| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 | from itertools import chainimport operatorimport numpy as npimport pytestfrom pandas.core.dtypes.common import is_numberfrom pandas import (    DataFrame,    Series,)import pandas._testing as tmfrom pandas.tests.apply.common import (    frame_transform_kernels,    series_transform_kernels,)@pytest.mark.parametrize("func", ["sum", "mean", "min", "max", "std"])@pytest.mark.parametrize(    "args,kwds",    [        pytest.param([], {}, id="no_args_or_kwds"),        pytest.param([1], {}, id="axis_from_args"),        pytest.param([], {"axis": 1}, id="axis_from_kwds"),        pytest.param([], {"numeric_only": True}, id="optional_kwds"),        pytest.param([1, True], {"numeric_only": True}, id="args_and_kwds"),    ],)@pytest.mark.parametrize("how", ["agg", "apply"])def test_apply_with_string_funcs(request, float_frame, func, args, kwds, how):    if len(args) > 1 and how == "agg":        request.node.add_marker(            pytest.mark.xfail(                raises=TypeError,                reason="agg/apply signature mismatch - agg passes 2nd "                "argument to func",            )        )    result = getattr(float_frame, how)(func, *args, **kwds)    expected = getattr(float_frame, func)(*args, **kwds)    tm.assert_series_equal(result, expected)@pytest.mark.parametrize("arg", ["sum", "mean", "min", "max", "std"])def test_with_string_args(datetime_series, arg):    result = datetime_series.apply(arg)    expected = getattr(datetime_series, arg)()    assert result == expected@pytest.mark.parametrize("op", ["mean", "median", "std", "var"])@pytest.mark.parametrize("how", ["agg", "apply"])def test_apply_np_reducer(op, how):    # GH 39116    float_frame = DataFrame({"a": [1, 2], "b": [3, 4]})    result = getattr(float_frame, how)(op)    # pandas ddof defaults to 1, numpy to 0    kwargs = {"ddof": 1} if op in ("std", "var") else {}    expected = Series(        getattr(np, op)(float_frame, axis=0, **kwargs), index=float_frame.columns    )    tm.assert_series_equal(result, expected)@pytest.mark.parametrize(    "op", ["abs", "ceil", "cos", "cumsum", "exp", "log", "sqrt", "square"])@pytest.mark.parametrize("how", ["transform", "apply"])def test_apply_np_transformer(float_frame, op, how):    # GH 39116    # float_frame will _usually_ have negative values, which will    #  trigger the warning here, but let's put one in just to be sure    float_frame.iloc[0, 0] = -1.0    warn = None    if op in ["log", "sqrt"]:        warn = RuntimeWarning    with tm.assert_produces_warning(warn, check_stacklevel=False):        # float_frame fixture is defined in conftest.py, so we don't check the        # stacklevel as otherwise the test would fail.        result = getattr(float_frame, how)(op)        expected = getattr(np, op)(float_frame)    tm.assert_frame_equal(result, expected)@pytest.mark.parametrize(    "series, func, expected",    chain(        tm.get_cython_table_params(            Series(dtype=np.float64),            [                ("sum", 0),                ("max", np.nan),                ("min", np.nan),                ("all", True),                ("any", False),                ("mean", np.nan),                ("prod", 1),                ("std", np.nan),                ("var", np.nan),                ("median", np.nan),            ],        ),        tm.get_cython_table_params(            Series([np.nan, 1, 2, 3]),            [                ("sum", 6),                ("max", 3),                ("min", 1),                ("all", True),                ("any", True),                ("mean", 2),                ("prod", 6),                ("std", 1),                ("var", 1),                ("median", 2),            ],        ),        tm.get_cython_table_params(            Series("a b c".split()),            [                ("sum", "abc"),                ("max", "c"),                ("min", "a"),                ("all", True),                ("any", True),            ],        ),    ),)def test_agg_cython_table_series(series, func, expected):    # GH21224    # test reducing functions in    # pandas.core.base.SelectionMixin._cython_table    result = series.agg(func)    if is_number(expected):        assert np.isclose(result, expected, equal_nan=True)    else:        assert result == expected@pytest.mark.parametrize(    "series, func, expected",    chain(        tm.get_cython_table_params(            Series(dtype=np.float64),            [                ("cumprod", Series([], dtype=np.float64)),                ("cumsum", Series([], dtype=np.float64)),            ],        ),        tm.get_cython_table_params(            Series([np.nan, 1, 2, 3]),            [                ("cumprod", Series([np.nan, 1, 2, 6])),                ("cumsum", Series([np.nan, 1, 3, 6])),            ],        ),        tm.get_cython_table_params(            Series("a b c".split()), [("cumsum", Series(["a", "ab", "abc"]))]        ),    ),)def test_agg_cython_table_transform_series(series, func, expected):    # GH21224    # test transforming functions in    # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)    result = series.agg(func)    tm.assert_series_equal(result, expected)@pytest.mark.parametrize(    "df, func, expected",    chain(        tm.get_cython_table_params(            DataFrame(),            [                ("sum", Series(dtype="float64")),                ("max", Series(dtype="float64")),                ("min", Series(dtype="float64")),                ("all", Series(dtype=bool)),                ("any", Series(dtype=bool)),                ("mean", Series(dtype="float64")),                ("prod", Series(dtype="float64")),                ("std", Series(dtype="float64")),                ("var", Series(dtype="float64")),                ("median", Series(dtype="float64")),            ],        ),        tm.get_cython_table_params(            DataFrame([[np.nan, 1], [1, 2]]),            [                ("sum", Series([1.0, 3])),                ("max", Series([1.0, 2])),                ("min", Series([1.0, 1])),                ("all", Series([True, True])),                ("any", Series([True, True])),                ("mean", Series([1, 1.5])),                ("prod", Series([1.0, 2])),                ("std", Series([np.nan, 0.707107])),                ("var", Series([np.nan, 0.5])),                ("median", Series([1, 1.5])),            ],        ),    ),)def test_agg_cython_table_frame(df, func, expected, axis):    # GH 21224    # test reducing functions in    # pandas.core.base.SelectionMixin._cython_table    result = df.agg(func, axis=axis)    tm.assert_series_equal(result, expected)@pytest.mark.parametrize(    "df, func, expected",    chain(        tm.get_cython_table_params(            DataFrame(), [("cumprod", DataFrame()), ("cumsum", DataFrame())]        ),        tm.get_cython_table_params(            DataFrame([[np.nan, 1], [1, 2]]),            [                ("cumprod", DataFrame([[np.nan, 1], [1, 2]])),                ("cumsum", DataFrame([[np.nan, 1], [1, 3]])),            ],        ),    ),)def test_agg_cython_table_transform_frame(df, func, expected, axis):    # GH 21224    # test transforming functions in    # pandas.core.base.SelectionMixin._cython_table (cumprod, cumsum)    if axis in ("columns", 1):        # operating blockwise doesn't let us preserve dtypes        expected = expected.astype("float64")    result = df.agg(func, axis=axis)    tm.assert_frame_equal(result, expected)@pytest.mark.parametrize("op", series_transform_kernels)def test_transform_groupby_kernel_series(request, string_series, op):    # GH 35964    if op == "ngroup":        request.node.add_marker(            pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")        )    args = [0.0] if op == "fillna" else []    ones = np.ones(string_series.shape[0])    expected = string_series.groupby(ones).transform(op, *args)    result = string_series.transform(op, 0, *args)    tm.assert_series_equal(result, expected)@pytest.mark.parametrize("op", frame_transform_kernels)def test_transform_groupby_kernel_frame(request, axis, float_frame, op):    if op == "ngroup":        request.node.add_marker(            pytest.mark.xfail(raises=ValueError, reason="ngroup not valid for NDFrame")        )    # GH 35964    args = [0.0] if op == "fillna" else []    if axis in (0, "index"):        ones = np.ones(float_frame.shape[0])    else:        ones = np.ones(float_frame.shape[1])    expected = float_frame.groupby(ones, axis=axis).transform(op, *args)    result = float_frame.transform(op, axis, *args)    tm.assert_frame_equal(result, expected)    # same thing, but ensuring we have multiple blocks    assert "E" not in float_frame.columns    float_frame["E"] = float_frame["A"].copy()    assert len(float_frame._mgr.arrays) > 1    if axis in (0, "index"):        ones = np.ones(float_frame.shape[0])    else:        ones = np.ones(float_frame.shape[1])    expected2 = float_frame.groupby(ones, axis=axis).transform(op, *args)    result2 = float_frame.transform(op, axis, *args)    tm.assert_frame_equal(result2, expected2)@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])def test_transform_method_name(method):    # GH 19760    df = DataFrame({"A": [-1, 2]})    result = df.transform(method)    expected = operator.methodcaller(method)(df)    tm.assert_frame_equal(result, expected)
 |