * divmod(i, 3)[0]
- )
- for i in range(31)
- ]
- )
- tm.assert_index_equal(result, expected)
|