1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480 |
- # Arithmetic tests for DataFrame/Series/Index/Array classes that should
- # behave identically.
- # Specifically for numeric dtypes
- from __future__ import annotations
- from collections import abc
- from datetime import timedelta
- from decimal import Decimal
- import operator
- import numpy as np
- import pytest
- import pandas as pd
- from pandas import (
- Index,
- RangeIndex,
- Series,
- Timedelta,
- TimedeltaIndex,
- array,
- )
- import pandas._testing as tm
- from pandas.core import ops
- from pandas.core.computation import expressions as expr
- from pandas.tests.arithmetic.common import (
- assert_invalid_addsub_type,
- assert_invalid_comparison,
- )
- @pytest.fixture(params=[Index, Series, tm.to_array])
- def box_pandas_1d_array(request):
- """
- Fixture to test behavior for Index, Series and tm.to_array classes
- """
- return request.param
- def adjust_negative_zero(zero, expected):
- """
- Helper to adjust the expected result if we are dividing by -0.0
- as opposed to 0.0
- """
- if np.signbit(np.array(zero)).any():
- # All entries in the `zero` fixture should be either
- # all-negative or no-negative.
- assert np.signbit(np.array(zero)).all()
- expected *= -1
- return expected
- def compare_op(series, other, op):
- left = np.abs(series) if op in (ops.rpow, operator.pow) else series
- right = np.abs(other) if op in (ops.rpow, operator.pow) else other
- cython_or_numpy = op(left, right)
- python = left.combine(right, op)
- if isinstance(other, Series) and not other.index.equals(series.index):
- python.index = python.index._with_freq(None)
- tm.assert_series_equal(cython_or_numpy, python)
- # TODO: remove this kludge once mypy stops giving false positives here
- # List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex]
- # See GH#29725
- _ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"]
- lefts: list[Index | Series] = [RangeIndex(10, 40, 10)]
- lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes])
- lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"])
- # ------------------------------------------------------------------
- # Comparisons
- class TestNumericComparisons:
- def test_operator_series_comparison_zerorank(self):
- # GH#13006
- result = np.float64(0) > Series([1, 2, 3])
- expected = 0.0 > Series([1, 2, 3])
- tm.assert_series_equal(result, expected)
- result = Series([1, 2, 3]) < np.float64(0)
- expected = Series([1, 2, 3]) < 0.0
- tm.assert_series_equal(result, expected)
- result = np.array([0, 1, 2])[0] > Series([0, 1, 2])
- expected = 0.0 > Series([1, 2, 3])
- tm.assert_series_equal(result, expected)
- def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts):
- # GH#8932, GH#22163
- ts = fixed_now_ts
- obj = np.array(range(5))
- obj = tm.box_expected(obj, box_with_array)
- assert_invalid_comparison(obj, ts, box_with_array)
- def test_compare_invalid(self):
- # GH#8058
- # ops testing
- a = Series(np.random.randn(5), name=0)
- b = Series(np.random.randn(5))
- b.name = pd.Timestamp("2000-01-01")
- tm.assert_series_equal(a / b, 1 / (b / a))
- def test_numeric_cmp_string_numexpr_path(self, box_with_array):
- # GH#36377, GH#35700
- box = box_with_array
- xbox = box if box is not Index else np.ndarray
- obj = Series(np.random.randn(10**5))
- obj = tm.box_expected(obj, box, transpose=False)
- result = obj == "a"
- expected = Series(np.zeros(10**5, dtype=bool))
- expected = tm.box_expected(expected, xbox, transpose=False)
- tm.assert_equal(result, expected)
- result = obj != "a"
- tm.assert_equal(result, ~expected)
- msg = "Invalid comparison between dtype=float64 and str"
- with pytest.raises(TypeError, match=msg):
- obj < "a"
- # ------------------------------------------------------------------
- # Numeric dtypes Arithmetic with Datetime/Timedelta Scalar
- class TestNumericArraylikeArithmeticWithDatetimeLike:
- @pytest.mark.parametrize("box_cls", [np.array, Index, Series])
- @pytest.mark.parametrize(
- "left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
- )
- def test_mul_td64arr(self, left, box_cls):
- # GH#22390
- right = np.array([1, 2, 3], dtype="m8[s]")
- right = box_cls(right)
- expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype)
- if isinstance(left, Series) or box_cls is Series:
- expected = Series(expected)
- assert expected.dtype == right.dtype
- result = left * right
- tm.assert_equal(result, expected)
- result = right * left
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("box_cls", [np.array, Index, Series])
- @pytest.mark.parametrize(
- "left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
- )
- def test_div_td64arr(self, left, box_cls):
- # GH#22390
- right = np.array([10, 40, 90], dtype="m8[s]")
- right = box_cls(right)
- expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype)
- if isinstance(left, Series) or box_cls is Series:
- expected = Series(expected)
- assert expected.dtype == right.dtype
- result = right / left
- tm.assert_equal(result, expected)
- result = right // left
- tm.assert_equal(result, expected)
- # (true_) needed for min-versions build 2022-12-26
- msg = "ufunc '(true_)?divide' cannot use operands with types"
- with pytest.raises(TypeError, match=msg):
- left / right
- msg = "ufunc 'floor_divide' cannot use operands with types"
- with pytest.raises(TypeError, match=msg):
- left // right
- # TODO: also test Tick objects;
- # see test_numeric_arr_rdiv_tdscalar for note on these failing
- @pytest.mark.parametrize(
- "scalar_td",
- [
- Timedelta(days=1),
- Timedelta(days=1).to_timedelta64(),
- Timedelta(days=1).to_pytimedelta(),
- Timedelta(days=1).to_timedelta64().astype("timedelta64[s]"),
- Timedelta(days=1).to_timedelta64().astype("timedelta64[ms]"),
- ],
- ids=lambda x: type(x).__name__,
- )
- def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
- # GH#19333
- box = box_with_array
- index = numeric_idx
- expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))])
- if isinstance(scalar_td, np.timedelta64):
- dtype = scalar_td.dtype
- expected = expected.astype(dtype)
- elif type(scalar_td) is timedelta:
- expected = expected.astype("m8[us]")
- index = tm.box_expected(index, box)
- expected = tm.box_expected(expected, box)
- result = index * scalar_td
- tm.assert_equal(result, expected)
- commute = scalar_td * index
- tm.assert_equal(commute, expected)
- @pytest.mark.parametrize(
- "scalar_td",
- [
- Timedelta(days=1),
- Timedelta(days=1).to_timedelta64(),
- Timedelta(days=1).to_pytimedelta(),
- ],
- ids=lambda x: type(x).__name__,
- )
- @pytest.mark.parametrize("dtype", [np.int64, np.float64])
- def test_numeric_arr_mul_tdscalar_numexpr_path(
- self, dtype, scalar_td, box_with_array
- ):
- # GH#44772 for the float64 case
- box = box_with_array
- arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False)
- arr = arr_i8.astype(dtype, copy=False)
- obj = tm.box_expected(arr, box, transpose=False)
- expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
- if type(scalar_td) is timedelta:
- expected = expected.astype("timedelta64[us]")
- expected = tm.box_expected(expected, box, transpose=False)
- result = obj * scalar_td
- tm.assert_equal(result, expected)
- result = scalar_td * obj
- tm.assert_equal(result, expected)
- def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array):
- box = box_with_array
- index = numeric_idx[1:3]
- expected = TimedeltaIndex(["3 Days", "36 Hours"])
- if isinstance(three_days, np.timedelta64):
- dtype = three_days.dtype
- if dtype < np.dtype("m8[s]"):
- # i.e. resolution is lower -> use lowest supported resolution
- dtype = np.dtype("m8[s]")
- expected = expected.astype(dtype)
- elif type(three_days) is timedelta:
- expected = expected.astype("m8[us]")
- index = tm.box_expected(index, box)
- expected = tm.box_expected(expected, box)
- result = three_days / index
- tm.assert_equal(result, expected)
- msg = "cannot use operands with types dtype"
- with pytest.raises(TypeError, match=msg):
- index / three_days
- @pytest.mark.parametrize(
- "other",
- [
- Timedelta(hours=31),
- Timedelta(hours=31).to_pytimedelta(),
- Timedelta(hours=31).to_timedelta64(),
- Timedelta(hours=31).to_timedelta64().astype("m8[h]"),
- np.timedelta64("NaT"),
- np.timedelta64("NaT", "D"),
- pd.offsets.Minute(3),
- pd.offsets.Second(0),
- # GH#28080 numeric+datetimelike should raise; Timestamp used
- # to raise NullFrequencyError but that behavior was removed in 1.0
- pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
- pd.Timestamp("2021-01-01"),
- pd.Timestamp("2021-01-01").to_pydatetime(),
- pd.Timestamp("2021-01-01", tz="UTC").to_pydatetime(),
- pd.Timestamp("2021-01-01").to_datetime64(),
- np.datetime64("NaT", "ns"),
- pd.NaT,
- ],
- ids=repr,
- )
- def test_add_sub_datetimedeltalike_invalid(
- self, numeric_idx, other, box_with_array
- ):
- box = box_with_array
- left = tm.box_expected(numeric_idx, box)
- msg = "|".join(
- [
- "unsupported operand type",
- "Addition/subtraction of integers and integer-arrays",
- "Instead of adding/subtracting",
- "cannot use operands with types dtype",
- "Concatenation operation is not implemented for NumPy arrays",
- "Cannot (add|subtract) NaT (to|from) ndarray",
- # pd.array vs np.datetime64 case
- r"operand type\(s\) all returned NotImplemented from __array_ufunc__",
- "can only perform ops with numeric values",
- "cannot subtract DatetimeArray from ndarray",
- # pd.Timedelta(1) + Index([0, 1, 2])
- "Cannot add or subtract Timedelta from integers",
- ]
- )
- assert_invalid_addsub_type(left, other, msg)
- # ------------------------------------------------------------------
- # Arithmetic
- class TestDivisionByZero:
- def test_div_zero(self, zero, numeric_idx):
- idx = numeric_idx
- expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
- # We only adjust for Index, because Series does not yet apply
- # the adjustment correctly.
- expected2 = adjust_negative_zero(zero, expected)
- result = idx / zero
- tm.assert_index_equal(result, expected2)
- ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8")
- tm.assert_series_equal(ser_compat, Series(expected))
- def test_floordiv_zero(self, zero, numeric_idx):
- idx = numeric_idx
- expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
- # We only adjust for Index, because Series does not yet apply
- # the adjustment correctly.
- expected2 = adjust_negative_zero(zero, expected)
- result = idx // zero
- tm.assert_index_equal(result, expected2)
- ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8")
- tm.assert_series_equal(ser_compat, Series(expected))
- def test_mod_zero(self, zero, numeric_idx):
- idx = numeric_idx
- expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
- result = idx % zero
- tm.assert_index_equal(result, expected)
- ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8")
- tm.assert_series_equal(ser_compat, Series(result))
- def test_divmod_zero(self, zero, numeric_idx):
- idx = numeric_idx
- exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
- exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
- exleft = adjust_negative_zero(zero, exleft)
- result = divmod(idx, zero)
- tm.assert_index_equal(result[0], exleft)
- tm.assert_index_equal(result[1], exright)
- @pytest.mark.parametrize("op", [operator.truediv, operator.floordiv])
- def test_div_negative_zero(self, zero, numeric_idx, op):
- # Check that -1 / -0.0 returns np.inf, not -np.inf
- if numeric_idx.dtype == np.uint64:
- return
- idx = numeric_idx - 3
- expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64)
- expected = adjust_negative_zero(zero, expected)
- result = op(idx, zero)
- tm.assert_index_equal(result, expected)
- # ------------------------------------------------------------------
- @pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
- def test_ser_div_ser(
- self,
- switch_numexpr_min_elements,
- dtype1,
- any_real_numpy_dtype,
- ):
- # no longer do integer div for any ops, but deal with the 0's
- dtype2 = any_real_numpy_dtype
- first = Series([3, 4, 5, 8], name="first").astype(dtype1)
- second = Series([0, 0, 0, 3], name="second").astype(dtype2)
- with np.errstate(all="ignore"):
- expected = Series(
- first.values.astype(np.float64) / second.values,
- dtype="float64",
- name=None,
- )
- expected.iloc[0:3] = np.inf
- if first.dtype == "int64" and second.dtype == "float32":
- # when using numexpr, the casting rules are slightly different
- # and int64/float32 combo results in float32 instead of float64
- if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
- expected = expected.astype("float32")
- result = first / second
- tm.assert_series_equal(result, expected)
- assert not result.equals(second / first)
- @pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
- def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype):
- # GH#26987
- dtype2 = any_real_numpy_dtype
- left = Series([1, 1]).astype(dtype1)
- right = Series([0, 2]).astype(dtype2)
- # GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed
- # to numpy which sets to np.nan; patch `expected[0]` below
- expected = left // right, left % right
- expected = list(expected)
- expected[0] = expected[0].astype(np.float64)
- expected[0][0] = np.inf
- result = divmod(left, right)
- tm.assert_series_equal(result[0], expected[0])
- tm.assert_series_equal(result[1], expected[1])
- # rdivmod case
- result = divmod(left.values, right)
- tm.assert_series_equal(result[0], expected[0])
- tm.assert_series_equal(result[1], expected[1])
- def test_ser_divmod_inf(self):
- left = Series([np.inf, 1.0])
- right = Series([np.inf, 2.0])
- expected = left // right, left % right
- result = divmod(left, right)
- tm.assert_series_equal(result[0], expected[0])
- tm.assert_series_equal(result[1], expected[1])
- # rdivmod case
- result = divmod(left.values, right)
- tm.assert_series_equal(result[0], expected[0])
- tm.assert_series_equal(result[1], expected[1])
- def test_rdiv_zero_compat(self):
- # GH#8674
- zero_array = np.array([0] * 5)
- data = np.random.randn(5)
- expected = Series([0.0] * 5)
- result = zero_array / Series(data)
- tm.assert_series_equal(result, expected)
- result = Series(zero_array) / data
- tm.assert_series_equal(result, expected)
- result = Series(zero_array) / Series(data)
- tm.assert_series_equal(result, expected)
- def test_div_zero_inf_signs(self):
- # GH#9144, inf signing
- ser = Series([-1, 0, 1], name="first")
- expected = Series([-np.inf, np.nan, np.inf], name="first")
- result = ser / 0
- tm.assert_series_equal(result, expected)
- def test_rdiv_zero(self):
- # GH#9144
- ser = Series([-1, 0, 1], name="first")
- expected = Series([0.0, np.nan, 0.0], name="first")
- result = 0 / ser
- tm.assert_series_equal(result, expected)
- def test_floordiv_div(self):
- # GH#9144
- ser = Series([-1, 0, 1], name="first")
- result = ser // 0
- expected = Series([-np.inf, np.nan, np.inf], name="first")
- tm.assert_series_equal(result, expected)
- def test_df_div_zero_df(self):
- # integer div, but deal with the 0's (GH#9144)
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- result = df / df
- first = Series([1.0, 1.0, 1.0, 1.0])
- second = Series([np.nan, np.nan, np.nan, 1])
- expected = pd.DataFrame({"first": first, "second": second})
- tm.assert_frame_equal(result, expected)
- def test_df_div_zero_array(self):
- # integer div, but deal with the 0's (GH#9144)
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- first = Series([1.0, 1.0, 1.0, 1.0])
- second = Series([np.nan, np.nan, np.nan, 1])
- expected = pd.DataFrame({"first": first, "second": second})
- with np.errstate(all="ignore"):
- arr = df.values.astype("float") / df.values
- result = pd.DataFrame(arr, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result, expected)
- def test_df_div_zero_int(self):
- # integer div, but deal with the 0's (GH#9144)
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- result = df / 0
- expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
- expected.iloc[0:3, 1] = np.nan
- tm.assert_frame_equal(result, expected)
- # numpy has a slightly different (wrong) treatment
- with np.errstate(all="ignore"):
- arr = df.values.astype("float64") / 0
- result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result2, expected)
- def test_df_div_zero_series_does_not_commute(self):
- # integer div, but deal with the 0's (GH#9144)
- df = pd.DataFrame(np.random.randn(10, 5))
- ser = df[0]
- res = ser / df
- res2 = df / ser
- assert not res.fillna(0).equals(res2.fillna(0))
- # ------------------------------------------------------------------
- # Mod By Zero
- def test_df_mod_zero_df(self, using_array_manager):
- # GH#3590, modulo as ints
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- # this is technically wrong, as the integer portion is coerced to float
- first = Series([0, 0, 0, 0])
- if not using_array_manager:
- # INFO(ArrayManager) BlockManager doesn't preserve dtype per column
- # while ArrayManager performs op column-wisedoes and thus preserves
- # dtype if possible
- first = first.astype("float64")
- second = Series([np.nan, np.nan, np.nan, 0])
- expected = pd.DataFrame({"first": first, "second": second})
- result = df % df
- tm.assert_frame_equal(result, expected)
- # GH#38939 If we dont pass copy=False, df is consolidated and
- # result["first"] is float64 instead of int64
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False)
- first = Series([0, 0, 0, 0], dtype="int64")
- second = Series([np.nan, np.nan, np.nan, 0])
- expected = pd.DataFrame({"first": first, "second": second})
- result = df % df
- tm.assert_frame_equal(result, expected)
- def test_df_mod_zero_array(self):
- # GH#3590, modulo as ints
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- # this is technically wrong, as the integer portion is coerced to float
- # ###
- first = Series([0, 0, 0, 0], dtype="float64")
- second = Series([np.nan, np.nan, np.nan, 0])
- expected = pd.DataFrame({"first": first, "second": second})
- # numpy has a slightly different (wrong) treatment
- with np.errstate(all="ignore"):
- arr = df.values % df.values
- result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64")
- result2.iloc[0:3, 1] = np.nan
- tm.assert_frame_equal(result2, expected)
- def test_df_mod_zero_int(self):
- # GH#3590, modulo as ints
- df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- result = df % 0
- expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result, expected)
- # numpy has a slightly different (wrong) treatment
- with np.errstate(all="ignore"):
- arr = df.values.astype("float64") % 0
- result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
- tm.assert_frame_equal(result2, expected)
- def test_df_mod_zero_series_does_not_commute(self):
- # GH#3590, modulo as ints
- # not commutative with series
- df = pd.DataFrame(np.random.randn(10, 5))
- ser = df[0]
- res = ser % df
- res2 = df % ser
- assert not res.fillna(0).equals(res2.fillna(0))
- class TestMultiplicationDivision:
- # __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
- # for non-timestamp/timedelta/period dtypes
- def test_divide_decimal(self, box_with_array):
- # resolves issue GH#9787
- box = box_with_array
- ser = Series([Decimal(10)])
- expected = Series([Decimal(5)])
- ser = tm.box_expected(ser, box)
- expected = tm.box_expected(expected, box)
- result = ser / Decimal(2)
- tm.assert_equal(result, expected)
- result = ser // Decimal(2)
- tm.assert_equal(result, expected)
- def test_div_equiv_binop(self):
- # Test Series.div as well as Series.__div__
- # float/integer issue
- # GH#7785
- first = Series([1, 0], name="first")
- second = Series([-0.01, -0.02], name="second")
- expected = Series([-0.01, -np.inf])
- result = second.div(first)
- tm.assert_series_equal(result, expected, check_names=False)
- result = second / first
- tm.assert_series_equal(result, expected)
- def test_div_int(self, numeric_idx):
- idx = numeric_idx
- result = idx / 1
- expected = idx.astype("float64")
- tm.assert_index_equal(result, expected)
- result = idx / 2
- expected = Index(idx.values / 2)
- tm.assert_index_equal(result, expected)
- @pytest.mark.parametrize("op", [operator.mul, ops.rmul, operator.floordiv])
- def test_mul_int_identity(self, op, numeric_idx, box_with_array):
- idx = numeric_idx
- idx = tm.box_expected(idx, box_with_array)
- result = op(idx, 1)
- tm.assert_equal(result, idx)
- def test_mul_int_array(self, numeric_idx):
- idx = numeric_idx
- didx = idx * idx
- result = idx * np.array(5, dtype="int64")
- tm.assert_index_equal(result, idx * 5)
- arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
- result = idx * np.arange(5, dtype=arr_dtype)
- tm.assert_index_equal(result, didx)
- def test_mul_int_series(self, numeric_idx):
- idx = numeric_idx
- didx = idx * idx
- arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
- result = idx * Series(np.arange(5, dtype=arr_dtype))
- tm.assert_series_equal(result, Series(didx))
- def test_mul_float_series(self, numeric_idx):
- idx = numeric_idx
- rng5 = np.arange(5, dtype="float64")
- result = idx * Series(rng5 + 0.1)
- expected = Series(rng5 * (rng5 + 0.1))
- tm.assert_series_equal(result, expected)
- def test_mul_index(self, numeric_idx):
- idx = numeric_idx
- result = idx * idx
- tm.assert_index_equal(result, idx**2)
- def test_mul_datelike_raises(self, numeric_idx):
- idx = numeric_idx
- msg = "cannot perform __rmul__ with this index type"
- with pytest.raises(TypeError, match=msg):
- idx * pd.date_range("20130101", periods=5)
- def test_mul_size_mismatch_raises(self, numeric_idx):
- idx = numeric_idx
- msg = "operands could not be broadcast together"
- with pytest.raises(ValueError, match=msg):
- idx * idx[0:3]
- with pytest.raises(ValueError, match=msg):
- idx * np.array([1, 2])
- @pytest.mark.parametrize("op", [operator.pow, ops.rpow])
- def test_pow_float(self, op, numeric_idx, box_with_array):
- # test power calculations both ways, GH#14973
- box = box_with_array
- idx = numeric_idx
- expected = Index(op(idx.values, 2.0))
- idx = tm.box_expected(idx, box)
- expected = tm.box_expected(expected, box)
- result = op(idx, 2.0)
- tm.assert_equal(result, expected)
- def test_modulo(self, numeric_idx, box_with_array):
- # GH#9244
- box = box_with_array
- idx = numeric_idx
- expected = Index(idx.values % 2)
- idx = tm.box_expected(idx, box)
- expected = tm.box_expected(expected, box)
- result = idx % 2
- tm.assert_equal(result, expected)
- def test_divmod_scalar(self, numeric_idx):
- idx = numeric_idx
- result = divmod(idx, 2)
- with np.errstate(all="ignore"):
- div, mod = divmod(idx.values, 2)
- expected = Index(div), Index(mod)
- for r, e in zip(result, expected):
- tm.assert_index_equal(r, e)
- def test_divmod_ndarray(self, numeric_idx):
- idx = numeric_idx
- other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
- result = divmod(idx, other)
- with np.errstate(all="ignore"):
- div, mod = divmod(idx.values, other)
- expected = Index(div), Index(mod)
- for r, e in zip(result, expected):
- tm.assert_index_equal(r, e)
- def test_divmod_series(self, numeric_idx):
- idx = numeric_idx
- other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
- result = divmod(idx, Series(other))
- with np.errstate(all="ignore"):
- div, mod = divmod(idx.values, other)
- expected = Series(div), Series(mod)
- for r, e in zip(result, expected):
- tm.assert_series_equal(r, e)
- @pytest.mark.parametrize("other", [np.nan, 7, -23, 2.718, -3.14, np.inf])
- def test_ops_np_scalar(self, other):
- vals = np.random.randn(5, 3)
- f = lambda x: pd.DataFrame(
- x, index=list("ABCDE"), columns=["jim", "joe", "jolie"]
- )
- df = f(vals)
- tm.assert_frame_equal(df / np.array(other), f(vals / other))
- tm.assert_frame_equal(np.array(other) * df, f(vals * other))
- tm.assert_frame_equal(df + np.array(other), f(vals + other))
- tm.assert_frame_equal(np.array(other) - df, f(other - vals))
- # TODO: This came from series.test.test_operators, needs cleanup
- def test_operators_frame(self):
- # rpow does not work with DataFrame
- ts = tm.makeTimeSeries()
- ts.name = "ts"
- df = pd.DataFrame({"A": ts})
- tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False)
- tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False)
- tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False)
- tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False)
- # TODO: this came from tests.series.test_analytics, needs cleanup and
- # de-duplication with test_modulo above
- def test_modulo2(self):
- with np.errstate(all="ignore"):
- # GH#3590, modulo as ints
- p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
- result = p["first"] % p["second"]
- expected = Series(p["first"].values % p["second"].values, dtype="float64")
- expected.iloc[0:3] = np.nan
- tm.assert_series_equal(result, expected)
- result = p["first"] % 0
- expected = Series(np.nan, index=p.index, name="first")
- tm.assert_series_equal(result, expected)
- p = p.astype("float64")
- result = p["first"] % p["second"]
- expected = Series(p["first"].values % p["second"].values)
- tm.assert_series_equal(result, expected)
- p = p.astype("float64")
- result = p["first"] % p["second"]
- result2 = p["second"] % p["first"]
- assert not result.equals(result2)
- def test_modulo_zero_int(self):
- # GH#9144
- with np.errstate(all="ignore"):
- s = Series([0, 1])
- result = s % 0
- expected = Series([np.nan, np.nan])
- tm.assert_series_equal(result, expected)
- result = 0 % s
- expected = Series([np.nan, 0.0])
- tm.assert_series_equal(result, expected)
- class TestAdditionSubtraction:
- # __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
- # for non-timestamp/timedelta/period dtypes
- @pytest.mark.parametrize(
- "first, second, expected",
- [
- (
- Series([1, 2, 3], index=list("ABC"), name="x"),
- Series([2, 2, 2], index=list("ABD"), name="x"),
- Series([3.0, 4.0, np.nan, np.nan], index=list("ABCD"), name="x"),
- ),
- (
- Series([1, 2, 3], index=list("ABC"), name="x"),
- Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
- Series([3, 4, 5, np.nan], index=list("ABCD"), name="x"),
- ),
- ],
- )
- def test_add_series(self, first, second, expected):
- # GH#1134
- tm.assert_series_equal(first + second, expected)
- tm.assert_series_equal(second + first, expected)
- @pytest.mark.parametrize(
- "first, second, expected",
- [
- (
- pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
- pd.DataFrame({"x": [2, 2, 2]}, index=list("ABD")),
- pd.DataFrame({"x": [3.0, 4.0, np.nan, np.nan]}, index=list("ABCD")),
- ),
- (
- pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
- pd.DataFrame({"x": [2, 2, 2, 2]}, index=list("ABCD")),
- pd.DataFrame({"x": [3, 4, 5, np.nan]}, index=list("ABCD")),
- ),
- ],
- )
- def test_add_frames(self, first, second, expected):
- # GH#1134
- tm.assert_frame_equal(first + second, expected)
- tm.assert_frame_equal(second + first, expected)
- # TODO: This came from series.test.test_operators, needs cleanup
- def test_series_frame_radd_bug(self, fixed_now_ts):
- # GH#353
- vals = Series(tm.rands_array(5, 10))
- result = "foo_" + vals
- expected = vals.map(lambda x: "foo_" + x)
- tm.assert_series_equal(result, expected)
- frame = pd.DataFrame({"vals": vals})
- result = "foo_" + frame
- expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
- tm.assert_frame_equal(result, expected)
- ts = tm.makeTimeSeries()
- ts.name = "ts"
- # really raise this time
- fix_now = fixed_now_ts.to_pydatetime()
- msg = "|".join(
- [
- "unsupported operand type",
- # wrong error message, see https://github.com/numpy/numpy/issues/18832
- "Concatenation operation",
- ]
- )
- with pytest.raises(TypeError, match=msg):
- fix_now + ts
- with pytest.raises(TypeError, match=msg):
- ts + fix_now
- # TODO: This came from series.test.test_operators, needs cleanup
- def test_datetime64_with_index(self):
- # arithmetic integer ops with an index
- ser = Series(np.random.randn(5))
- expected = ser - ser.index.to_series()
- result = ser - ser.index
- tm.assert_series_equal(result, expected)
- # GH#4629
- # arithmetic datetime64 ops with an index
- ser = Series(
- pd.date_range("20130101", periods=5),
- index=pd.date_range("20130101", periods=5),
- )
- expected = ser - ser.index.to_series()
- result = ser - ser.index
- tm.assert_series_equal(result, expected)
- msg = "cannot subtract PeriodArray from DatetimeArray"
- with pytest.raises(TypeError, match=msg):
- # GH#18850
- result = ser - ser.index.to_period()
- df = pd.DataFrame(
- np.random.randn(5, 2), index=pd.date_range("20130101", periods=5)
- )
- df["date"] = pd.Timestamp("20130102")
- df["expected"] = df["date"] - df.index.to_series()
- df["result"] = df["date"] - df.index
- tm.assert_series_equal(df["result"], df["expected"], check_names=False)
- # TODO: taken from tests.frame.test_operators, needs cleanup
- def test_frame_operators(self, float_frame):
- frame = float_frame
- garbage = np.random.random(4)
- colSeries = Series(garbage, index=np.array(frame.columns))
- idSum = frame + frame
- seriesSum = frame + colSeries
- for col, series in idSum.items():
- for idx, val in series.items():
- origVal = frame[col][idx] * 2
- if not np.isnan(val):
- assert val == origVal
- else:
- assert np.isnan(origVal)
- for col, series in seriesSum.items():
- for idx, val in series.items():
- origVal = frame[col][idx] + colSeries[col]
- if not np.isnan(val):
- assert val == origVal
- else:
- assert np.isnan(origVal)
- def test_frame_operators_col_align(self, float_frame):
- frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"])
- added = frame2 + frame2
- expected = frame2 * 2
- tm.assert_frame_equal(added, expected)
- def test_frame_operators_none_to_nan(self):
- df = pd.DataFrame({"a": ["a", None, "b"]})
- tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]}))
- @pytest.mark.parametrize("dtype", ("float", "int64"))
- def test_frame_operators_empty_like(self, dtype):
- # Test for issue #10181
- frames = [
- pd.DataFrame(dtype=dtype),
- pd.DataFrame(columns=["A"], dtype=dtype),
- pd.DataFrame(index=[0], dtype=dtype),
- ]
- for df in frames:
- assert (df + df).equals(df)
- tm.assert_frame_equal(df + df, df)
- @pytest.mark.parametrize(
- "func",
- [lambda x: x * 2, lambda x: x[::2], lambda x: 5],
- ids=["multiply", "slice", "constant"],
- )
- def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
- op = all_arithmetic_functions
- series = tm.makeTimeSeries().rename("ts")
- other = func(series)
- compare_op(series, other, op)
- @pytest.mark.parametrize(
- "func", [lambda x: x + 1, lambda x: 5], ids=["add", "constant"]
- )
- def test_series_operators_compare(self, comparison_op, func):
- op = comparison_op
- series = tm.makeTimeSeries().rename("ts")
- other = func(series)
- compare_op(series, other, op)
- @pytest.mark.parametrize(
- "func",
- [lambda x: x * 2, lambda x: x[::2], lambda x: 5],
- ids=["multiply", "slice", "constant"],
- )
- def test_divmod(self, func):
- series = tm.makeTimeSeries().rename("ts")
- other = func(series)
- results = divmod(series, other)
- if isinstance(other, abc.Iterable) and len(series) != len(other):
- # if the lengths don't match, this is the test where we use
- # `tser[::2]`. Pad every other value in `other_np` with nan.
- other_np = []
- for n in other:
- other_np.append(n)
- other_np.append(np.nan)
- else:
- other_np = other
- other_np = np.asarray(other_np)
- with np.errstate(all="ignore"):
- expecteds = divmod(series.values, np.asarray(other_np))
- for result, expected in zip(results, expecteds):
- # check the values, name, and index separately
- tm.assert_almost_equal(np.asarray(result), expected)
- assert result.name == series.name
- tm.assert_index_equal(result.index, series.index._with_freq(None))
- def test_series_divmod_zero(self):
- # Check that divmod uses pandas convention for division by zero,
- # which does not match numpy.
- # pandas convention has
- # 1/0 == np.inf
- # -1/0 == -np.inf
- # 1/-0.0 == -np.inf
- # -1/-0.0 == np.inf
- tser = tm.makeTimeSeries().rename("ts")
- other = tser * 0
- result = divmod(tser, other)
- exp1 = Series([np.inf] * len(tser), index=tser.index, name="ts")
- exp2 = Series([np.nan] * len(tser), index=tser.index, name="ts")
- tm.assert_series_equal(result[0], exp1)
- tm.assert_series_equal(result[1], exp2)
- class TestUFuncCompat:
- # TODO: add more dtypes
- @pytest.mark.parametrize("holder", [Index, RangeIndex, Series])
- @pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
- def test_ufunc_compat(self, holder, dtype):
- box = Series if holder is Series else Index
- if holder is RangeIndex:
- if dtype != np.int64:
- pytest.skip(f"dtype {dtype} not relevant for RangeIndex")
- idx = RangeIndex(0, 5, name="foo")
- else:
- idx = holder(np.arange(5, dtype=dtype), name="foo")
- result = np.sin(idx)
- expected = box(np.sin(np.arange(5, dtype=dtype)), name="foo")
- tm.assert_equal(result, expected)
- # TODO: add more dtypes
- @pytest.mark.parametrize("holder", [Index, Series])
- @pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
- def test_ufunc_coercions(self, holder, dtype):
- idx = holder([1, 2, 3, 4, 5], dtype=dtype, name="x")
- box = Series if holder is Series else Index
- result = np.sqrt(idx)
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index(np.sqrt(np.array([1, 2, 3, 4, 5], dtype=np.float64)), name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- result = np.divide(idx, 2.0)
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- # _evaluate_numeric_binop
- result = idx + 2.0
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index([3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float64, name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- result = idx - 2.0
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index([-1.0, 0.0, 1.0, 2.0, 3.0], dtype=np.float64, name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- result = idx * 1.0
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index([1.0, 2.0, 3.0, 4.0, 5.0], dtype=np.float64, name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- result = idx / 2.0
- assert result.dtype == "f8" and isinstance(result, box)
- exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
- exp = tm.box_expected(exp, box)
- tm.assert_equal(result, exp)
- # TODO: add more dtypes
- @pytest.mark.parametrize("holder", [Index, Series])
- @pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
- def test_ufunc_multiple_return_values(self, holder, dtype):
- obj = holder([1, 2, 3], dtype=dtype, name="x")
- box = Series if holder is Series else Index
- result = np.modf(obj)
- assert isinstance(result, tuple)
- exp1 = Index([0.0, 0.0, 0.0], dtype=np.float64, name="x")
- exp2 = Index([1.0, 2.0, 3.0], dtype=np.float64, name="x")
- tm.assert_equal(result[0], tm.box_expected(exp1, box))
- tm.assert_equal(result[1], tm.box_expected(exp2, box))
- def test_ufunc_at(self):
- s = Series([0, 1, 2], index=[1, 2, 3], name="x")
- np.add.at(s, [0, 2], 10)
- expected = Series([10, 1, 12], index=[1, 2, 3], name="x")
- tm.assert_series_equal(s, expected)
- class TestObjectDtypeEquivalence:
- # Tests that arithmetic operations match operations executed elementwise
- @pytest.mark.parametrize("dtype", [None, object])
- def test_numarr_with_dtype_add_nan(self, dtype, box_with_array):
- box = box_with_array
- ser = Series([1, 2, 3], dtype=dtype)
- expected = Series([np.nan, np.nan, np.nan], dtype=dtype)
- ser = tm.box_expected(ser, box)
- expected = tm.box_expected(expected, box)
- result = np.nan + ser
- tm.assert_equal(result, expected)
- result = ser + np.nan
- tm.assert_equal(result, expected)
- @pytest.mark.parametrize("dtype", [None, object])
- def test_numarr_with_dtype_add_int(self, dtype, box_with_array):
- box = box_with_array
- ser = Series([1, 2, 3], dtype=dtype)
- expected = Series([2, 3, 4], dtype=dtype)
- ser = tm.box_expected(ser, box)
- expected = tm.box_expected(expected, box)
- result = 1 + ser
- tm.assert_equal(result, expected)
- result = ser + 1
- tm.assert_equal(result, expected)
- # TODO: moved from tests.series.test_operators; needs cleanup
- @pytest.mark.parametrize(
- "op",
- [operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv],
- )
- def test_operators_reverse_object(self, op):
- # GH#56
- arr = Series(np.random.randn(10), index=np.arange(10), dtype=object)
- result = op(1.0, arr)
- expected = op(1.0, arr.astype(float))
- tm.assert_series_equal(result.astype(float), expected)
- class TestNumericArithmeticUnsorted:
- # Tests in this class have been moved from type-specific test modules
- # but not yet sorted, parametrized, and de-duplicated
- @pytest.mark.parametrize(
- "op",
- [
- operator.add,
- operator.sub,
- operator.mul,
- operator.floordiv,
- operator.truediv,
- ],
- )
- @pytest.mark.parametrize(
- "idx1",
- [
- RangeIndex(0, 10, 1),
- RangeIndex(0, 20, 2),
- RangeIndex(-10, 10, 2),
- RangeIndex(5, -5, -1),
- ],
- )
- @pytest.mark.parametrize(
- "idx2",
- [
- RangeIndex(0, 10, 1),
- RangeIndex(0, 20, 2),
- RangeIndex(-10, 10, 2),
- RangeIndex(5, -5, -1),
- ],
- )
- def test_binops_index(self, op, idx1, idx2):
- idx1 = idx1._rename("foo")
- idx2 = idx2._rename("bar")
- result = op(idx1, idx2)
- expected = op(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
- tm.assert_index_equal(result, expected, exact="equiv")
- @pytest.mark.parametrize(
- "op",
- [
- operator.add,
- operator.sub,
- operator.mul,
- operator.floordiv,
- operator.truediv,
- ],
- )
- @pytest.mark.parametrize(
- "idx",
- [
- RangeIndex(0, 10, 1),
- RangeIndex(0, 20, 2),
- RangeIndex(-10, 10, 2),
- RangeIndex(5, -5, -1),
- ],
- )
- @pytest.mark.parametrize("scalar", [-1, 1, 2])
- def test_binops_index_scalar(self, op, idx, scalar):
- result = op(idx, scalar)
- expected = op(Index(idx.to_numpy()), scalar)
- tm.assert_index_equal(result, expected, exact="equiv")
- @pytest.mark.parametrize("idx1", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
- @pytest.mark.parametrize("idx2", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
- def test_binops_index_pow(self, idx1, idx2):
- # numpy does not allow powers of negative integers so test separately
- # https://github.com/numpy/numpy/pull/8127
- idx1 = idx1._rename("foo")
- idx2 = idx2._rename("bar")
- result = pow(idx1, idx2)
- expected = pow(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
- tm.assert_index_equal(result, expected, exact="equiv")
- @pytest.mark.parametrize("idx", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
- @pytest.mark.parametrize("scalar", [1, 2])
- def test_binops_index_scalar_pow(self, idx, scalar):
- # numpy does not allow powers of negative integers so test separately
- # https://github.com/numpy/numpy/pull/8127
- result = pow(idx, scalar)
- expected = pow(Index(idx.to_numpy()), scalar)
- tm.assert_index_equal(result, expected, exact="equiv")
- # TODO: divmod?
- @pytest.mark.parametrize(
- "op",
- [
- operator.add,
- operator.sub,
- operator.mul,
- operator.floordiv,
- operator.truediv,
- operator.pow,
- operator.mod,
- ],
- )
- def test_arithmetic_with_frame_or_series(self, op):
- # check that we return NotImplemented when operating with Series
- # or DataFrame
- index = RangeIndex(5)
- other = Series(np.random.randn(5))
- expected = op(Series(index), other)
- result = op(index, other)
- tm.assert_series_equal(result, expected)
- other = pd.DataFrame(np.random.randn(2, 5))
- expected = op(pd.DataFrame([index, index]), other)
- result = op(index, other)
- tm.assert_frame_equal(result, expected)
- def test_numeric_compat2(self):
- # validate that we are handling the RangeIndex overrides to numeric ops
- # and returning RangeIndex where possible
- idx = RangeIndex(0, 10, 2)
- result = idx * 2
- expected = RangeIndex(0, 20, 4)
- tm.assert_index_equal(result, expected, exact=True)
- result = idx + 2
- expected = RangeIndex(2, 12, 2)
- tm.assert_index_equal(result, expected, exact=True)
- result = idx - 2
- expected = RangeIndex(-2, 8, 2)
- tm.assert_index_equal(result, expected, exact=True)
- result = idx / 2
- expected = RangeIndex(0, 5, 1).astype("float64")
- tm.assert_index_equal(result, expected, exact=True)
- result = idx / 4
- expected = RangeIndex(0, 10, 2) / 4
- tm.assert_index_equal(result, expected, exact=True)
- result = idx // 1
- expected = idx
- tm.assert_index_equal(result, expected, exact=True)
- # __mul__
- result = idx * idx
- expected = Index(idx.values * idx.values)
- tm.assert_index_equal(result, expected, exact=True)
- # __pow__
- idx = RangeIndex(0, 1000, 2)
- result = idx**2
- expected = Index(idx._values) ** 2
- tm.assert_index_equal(Index(result.values), expected, exact=True)
- @pytest.mark.parametrize(
- "idx, div, expected",
- [
- # TODO: add more dtypes
- (RangeIndex(0, 1000, 2), 2, RangeIndex(0, 500, 1)),
- (RangeIndex(-99, -201, -3), -3, RangeIndex(33, 67, 1)),
- (
- RangeIndex(0, 1000, 1),
- 2,
- Index(RangeIndex(0, 1000, 1)._values) // 2,
- ),
- (
- RangeIndex(0, 100, 1),
- 2.0,
- Index(RangeIndex(0, 100, 1)._values) // 2.0,
- ),
- (RangeIndex(0), 50, RangeIndex(0)),
- (RangeIndex(2, 4, 2), 3, RangeIndex(0, 1, 1)),
- (RangeIndex(-5, -10, -6), 4, RangeIndex(-2, -1, 1)),
- (RangeIndex(-100, -200, 3), 2, RangeIndex(0)),
- ],
- )
- def test_numeric_compat2_floordiv(self, idx, div, expected):
- # __floordiv__
- tm.assert_index_equal(idx // div, expected, exact=True)
- @pytest.mark.parametrize("dtype", [np.int64, np.float64])
- @pytest.mark.parametrize("delta", [1, 0, -1])
- def test_addsub_arithmetic(self, dtype, delta):
- # GH#8142
- delta = dtype(delta)
- index = Index([10, 11, 12], dtype=dtype)
- result = index + delta
- expected = Index(index.values + delta, dtype=dtype)
- tm.assert_index_equal(result, expected)
- # this subtraction used to fail
- result = index - delta
- expected = Index(index.values - delta, dtype=dtype)
- tm.assert_index_equal(result, expected)
- tm.assert_index_equal(index + index, 2 * index)
- tm.assert_index_equal(index - index, 0 * index)
- assert not (index - index).empty
- def test_fill_value_inf_masking():
- # GH #27464 make sure we mask 0/1 with Inf and not NaN
- df = pd.DataFrame({"A": [0, 1, 2], "B": [1.1, None, 1.1]})
- other = pd.DataFrame({"A": [1.1, 1.2, 1.3]}, index=[0, 2, 3])
- result = df.rfloordiv(other, fill_value=1)
- expected = pd.DataFrame(
- {"A": [np.inf, 1.0, 0.0, 1.0], "B": [0.0, np.nan, 0.0, np.nan]}
- )
- tm.assert_frame_equal(result, expected)
- def test_dataframe_div_silenced():
- # GH#26793
- pdf1 = pd.DataFrame(
- {
- "A": np.arange(10),
- "B": [np.nan, 1, 2, 3, 4] * 2,
- "C": [np.nan] * 10,
- "D": np.arange(10),
- },
- index=list("abcdefghij"),
- columns=list("ABCD"),
- )
- pdf2 = pd.DataFrame(
- np.random.randn(10, 4), index=list("abcdefghjk"), columns=list("ABCX")
- )
- with tm.assert_produces_warning(None):
- pdf1.div(pdf2, fill_value=0)
- @pytest.mark.parametrize(
- "data, expected_data",
- [([0, 1, 2], [0, 2, 4])],
- )
- def test_integer_array_add_list_like(
- box_pandas_1d_array, box_1d_array, data, expected_data
- ):
- # GH22606 Verify operators with IntegerArray and list-likes
- arr = array(data, dtype="Int64")
- container = box_pandas_1d_array(arr)
- left = container + box_1d_array(data)
- right = box_1d_array(data) + container
- if Series in [box_1d_array, box_pandas_1d_array]:
- cls = Series
- elif Index in [box_1d_array, box_pandas_1d_array]:
- cls = Index
- else:
- cls = array
- expected = cls(expected_data, dtype="Int64")
- tm.assert_equal(left, expected)
- tm.assert_equal(right, expected)
- def test_sub_multiindex_swapped_levels():
- # GH 9952
- df = pd.DataFrame(
- {"a": np.random.randn(6)},
- index=pd.MultiIndex.from_product(
- [["a", "b"], [0, 1, 2]], names=["levA", "levB"]
- ),
- )
- df2 = df.copy()
- df2.index = df2.index.swaplevel(0, 1)
- result = df - df2
- expected = pd.DataFrame([0.0] * 6, columns=["a"], index=df.index)
- tm.assert_frame_equal(result, expected)
- @pytest.mark.parametrize("power", [1, 2, 5])
- @pytest.mark.parametrize("string_size", [0, 1, 2, 5])
- def test_empty_str_comparison(power, string_size):
- # GH 37348
- a = np.array(range(10**power))
- right = pd.DataFrame(a, dtype=np.int64)
- left = " " * string_size
- result = right == left
- expected = pd.DataFrame(np.zeros(right.shape, dtype=bool))
- tm.assert_frame_equal(result, expected)
- def test_series_add_sub_with_UInt64():
- # GH 22023
- series1 = Series([1, 2, 3])
- series2 = Series([2, 1, 3], dtype="UInt64")
- result = series1 + series2
- expected = Series([3, 3, 6], dtype="Float64")
- tm.assert_series_equal(result, expected)
- result = series1 - series2
- expected = Series([-1, 1, 0], dtype="Float64")
- tm.assert_series_equal(result, expected)
|