12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342 |
- from __future__ import annotations
- from collections import defaultdict
- from functools import partial
- import re
- from typing import (
- Any,
- Callable,
- DefaultDict,
- Dict,
- List,
- Optional,
- Sequence,
- Tuple,
- TypedDict,
- Union,
- )
- from uuid import uuid4
- import numpy as np
- from pandas._config import get_option
- from pandas._libs import lib
- from pandas._typing import (
- Axis,
- Level,
- )
- from pandas.compat._optional import import_optional_dependency
- from pandas.core.dtypes.common import (
- is_complex,
- is_float,
- is_integer,
- )
- from pandas.core.dtypes.generic import ABCSeries
- from pandas import (
- DataFrame,
- Index,
- IndexSlice,
- MultiIndex,
- Series,
- isna,
- )
- from pandas.api.types import is_list_like
- import pandas.core.common as com
- jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")
- from markupsafe import escape as escape_html # markupsafe is jinja2 dependency
- BaseFormatter = Union[str, Callable]
- ExtFormatter = Union[BaseFormatter, Dict[Any, Optional[BaseFormatter]]]
- CSSPair = Tuple[str, Union[str, float]]
- CSSList = List[CSSPair]
- CSSProperties = Union[str, CSSList]
- class CSSDict(TypedDict):
- selector: str
- props: CSSProperties
- CSSStyles = List[CSSDict]
- Subset = Union[slice, Sequence, Index]
- class StylerRenderer:
- """
- Base class to process rendering a Styler with a specified jinja2 template.
- """
- loader = jinja2.PackageLoader("pandas", "io/formats/templates")
- env = jinja2.Environment(loader=loader, trim_blocks=True)
- template_html = env.get_template("html.tpl")
- template_html_table = env.get_template("html_table.tpl")
- template_html_style = env.get_template("html_style.tpl")
- template_latex = env.get_template("latex.tpl")
- template_string = env.get_template("string.tpl")
- def __init__(
- self,
- data: DataFrame | Series,
- uuid: str | None = None,
- uuid_len: int = 5,
- table_styles: CSSStyles | None = None,
- table_attributes: str | None = None,
- caption: str | tuple | list | None = None,
- cell_ids: bool = True,
- precision: int | None = None,
- ) -> None:
- # validate ordered args
- if isinstance(data, Series):
- data = data.to_frame()
- if not isinstance(data, DataFrame):
- raise TypeError("``data`` must be a Series or DataFrame")
- self.data: DataFrame = data
- self.index: Index = data.index
- self.columns: Index = data.columns
- if not isinstance(uuid_len, int) or uuid_len < 0:
- raise TypeError("``uuid_len`` must be an integer in range [0, 32].")
- self.uuid = uuid or uuid4().hex[: min(32, uuid_len)]
- self.uuid_len = len(self.uuid)
- self.table_styles = table_styles
- self.table_attributes = table_attributes
- self.caption = caption
- self.cell_ids = cell_ids
- self.css = {
- "row_heading": "row_heading",
- "col_heading": "col_heading",
- "index_name": "index_name",
- "col": "col",
- "row": "row",
- "col_trim": "col_trim",
- "row_trim": "row_trim",
- "level": "level",
- "data": "data",
- "blank": "blank",
- "foot": "foot",
- }
- self.concatenated: list[StylerRenderer] = []
- # add rendering variables
- self.hide_index_names: bool = False
- self.hide_column_names: bool = False
- self.hide_index_: list = [False] * self.index.nlevels
- self.hide_columns_: list = [False] * self.columns.nlevels
- self.hidden_rows: Sequence[int] = [] # sequence for specific hidden rows/cols
- self.hidden_columns: Sequence[int] = []
- self.ctx: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
- self.ctx_index: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
- self.ctx_columns: DefaultDict[tuple[int, int], CSSList] = defaultdict(list)
- self.cell_context: DefaultDict[tuple[int, int], str] = defaultdict(str)
- self._todo: list[tuple[Callable, tuple, dict]] = []
- self.tooltips: Tooltips | None = None
- precision = (
- get_option("styler.format.precision") if precision is None else precision
- )
- self._display_funcs: DefaultDict[ # maps (row, col) -> format func
- tuple[int, int], Callable[[Any], str]
- ] = defaultdict(lambda: partial(_default_formatter, precision=precision))
- self._display_funcs_index: DefaultDict[ # maps (row, level) -> format func
- tuple[int, int], Callable[[Any], str]
- ] = defaultdict(lambda: partial(_default_formatter, precision=precision))
- self._display_funcs_columns: DefaultDict[ # maps (level, col) -> format func
- tuple[int, int], Callable[[Any], str]
- ] = defaultdict(lambda: partial(_default_formatter, precision=precision))
- def _render(
- self,
- sparse_index: bool,
- sparse_columns: bool,
- max_rows: int | None = None,
- max_cols: int | None = None,
- blank: str = "",
- ):
- """
- Computes and applies styles and then generates the general render dicts.
- Also extends the `ctx` and `ctx_index` attributes with those of concatenated
- stylers for use within `_translate_latex`
- """
- self._compute()
- dxs = []
- ctx_len = len(self.index)
- for i, concatenated in enumerate(self.concatenated):
- concatenated.hide_index_ = self.hide_index_
- concatenated.hidden_columns = self.hidden_columns
- foot = f"{self.css['foot']}{i}"
- concatenated.css = {
- **self.css,
- "data": f"{foot}_data",
- "row_heading": f"{foot}_row_heading",
- "row": f"{foot}_row",
- "foot": f"{foot}_foot",
- }
- dx = concatenated._render(
- sparse_index, sparse_columns, max_rows, max_cols, blank
- )
- dxs.append(dx)
- for (r, c), v in concatenated.ctx.items():
- self.ctx[(r + ctx_len, c)] = v
- for (r, c), v in concatenated.ctx_index.items():
- self.ctx_index[(r + ctx_len, c)] = v
- ctx_len += len(concatenated.index)
- d = self._translate(
- sparse_index, sparse_columns, max_rows, max_cols, blank, dxs
- )
- return d
- def _render_html(
- self,
- sparse_index: bool,
- sparse_columns: bool,
- max_rows: int | None = None,
- max_cols: int | None = None,
- **kwargs,
- ) -> str:
- """
- Renders the ``Styler`` including all applied styles to HTML.
- Generates a dict with necessary kwargs passed to jinja2 template.
- """
- d = self._render(sparse_index, sparse_columns, max_rows, max_cols, " ")
- d.update(kwargs)
- return self.template_html.render(
- **d,
- html_table_tpl=self.template_html_table,
- html_style_tpl=self.template_html_style,
- )
- def _render_latex(
- self, sparse_index: bool, sparse_columns: bool, clines: str | None, **kwargs
- ) -> str:
- """
- Render a Styler in latex format
- """
- d = self._render(sparse_index, sparse_columns, None, None)
- self._translate_latex(d, clines=clines)
- self.template_latex.globals["parse_wrap"] = _parse_latex_table_wrapping
- self.template_latex.globals["parse_table"] = _parse_latex_table_styles
- self.template_latex.globals["parse_cell"] = _parse_latex_cell_styles
- self.template_latex.globals["parse_header"] = _parse_latex_header_span
- d.update(kwargs)
- return self.template_latex.render(**d)
- def _render_string(
- self,
- sparse_index: bool,
- sparse_columns: bool,
- max_rows: int | None = None,
- max_cols: int | None = None,
- **kwargs,
- ) -> str:
- """
- Render a Styler in string format
- """
- d = self._render(sparse_index, sparse_columns, max_rows, max_cols)
- d.update(kwargs)
- return self.template_string.render(**d)
- def _compute(self):
- """
- Execute the style functions built up in `self._todo`.
- Relies on the conventions that all style functions go through
- .apply or .applymap. The append styles to apply as tuples of
- (application method, *args, **kwargs)
- """
- self.ctx.clear()
- self.ctx_index.clear()
- self.ctx_columns.clear()
- r = self
- for func, args, kwargs in self._todo:
- r = func(self)(*args, **kwargs)
- return r
- def _translate(
- self,
- sparse_index: bool,
- sparse_cols: bool,
- max_rows: int | None = None,
- max_cols: int | None = None,
- blank: str = " ",
- dxs: list[dict] | None = None,
- ):
- """
- Process Styler data and settings into a dict for template rendering.
- Convert data and settings from ``Styler`` attributes such as ``self.data``,
- ``self.tooltips`` including applying any methods in ``self._todo``.
- Parameters
- ----------
- sparse_index : bool
- Whether to sparsify the index or print all hierarchical index elements.
- Upstream defaults are typically to `pandas.options.styler.sparse.index`.
- sparse_cols : bool
- Whether to sparsify the columns or print all hierarchical column elements.
- Upstream defaults are typically to `pandas.options.styler.sparse.columns`.
- max_rows, max_cols : int, optional
- Specific max rows and cols. max_elements always take precedence in render.
- blank : str
- Entry to top-left blank cells.
- dxs : list[dict]
- The render dicts of the concatenated Stylers.
- Returns
- -------
- d : dict
- The following structure: {uuid, table_styles, caption, head, body,
- cellstyle, table_attributes}
- """
- if dxs is None:
- dxs = []
- self.css["blank_value"] = blank
- # construct render dict
- d = {
- "uuid": self.uuid,
- "table_styles": format_table_styles(self.table_styles or []),
- "caption": self.caption,
- }
- max_elements = get_option("styler.render.max_elements")
- max_rows = max_rows if max_rows else get_option("styler.render.max_rows")
- max_cols = max_cols if max_cols else get_option("styler.render.max_columns")
- max_rows, max_cols = _get_trimming_maximums(
- len(self.data.index),
- len(self.data.columns),
- max_elements,
- max_rows,
- max_cols,
- )
- self.cellstyle_map_columns: DefaultDict[
- tuple[CSSPair, ...], list[str]
- ] = defaultdict(list)
- head = self._translate_header(sparse_cols, max_cols)
- d.update({"head": head})
- # for sparsifying a MultiIndex and for use with latex clines
- idx_lengths = _get_level_lengths(
- self.index, sparse_index, max_rows, self.hidden_rows
- )
- d.update({"index_lengths": idx_lengths})
- self.cellstyle_map: DefaultDict[tuple[CSSPair, ...], list[str]] = defaultdict(
- list
- )
- self.cellstyle_map_index: DefaultDict[
- tuple[CSSPair, ...], list[str]
- ] = defaultdict(list)
- body: list = self._translate_body(idx_lengths, max_rows, max_cols)
- d.update({"body": body})
- ctx_maps = {
- "cellstyle": "cellstyle_map",
- "cellstyle_index": "cellstyle_map_index",
- "cellstyle_columns": "cellstyle_map_columns",
- } # add the cell_ids styles map to the render dictionary in right format
- for k, attr in ctx_maps.items():
- map = [
- {"props": list(props), "selectors": selectors}
- for props, selectors in getattr(self, attr).items()
- ]
- d.update({k: map})
- for dx in dxs: # self.concatenated is not empty
- d["body"].extend(dx["body"]) # type: ignore[union-attr]
- d["cellstyle"].extend(dx["cellstyle"]) # type: ignore[union-attr]
- d["cellstyle_index"].extend( # type: ignore[union-attr]
- dx["cellstyle_index"]
- )
- table_attr = self.table_attributes
- if not get_option("styler.html.mathjax"):
- table_attr = table_attr or ""
- if 'class="' in table_attr:
- table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ')
- else:
- table_attr += ' class="tex2jax_ignore"'
- d.update({"table_attributes": table_attr})
- if self.tooltips:
- d = self.tooltips._translate(self, d)
- return d
- def _translate_header(self, sparsify_cols: bool, max_cols: int):
- """
- Build each <tr> within table <head> as a list
- Using the structure:
- +----------------------------+---------------+---------------------------+
- | index_blanks ... | column_name_0 | column_headers (level_0) |
- 1) | .. | .. | .. |
- | index_blanks ... | column_name_n | column_headers (level_n) |
- +----------------------------+---------------+---------------------------+
- 2) | index_names (level_0 to level_n) ... | column_blanks ... |
- +----------------------------+---------------+---------------------------+
- Parameters
- ----------
- sparsify_cols : bool
- Whether column_headers section will add colspan attributes (>1) to elements.
- max_cols : int
- Maximum number of columns to render. If exceeded will contain `...` filler.
- Returns
- -------
- head : list
- The associated HTML elements needed for template rendering.
- """
- # for sparsifying a MultiIndex
- col_lengths = _get_level_lengths(
- self.columns, sparsify_cols, max_cols, self.hidden_columns
- )
- clabels = self.data.columns.tolist()
- if self.data.columns.nlevels == 1:
- clabels = [[x] for x in clabels]
- clabels = list(zip(*clabels))
- head = []
- # 1) column headers
- for r, hide in enumerate(self.hide_columns_):
- if hide or not clabels:
- continue
- header_row = self._generate_col_header_row(
- (r, clabels), max_cols, col_lengths
- )
- head.append(header_row)
- # 2) index names
- if (
- self.data.index.names
- and com.any_not_none(*self.data.index.names)
- and not all(self.hide_index_)
- and not self.hide_index_names
- ):
- index_names_row = self._generate_index_names_row(
- clabels, max_cols, col_lengths
- )
- head.append(index_names_row)
- return head
- def _generate_col_header_row(self, iter: tuple, max_cols: int, col_lengths: dict):
- """
- Generate the row containing column headers:
- +----------------------------+---------------+---------------------------+
- | index_blanks ... | column_name_i | column_headers (level_i) |
- +----------------------------+---------------+---------------------------+
- Parameters
- ----------
- iter : tuple
- Looping variables from outer scope
- max_cols : int
- Permissible number of columns
- col_lengths :
- c
- Returns
- -------
- list of elements
- """
- r, clabels = iter
- # number of index blanks is governed by number of hidden index levels
- index_blanks = [
- _element("th", self.css["blank"], self.css["blank_value"], True)
- ] * (self.index.nlevels - sum(self.hide_index_) - 1)
- name = self.data.columns.names[r]
- column_name = [
- _element(
- "th",
- (
- f"{self.css['blank']} {self.css['level']}{r}"
- if name is None
- else f"{self.css['index_name']} {self.css['level']}{r}"
- ),
- name
- if (name is not None and not self.hide_column_names)
- else self.css["blank_value"],
- not all(self.hide_index_),
- )
- ]
- column_headers: list = []
- visible_col_count: int = 0
- for c, value in enumerate(clabels[r]):
- header_element_visible = _is_visible(c, r, col_lengths)
- if header_element_visible:
- visible_col_count += col_lengths.get((r, c), 0)
- if self._check_trim(
- visible_col_count,
- max_cols,
- column_headers,
- "th",
- f"{self.css['col_heading']} {self.css['level']}{r} "
- f"{self.css['col_trim']}",
- ):
- break
- header_element = _element(
- "th",
- (
- f"{self.css['col_heading']} {self.css['level']}{r} "
- f"{self.css['col']}{c}"
- ),
- value,
- header_element_visible,
- display_value=self._display_funcs_columns[(r, c)](value),
- attributes=(
- f'colspan="{col_lengths.get((r, c), 0)}"'
- if col_lengths.get((r, c), 0) > 1
- else ""
- ),
- )
- if self.cell_ids:
- header_element["id"] = f"{self.css['level']}{r}_{self.css['col']}{c}"
- if (
- header_element_visible
- and (r, c) in self.ctx_columns
- and self.ctx_columns[r, c]
- ):
- header_element["id"] = f"{self.css['level']}{r}_{self.css['col']}{c}"
- self.cellstyle_map_columns[tuple(self.ctx_columns[r, c])].append(
- f"{self.css['level']}{r}_{self.css['col']}{c}"
- )
- column_headers.append(header_element)
- return index_blanks + column_name + column_headers
- def _generate_index_names_row(self, iter: tuple, max_cols: int, col_lengths: dict):
- """
- Generate the row containing index names
- +----------------------------+---------------+---------------------------+
- | index_names (level_0 to level_n) ... | column_blanks ... |
- +----------------------------+---------------+---------------------------+
- Parameters
- ----------
- iter : tuple
- Looping variables from outer scope
- max_cols : int
- Permissible number of columns
- Returns
- -------
- list of elements
- """
- clabels = iter
- index_names = [
- _element(
- "th",
- f"{self.css['index_name']} {self.css['level']}{c}",
- self.css["blank_value"] if name is None else name,
- not self.hide_index_[c],
- )
- for c, name in enumerate(self.data.index.names)
- ]
- column_blanks: list = []
- visible_col_count: int = 0
- if clabels:
- last_level = self.columns.nlevels - 1 # use last level since never sparsed
- for c, value in enumerate(clabels[last_level]):
- header_element_visible = _is_visible(c, last_level, col_lengths)
- if header_element_visible:
- visible_col_count += 1
- if self._check_trim(
- visible_col_count,
- max_cols,
- column_blanks,
- "th",
- f"{self.css['blank']} {self.css['col']}{c} {self.css['col_trim']}",
- self.css["blank_value"],
- ):
- break
- column_blanks.append(
- _element(
- "th",
- f"{self.css['blank']} {self.css['col']}{c}",
- self.css["blank_value"],
- c not in self.hidden_columns,
- )
- )
- return index_names + column_blanks
- def _translate_body(self, idx_lengths: dict, max_rows: int, max_cols: int):
- """
- Build each <tr> within table <body> as a list
- Use the following structure:
- +--------------------------------------------+---------------------------+
- | index_header_0 ... index_header_n | data_by_column ... |
- +--------------------------------------------+---------------------------+
- Also add elements to the cellstyle_map for more efficient grouped elements in
- <style></style> block
- Parameters
- ----------
- sparsify_index : bool
- Whether index_headers section will add rowspan attributes (>1) to elements.
- Returns
- -------
- body : list
- The associated HTML elements needed for template rendering.
- """
- rlabels = self.data.index.tolist()
- if not isinstance(self.data.index, MultiIndex):
- rlabels = [[x] for x in rlabels]
- body: list = []
- visible_row_count: int = 0
- for r, row_tup in [
- z for z in enumerate(self.data.itertuples()) if z[0] not in self.hidden_rows
- ]:
- visible_row_count += 1
- if self._check_trim(
- visible_row_count,
- max_rows,
- body,
- "row",
- ):
- break
- body_row = self._generate_body_row(
- (r, row_tup, rlabels), max_cols, idx_lengths
- )
- body.append(body_row)
- return body
- def _check_trim(
- self,
- count: int,
- max: int,
- obj: list,
- element: str,
- css: str | None = None,
- value: str = "...",
- ) -> bool:
- """
- Indicates whether to break render loops and append a trimming indicator
- Parameters
- ----------
- count : int
- The loop count of previous visible items.
- max : int
- The allowable rendered items in the loop.
- obj : list
- The current render collection of the rendered items.
- element : str
- The type of element to append in the case a trimming indicator is needed.
- css : str, optional
- The css to add to the trimming indicator element.
- value : str, optional
- The value of the elements display if necessary.
- Returns
- -------
- result : bool
- Whether a trimming element was required and appended.
- """
- if count > max:
- if element == "row":
- obj.append(self._generate_trimmed_row(max))
- else:
- obj.append(_element(element, css, value, True, attributes=""))
- return True
- return False
- def _generate_trimmed_row(self, max_cols: int) -> list:
- """
- When a render has too many rows we generate a trimming row containing "..."
- Parameters
- ----------
- max_cols : int
- Number of permissible columns
- Returns
- -------
- list of elements
- """
- index_headers = [
- _element(
- "th",
- (
- f"{self.css['row_heading']} {self.css['level']}{c} "
- f"{self.css['row_trim']}"
- ),
- "...",
- not self.hide_index_[c],
- attributes="",
- )
- for c in range(self.data.index.nlevels)
- ]
- data: list = []
- visible_col_count: int = 0
- for c, _ in enumerate(self.columns):
- data_element_visible = c not in self.hidden_columns
- if data_element_visible:
- visible_col_count += 1
- if self._check_trim(
- visible_col_count,
- max_cols,
- data,
- "td",
- f"{self.css['data']} {self.css['row_trim']} {self.css['col_trim']}",
- ):
- break
- data.append(
- _element(
- "td",
- f"{self.css['data']} {self.css['col']}{c} {self.css['row_trim']}",
- "...",
- data_element_visible,
- attributes="",
- )
- )
- return index_headers + data
- def _generate_body_row(
- self,
- iter: tuple,
- max_cols: int,
- idx_lengths: dict,
- ):
- """
- Generate a regular row for the body section of appropriate format.
- +--------------------------------------------+---------------------------+
- | index_header_0 ... index_header_n | data_by_column ... |
- +--------------------------------------------+---------------------------+
- Parameters
- ----------
- iter : tuple
- Iterable from outer scope: row number, row data tuple, row index labels.
- max_cols : int
- Number of permissible columns.
- idx_lengths : dict
- A map of the sparsification structure of the index
- Returns
- -------
- list of elements
- """
- r, row_tup, rlabels = iter
- index_headers = []
- for c, value in enumerate(rlabels[r]):
- header_element_visible = (
- _is_visible(r, c, idx_lengths) and not self.hide_index_[c]
- )
- header_element = _element(
- "th",
- (
- f"{self.css['row_heading']} {self.css['level']}{c} "
- f"{self.css['row']}{r}"
- ),
- value,
- header_element_visible,
- display_value=self._display_funcs_index[(r, c)](value),
- attributes=(
- f'rowspan="{idx_lengths.get((c, r), 0)}"'
- if idx_lengths.get((c, r), 0) > 1
- else ""
- ),
- )
- if self.cell_ids:
- header_element[
- "id"
- ] = f"{self.css['level']}{c}_{self.css['row']}{r}" # id is given
- if (
- header_element_visible
- and (r, c) in self.ctx_index
- and self.ctx_index[r, c]
- ):
- # always add id if a style is specified
- header_element["id"] = f"{self.css['level']}{c}_{self.css['row']}{r}"
- self.cellstyle_map_index[tuple(self.ctx_index[r, c])].append(
- f"{self.css['level']}{c}_{self.css['row']}{r}"
- )
- index_headers.append(header_element)
- data: list = []
- visible_col_count: int = 0
- for c, value in enumerate(row_tup[1:]):
- data_element_visible = (
- c not in self.hidden_columns and r not in self.hidden_rows
- )
- if data_element_visible:
- visible_col_count += 1
- if self._check_trim(
- visible_col_count,
- max_cols,
- data,
- "td",
- f"{self.css['data']} {self.css['row']}{r} {self.css['col_trim']}",
- ):
- break
- # add custom classes from cell context
- cls = ""
- if (r, c) in self.cell_context:
- cls = " " + self.cell_context[r, c]
- data_element = _element(
- "td",
- (
- f"{self.css['data']} {self.css['row']}{r} "
- f"{self.css['col']}{c}{cls}"
- ),
- value,
- data_element_visible,
- attributes="",
- display_value=self._display_funcs[(r, c)](value),
- )
- if self.cell_ids:
- data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}"
- if data_element_visible and (r, c) in self.ctx and self.ctx[r, c]:
- # always add id if needed due to specified style
- data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}"
- self.cellstyle_map[tuple(self.ctx[r, c])].append(
- f"{self.css['row']}{r}_{self.css['col']}{c}"
- )
- data.append(data_element)
- return index_headers + data
- def _translate_latex(self, d: dict, clines: str | None) -> None:
- r"""
- Post-process the default render dict for the LaTeX template format.
- Processing items included are:
- - Remove hidden columns from the non-headers part of the body.
- - Place cellstyles directly in td cells rather than use cellstyle_map.
- - Remove hidden indexes or reinsert missing th elements if part of multiindex
- or multirow sparsification (so that \multirow and \multicol work correctly).
- """
- index_levels = self.index.nlevels
- visible_index_level_n = index_levels - sum(self.hide_index_)
- d["head"] = [
- [
- {**col, "cellstyle": self.ctx_columns[r, c - visible_index_level_n]}
- for c, col in enumerate(row)
- if col["is_visible"]
- ]
- for r, row in enumerate(d["head"])
- ]
- def _concatenated_visible_rows(obj, n, row_indices):
- """
- Extract all visible row indices recursively from concatenated stylers.
- """
- row_indices.extend(
- [r + n for r in range(len(obj.index)) if r not in obj.hidden_rows]
- )
- n += len(obj.index)
- for concatenated in obj.concatenated:
- n = _concatenated_visible_rows(concatenated, n, row_indices)
- return n
- def concatenated_visible_rows(obj):
- row_indices: list[int] = []
- _concatenated_visible_rows(obj, 0, row_indices)
- # TODO try to consolidate the concat visible rows
- # methods to a single function / recursion for simplicity
- return row_indices
- body = []
- for r, row in zip(concatenated_visible_rows(self), d["body"]):
- # note: cannot enumerate d["body"] because rows were dropped if hidden
- # during _translate_body so must zip to acquire the true r-index associated
- # with the ctx obj which contains the cell styles.
- if all(self.hide_index_):
- row_body_headers = []
- else:
- row_body_headers = [
- {
- **col,
- "display_value": col["display_value"]
- if col["is_visible"]
- else "",
- "cellstyle": self.ctx_index[r, c],
- }
- for c, col in enumerate(row[:index_levels])
- if (col["type"] == "th" and not self.hide_index_[c])
- ]
- row_body_cells = [
- {**col, "cellstyle": self.ctx[r, c]}
- for c, col in enumerate(row[index_levels:])
- if (col["is_visible"] and col["type"] == "td")
- ]
- body.append(row_body_headers + row_body_cells)
- d["body"] = body
- # clines are determined from info on index_lengths and hidden_rows and input
- # to a dict defining which row clines should be added in the template.
- if clines not in [
- None,
- "all;data",
- "all;index",
- "skip-last;data",
- "skip-last;index",
- ]:
- raise ValueError(
- f"`clines` value of {clines} is invalid. Should either be None or one "
- f"of 'all;data', 'all;index', 'skip-last;data', 'skip-last;index'."
- )
- if clines is not None:
- data_len = len(row_body_cells) if "data" in clines and d["body"] else 0
- d["clines"] = defaultdict(list)
- visible_row_indexes: list[int] = [
- r for r in range(len(self.data.index)) if r not in self.hidden_rows
- ]
- visible_index_levels: list[int] = [
- i for i in range(index_levels) if not self.hide_index_[i]
- ]
- for rn, r in enumerate(visible_row_indexes):
- for lvln, lvl in enumerate(visible_index_levels):
- if lvl == index_levels - 1 and "skip-last" in clines:
- continue
- idx_len = d["index_lengths"].get((lvl, r), None)
- if idx_len is not None: # i.e. not a sparsified entry
- d["clines"][rn + idx_len].append(
- f"\\cline{{{lvln+1}-{len(visible_index_levels)+data_len}}}"
- )
- def format(
- self,
- formatter: ExtFormatter | None = None,
- subset: Subset | None = None,
- na_rep: str | None = None,
- precision: int | None = None,
- decimal: str = ".",
- thousands: str | None = None,
- escape: str | None = None,
- hyperlinks: str | None = None,
- ) -> StylerRenderer:
- r"""
- Format the text display value of cells.
- Parameters
- ----------
- formatter : str, callable, dict or None
- Object to define how values are displayed. See notes.
- subset : label, array-like, IndexSlice, optional
- A valid 2d input to `DataFrame.loc[<subset>]`, or, in the case of a 1d input
- or single key, to `DataFrame.loc[:, <subset>]` where the columns are
- prioritised, to limit ``data`` to *before* applying the function.
- na_rep : str, optional
- Representation for missing values.
- If ``na_rep`` is None, no special formatting is applied.
- precision : int, optional
- Floating point precision to use for display purposes, if not determined by
- the specified ``formatter``.
- .. versionadded:: 1.3.0
- decimal : str, default "."
- Character used as decimal separator for floats, complex and integers.
- .. versionadded:: 1.3.0
- thousands : str, optional, default None
- Character used as thousands separator for floats, complex and integers.
- .. versionadded:: 1.3.0
- escape : str, optional
- Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
- in cell display string with HTML-safe sequences.
- Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
- ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
- LaTeX-safe sequences.
- Escaping is done before ``formatter``.
- .. versionadded:: 1.3.0
- hyperlinks : {"html", "latex"}, optional
- Convert string patterns containing https://, http://, ftp:// or www. to
- HTML <a> tags as clickable URL hyperlinks if "html", or LaTeX \href
- commands if "latex".
- .. versionadded:: 1.4.0
- Returns
- -------
- Styler
- See Also
- --------
- Styler.format_index: Format the text display value of index labels.
- Notes
- -----
- This method assigns a formatting function, ``formatter``, to each cell in the
- DataFrame. If ``formatter`` is ``None``, then the default formatter is used.
- If a callable then that function should take a data value as input and return
- a displayable representation, such as a string. If ``formatter`` is
- given as a string this is assumed to be a valid Python format specification
- and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given,
- keys should correspond to column names, and values should be string or
- callable, as above.
- The default formatter currently expresses floats and complex numbers with the
- pandas display precision unless using the ``precision`` argument here. The
- default formatter does not adjust the representation of missing values unless
- the ``na_rep`` argument is used.
- The ``subset`` argument defines which region to apply the formatting function
- to. If the ``formatter`` argument is given in dict form but does not include
- all columns within the subset then these columns will have the default formatter
- applied. Any columns in the formatter dict excluded from the subset will
- be ignored.
- When using a ``formatter`` string the dtypes must be compatible, otherwise a
- `ValueError` will be raised.
- When instantiating a Styler, default formatting can be applied be setting the
- ``pandas.options``:
- - ``styler.format.formatter``: default None.
- - ``styler.format.na_rep``: default None.
- - ``styler.format.precision``: default 6.
- - ``styler.format.decimal``: default ".".
- - ``styler.format.thousands``: default None.
- - ``styler.format.escape``: default None.
- .. warning::
- `Styler.format` is ignored when using the output format `Styler.to_excel`,
- since Excel and Python have inherrently different formatting structures.
- However, it is possible to use the `number-format` pseudo CSS attribute
- to force Excel permissible formatting. See examples.
- Examples
- --------
- Using ``na_rep`` and ``precision`` with the default ``formatter``
- >>> df = pd.DataFrame([[np.nan, 1.0, 'A'], [2.0, np.nan, 3.0]])
- >>> df.style.format(na_rep='MISS', precision=3) # doctest: +SKIP
- 0 1 2
- 0 MISS 1.000 A
- 1 2.000 MISS 3.000
- Using a ``formatter`` specification on consistent column dtypes
- >>> df.style.format('{:.2f}', na_rep='MISS', subset=[0,1]) # doctest: +SKIP
- 0 1 2
- 0 MISS 1.00 A
- 1 2.00 MISS 3.000000
- Using the default ``formatter`` for unspecified columns
- >>> df.style.format({0: '{:.2f}', 1: '£ {:.1f}'}, na_rep='MISS', precision=1)
- ... # doctest: +SKIP
- 0 1 2
- 0 MISS £ 1.0 A
- 1 2.00 MISS 3.0
- Multiple ``na_rep`` or ``precision`` specifications under the default
- ``formatter``.
- >>> (df.style.format(na_rep='MISS', precision=1, subset=[0])
- ... .format(na_rep='PASS', precision=2, subset=[1, 2])) # doctest: +SKIP
- 0 1 2
- 0 MISS 1.00 A
- 1 2.0 PASS 3.00
- Using a callable ``formatter`` function.
- >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT'
- >>> df.style.format({0: '{:.1f}', 2: func}, precision=4, na_rep='MISS')
- ... # doctest: +SKIP
- 0 1 2
- 0 MISS 1.0000 STRING
- 1 2.0 MISS FLOAT
- Using a ``formatter`` with HTML ``escape`` and ``na_rep``.
- >>> df = pd.DataFrame([['<div></div>', '"A&B"', None]])
- >>> s = df.style.format(
- ... '<a href="a.com/{0}">{0}</a>', escape="html", na_rep="NA"
- ... )
- >>> s.to_html() # doctest: +SKIP
- ...
- <td .. ><a href="a.com/<div></div>"><div></div></a></td>
- <td .. ><a href="a.com/"A&B"">"A&B"</a></td>
- <td .. >NA</td>
- ...
- Using a ``formatter`` with LaTeX ``escape``.
- >>> df = pd.DataFrame([["123"], ["~ ^"], ["$%#"]])
- >>> df.style.format("\\textbf{{{}}}", escape="latex").to_latex()
- ... # doctest: +SKIP
- \begin{tabular}{ll}
- {} & {0} \\
- 0 & \textbf{123} \\
- 1 & \textbf{\textasciitilde \space \textasciicircum } \\
- 2 & \textbf{\$\%\#} \\
- \end{tabular}
- Pandas defines a `number-format` pseudo CSS attribute instead of the `.format`
- method to create `to_excel` permissible formatting. Note that semi-colons are
- CSS protected characters but used as separators in Excel's format string.
- Replace semi-colons with the section separator character (ASCII-245) when
- defining the formatting here.
- >>> df = pd.DataFrame({"A": [1, 0, -1]})
- >>> pseudo_css = "number-format: 0§[Red](0)§-§@;"
- >>> filename = "formatted_file.xlsx"
- >>> df.style.applymap(lambda v: pseudo_css).to_excel(filename) # doctest: +SKIP
- .. figure:: ../../_static/style/format_excel_css.png
- """
- if all(
- (
- formatter is None,
- subset is None,
- precision is None,
- decimal == ".",
- thousands is None,
- na_rep is None,
- escape is None,
- hyperlinks is None,
- )
- ):
- self._display_funcs.clear()
- return self # clear the formatter / revert to default and avoid looping
- subset = slice(None) if subset is None else subset
- subset = non_reducing_slice(subset)
- data = self.data.loc[subset]
- if not isinstance(formatter, dict):
- formatter = {col: formatter for col in data.columns}
- cis = self.columns.get_indexer_for(data.columns)
- ris = self.index.get_indexer_for(data.index)
- for ci in cis:
- format_func = _maybe_wrap_formatter(
- formatter.get(self.columns[ci]),
- na_rep=na_rep,
- precision=precision,
- decimal=decimal,
- thousands=thousands,
- escape=escape,
- hyperlinks=hyperlinks,
- )
- for ri in ris:
- self._display_funcs[(ri, ci)] = format_func
- return self
- def format_index(
- self,
- formatter: ExtFormatter | None = None,
- axis: Axis = 0,
- level: Level | list[Level] | None = None,
- na_rep: str | None = None,
- precision: int | None = None,
- decimal: str = ".",
- thousands: str | None = None,
- escape: str | None = None,
- hyperlinks: str | None = None,
- ) -> StylerRenderer:
- r"""
- Format the text display value of index labels or column headers.
- .. versionadded:: 1.4.0
- Parameters
- ----------
- formatter : str, callable, dict or None
- Object to define how values are displayed. See notes.
- axis : {0, "index", 1, "columns"}
- Whether to apply the formatter to the index or column headers.
- level : int, str, list
- The level(s) over which to apply the generic formatter.
- na_rep : str, optional
- Representation for missing values.
- If ``na_rep`` is None, no special formatting is applied.
- precision : int, optional
- Floating point precision to use for display purposes, if not determined by
- the specified ``formatter``.
- decimal : str, default "."
- Character used as decimal separator for floats, complex and integers.
- thousands : str, optional, default None
- Character used as thousands separator for floats, complex and integers.
- escape : str, optional
- Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"``
- in cell display string with HTML-safe sequences.
- Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``,
- ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with
- LaTeX-safe sequences.
- Escaping is done before ``formatter``.
- hyperlinks : {"html", "latex"}, optional
- Convert string patterns containing https://, http://, ftp:// or www. to
- HTML <a> tags as clickable URL hyperlinks if "html", or LaTeX \href
- commands if "latex".
- Returns
- -------
- Styler
- See Also
- --------
- Styler.format: Format the text display value of data cells.
- Notes
- -----
- This method assigns a formatting function, ``formatter``, to each level label
- in the DataFrame's index or column headers. If ``formatter`` is ``None``,
- then the default formatter is used.
- If a callable then that function should take a label value as input and return
- a displayable representation, such as a string. If ``formatter`` is
- given as a string this is assumed to be a valid Python format specification
- and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given,
- keys should correspond to MultiIndex level numbers or names, and values should
- be string or callable, as above.
- The default formatter currently expresses floats and complex numbers with the
- pandas display precision unless using the ``precision`` argument here. The
- default formatter does not adjust the representation of missing values unless
- the ``na_rep`` argument is used.
- The ``level`` argument defines which levels of a MultiIndex to apply the
- method to. If the ``formatter`` argument is given in dict form but does
- not include all levels within the level argument then these unspecified levels
- will have the default formatter applied. Any levels in the formatter dict
- specifically excluded from the level argument will be ignored.
- When using a ``formatter`` string the dtypes must be compatible, otherwise a
- `ValueError` will be raised.
- .. warning::
- `Styler.format_index` is ignored when using the output format
- `Styler.to_excel`, since Excel and Python have inherrently different
- formatting structures.
- However, it is possible to use the `number-format` pseudo CSS attribute
- to force Excel permissible formatting. See documentation for `Styler.format`.
- Examples
- --------
- Using ``na_rep`` and ``precision`` with the default ``formatter``
- >>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0])
- >>> df.style.format_index(axis=1, na_rep='MISS', precision=3) # doctest: +SKIP
- 2.000 MISS 4.000
- 0 1 2 3
- Using a ``formatter`` specification on consistent dtypes in a level
- >>> df.style.format_index('{:.2f}', axis=1, na_rep='MISS') # doctest: +SKIP
- 2.00 MISS 4.00
- 0 1 2 3
- Using the default ``formatter`` for unspecified levels
- >>> df = pd.DataFrame([[1, 2, 3]],
- ... columns=pd.MultiIndex.from_arrays([["a", "a", "b"],[2, np.nan, 4]]))
- >>> df.style.format_index({0: lambda v: upper(v)}, axis=1, precision=1)
- ... # doctest: +SKIP
- A B
- 2.0 nan 4.0
- 0 1 2 3
- Using a callable ``formatter`` function.
- >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT'
- >>> df.style.format_index(func, axis=1, na_rep='MISS')
- ... # doctest: +SKIP
- STRING STRING
- FLOAT MISS FLOAT
- 0 1 2 3
- Using a ``formatter`` with HTML ``escape`` and ``na_rep``.
- >>> df = pd.DataFrame([[1, 2, 3]], columns=['"A"', 'A&B', None])
- >>> s = df.style.format_index('$ {0}', axis=1, escape="html", na_rep="NA")
- ... # doctest: +SKIP
- <th .. >$ "A"</th>
- <th .. >$ A&B</th>
- <th .. >NA</td>
- ...
- Using a ``formatter`` with LaTeX ``escape``.
- >>> df = pd.DataFrame([[1, 2, 3]], columns=["123", "~", "$%#"])
- >>> df.style.format_index("\\textbf{{{}}}", escape="latex", axis=1).to_latex()
- ... # doctest: +SKIP
- \begin{tabular}{lrrr}
- {} & {\textbf{123}} & {\textbf{\textasciitilde }} & {\textbf{\$\%\#}} \\
- 0 & 1 & 2 & 3 \\
- \end{tabular}
- """
- axis = self.data._get_axis_number(axis)
- if axis == 0:
- display_funcs_, obj = self._display_funcs_index, self.index
- else:
- display_funcs_, obj = self._display_funcs_columns, self.columns
- levels_ = refactor_levels(level, obj)
- if all(
- (
- formatter is None,
- level is None,
- precision is None,
- decimal == ".",
- thousands is None,
- na_rep is None,
- escape is None,
- hyperlinks is None,
- )
- ):
- display_funcs_.clear()
- return self # clear the formatter / revert to default and avoid looping
- if not isinstance(formatter, dict):
- formatter = {level: formatter for level in levels_}
- else:
- formatter = {
- obj._get_level_number(level): formatter_
- for level, formatter_ in formatter.items()
- }
- for lvl in levels_:
- format_func = _maybe_wrap_formatter(
- formatter.get(lvl),
- na_rep=na_rep,
- precision=precision,
- decimal=decimal,
- thousands=thousands,
- escape=escape,
- hyperlinks=hyperlinks,
- )
- for idx in [(i, lvl) if axis == 0 else (lvl, i) for i in range(len(obj))]:
- display_funcs_[idx] = format_func
- return self
- def relabel_index(
- self,
- labels: Sequence | Index,
- axis: Axis = 0,
- level: Level | list[Level] | None = None,
- ) -> StylerRenderer:
- r"""
- Relabel the index, or column header, keys to display a set of specified values.
- .. versionadded:: 1.5.0
- Parameters
- ----------
- labels : list-like or Index
- New labels to display. Must have same length as the underlying values not
- hidden.
- axis : {"index", 0, "columns", 1}
- Apply to the index or columns.
- level : int, str, list, optional
- The level(s) over which to apply the new labels. If `None` will apply
- to all levels of an Index or MultiIndex which are not hidden.
- Returns
- -------
- Styler
- See Also
- --------
- Styler.format_index: Format the text display value of index or column headers.
- Styler.hide: Hide the index, column headers, or specified data from display.
- Notes
- -----
- As part of Styler, this method allows the display of an index to be
- completely user-specified without affecting the underlying DataFrame data,
- index, or column headers. This means that the flexibility of indexing is
- maintained whilst the final display is customisable.
- Since Styler is designed to be progressively constructed with method chaining,
- this method is adapted to react to the **currently specified hidden elements**.
- This is useful because it means one does not have to specify all the new
- labels if the majority of an index, or column headers, have already been hidden.
- The following produce equivalent display (note the length of ``labels`` in
- each case).
- .. code-block:: python
- # relabel first, then hide
- df = pd.DataFrame({"col": ["a", "b", "c"]})
- df.style.relabel_index(["A", "B", "C"]).hide([0,1])
- # hide first, then relabel
- df = pd.DataFrame({"col": ["a", "b", "c"]})
- df.style.hide([0,1]).relabel_index(["C"])
- This method should be used, rather than :meth:`Styler.format_index`, in one of
- the following cases (see examples):
- - A specified set of labels are required which are not a function of the
- underlying index keys.
- - The function of the underlying index keys requires a counter variable,
- such as those available upon enumeration.
- Examples
- --------
- Basic use
- >>> df = pd.DataFrame({"col": ["a", "b", "c"]})
- >>> df.style.relabel_index(["A", "B", "C"]) # doctest: +SKIP
- col
- A a
- B b
- C c
- Chaining with pre-hidden elements
- >>> df.style.hide([0,1]).relabel_index(["C"]) # doctest: +SKIP
- col
- C c
- Using a MultiIndex
- >>> midx = pd.MultiIndex.from_product([[0, 1], [0, 1], [0, 1]])
- >>> df = pd.DataFrame({"col": list(range(8))}, index=midx)
- >>> styler = df.style # doctest: +SKIP
- col
- 0 0 0 0
- 1 1
- 1 0 2
- 1 3
- 1 0 0 4
- 1 5
- 1 0 6
- 1 7
- >>> styler.hide((midx.get_level_values(0)==0)|(midx.get_level_values(1)==0))
- ... # doctest: +SKIP
- >>> styler.hide(level=[0,1]) # doctest: +SKIP
- >>> styler.relabel_index(["binary6", "binary7"]) # doctest: +SKIP
- col
- binary6 6
- binary7 7
- We can also achieve the above by indexing first and then re-labeling
- >>> styler = df.loc[[(1,1,0), (1,1,1)]].style
- >>> styler.hide(level=[0,1]).relabel_index(["binary6", "binary7"])
- ... # doctest: +SKIP
- col
- binary6 6
- binary7 7
- Defining a formatting function which uses an enumeration counter. Also note
- that the value of the index key is passed in the case of string labels so it
- can also be inserted into the label, using curly brackets (or double curly
- brackets if the string if pre-formatted),
- >>> df = pd.DataFrame({"samples": np.random.rand(10)})
- >>> styler = df.loc[np.random.randint(0,10,3)].style
- >>> styler.relabel_index([f"sample{i+1} ({{}})" for i in range(3)])
- ... # doctest: +SKIP
- samples
- sample1 (5) 0.315811
- sample2 (0) 0.495941
- sample3 (2) 0.067946
- """
- axis = self.data._get_axis_number(axis)
- if axis == 0:
- display_funcs_, obj = self._display_funcs_index, self.index
- hidden_labels, hidden_lvls = self.hidden_rows, self.hide_index_
- else:
- display_funcs_, obj = self._display_funcs_columns, self.columns
- hidden_labels, hidden_lvls = self.hidden_columns, self.hide_columns_
- visible_len = len(obj) - len(set(hidden_labels))
- if len(labels) != visible_len:
- raise ValueError(
- "``labels`` must be of length equal to the number of "
- f"visible labels along ``axis`` ({visible_len})."
- )
- if level is None:
- level = [i for i in range(obj.nlevels) if not hidden_lvls[i]]
- levels_ = refactor_levels(level, obj)
- def alias_(x, value):
- if isinstance(value, str):
- return value.format(x)
- return value
- for ai, i in enumerate([i for i in range(len(obj)) if i not in hidden_labels]):
- if len(levels_) == 1:
- idx = (i, levels_[0]) if axis == 0 else (levels_[0], i)
- display_funcs_[idx] = partial(alias_, value=labels[ai])
- else:
- for aj, lvl in enumerate(levels_):
- idx = (i, lvl) if axis == 0 else (lvl, i)
- display_funcs_[idx] = partial(alias_, value=labels[ai][aj])
- return self
- def _element(
- html_element: str,
- html_class: str | None,
- value: Any,
- is_visible: bool,
- **kwargs,
- ) -> dict:
- """
- Template to return container with information for a <td></td> or <th></th> element.
- """
- if "display_value" not in kwargs:
- kwargs["display_value"] = value
- return {
- "type": html_element,
- "value": value,
- "class": html_class,
- "is_visible": is_visible,
- **kwargs,
- }
- def _get_trimming_maximums(
- rn,
- cn,
- max_elements,
- max_rows=None,
- max_cols=None,
- scaling_factor: float = 0.8,
- ) -> tuple[int, int]:
- """
- Recursively reduce the number of rows and columns to satisfy max elements.
- Parameters
- ----------
- rn, cn : int
- The number of input rows / columns
- max_elements : int
- The number of allowable elements
- max_rows, max_cols : int, optional
- Directly specify an initial maximum rows or columns before compression.
- scaling_factor : float
- Factor at which to reduce the number of rows / columns to fit.
- Returns
- -------
- rn, cn : tuple
- New rn and cn values that satisfy the max_elements constraint
- """
- def scale_down(rn, cn):
- if cn >= rn:
- return rn, int(cn * scaling_factor)
- else:
- return int(rn * scaling_factor), cn
- if max_rows:
- rn = max_rows if rn > max_rows else rn
- if max_cols:
- cn = max_cols if cn > max_cols else cn
- while rn * cn > max_elements:
- rn, cn = scale_down(rn, cn)
- return rn, cn
- def _get_level_lengths(
- index: Index,
- sparsify: bool,
- max_index: int,
- hidden_elements: Sequence[int] | None = None,
- ):
- """
- Given an index, find the level length for each element.
- Parameters
- ----------
- index : Index
- Index or columns to determine lengths of each element
- sparsify : bool
- Whether to hide or show each distinct element in a MultiIndex
- max_index : int
- The maximum number of elements to analyse along the index due to trimming
- hidden_elements : sequence of int
- Index positions of elements hidden from display in the index affecting
- length
- Returns
- -------
- Dict :
- Result is a dictionary of (level, initial_position): span
- """
- if isinstance(index, MultiIndex):
- levels = index.format(sparsify=lib.no_default, adjoin=False)
- else:
- levels = index.format()
- if hidden_elements is None:
- hidden_elements = []
- lengths = {}
- if not isinstance(index, MultiIndex):
- for i, value in enumerate(levels):
- if i not in hidden_elements:
- lengths[(0, i)] = 1
- return lengths
- for i, lvl in enumerate(levels):
- visible_row_count = 0 # used to break loop due to display trimming
- for j, row in enumerate(lvl):
- if visible_row_count > max_index:
- break
- if not sparsify:
- # then lengths will always equal 1 since no aggregation.
- if j not in hidden_elements:
- lengths[(i, j)] = 1
- visible_row_count += 1
- elif (row is not lib.no_default) and (j not in hidden_elements):
- # this element has not been sparsified so must be the start of section
- last_label = j
- lengths[(i, last_label)] = 1
- visible_row_count += 1
- elif row is not lib.no_default:
- # even if the above is hidden, keep track of it in case length > 1 and
- # later elements are visible
- last_label = j
- lengths[(i, last_label)] = 0
- elif j not in hidden_elements:
- # then element must be part of sparsified section and is visible
- visible_row_count += 1
- if visible_row_count > max_index:
- break # do not add a length since the render trim limit reached
- if lengths[(i, last_label)] == 0:
- # if previous iteration was first-of-section but hidden then offset
- last_label = j
- lengths[(i, last_label)] = 1
- else:
- # else add to previous iteration
- lengths[(i, last_label)] += 1
- non_zero_lengths = {
- element: length for element, length in lengths.items() if length >= 1
- }
- return non_zero_lengths
- def _is_visible(idx_row, idx_col, lengths) -> bool:
- """
- Index -> {(idx_row, idx_col): bool}).
- """
- return (idx_col, idx_row) in lengths
- def format_table_styles(styles: CSSStyles) -> CSSStyles:
- """
- looks for multiple CSS selectors and separates them:
- [{'selector': 'td, th', 'props': 'a:v;'}]
- ---> [{'selector': 'td', 'props': 'a:v;'},
- {'selector': 'th', 'props': 'a:v;'}]
- """
- return [
- {"selector": selector, "props": css_dict["props"]}
- for css_dict in styles
- for selector in css_dict["selector"].split(",")
- ]
- def _default_formatter(x: Any, precision: int, thousands: bool = False) -> Any:
- """
- Format the display of a value
- Parameters
- ----------
- x : Any
- Input variable to be formatted
- precision : Int
- Floating point precision used if ``x`` is float or complex.
- thousands : bool, default False
- Whether to group digits with thousands separated with ",".
- Returns
- -------
- value : Any
- Matches input type, or string if input is float or complex or int with sep.
- """
- if is_float(x) or is_complex(x):
- return f"{x:,.{precision}f}" if thousands else f"{x:.{precision}f}"
- elif is_integer(x):
- return f"{x:,.0f}" if thousands else f"{x:.0f}"
- return x
- def _wrap_decimal_thousands(
- formatter: Callable, decimal: str, thousands: str | None
- ) -> Callable:
- """
- Takes a string formatting function and wraps logic to deal with thousands and
- decimal parameters, in the case that they are non-standard and that the input
- is a (float, complex, int).
- """
- def wrapper(x):
- if is_float(x) or is_integer(x) or is_complex(x):
- if decimal != "." and thousands is not None and thousands != ",":
- return (
- formatter(x)
- .replace(",", "§_§-") # rare string to avoid "," <-> "." clash.
- .replace(".", decimal)
- .replace("§_§-", thousands)
- )
- elif decimal != "." and (thousands is None or thousands == ","):
- return formatter(x).replace(".", decimal)
- elif decimal == "." and thousands is not None and thousands != ",":
- return formatter(x).replace(",", thousands)
- return formatter(x)
- return wrapper
- def _str_escape(x, escape):
- """if escaping: only use on str, else return input"""
- if isinstance(x, str):
- if escape == "html":
- return escape_html(x)
- elif escape == "latex":
- return _escape_latex(x)
- else:
- raise ValueError(
- f"`escape` only permitted in {{'html', 'latex'}}, got {escape}"
- )
- return x
- def _render_href(x, format):
- """uses regex to detect a common URL pattern and converts to href tag in format."""
- if isinstance(x, str):
- if format == "html":
- href = '<a href="{0}" target="_blank">{0}</a>'
- elif format == "latex":
- href = r"\href{{{0}}}{{{0}}}"
- else:
- raise ValueError("``hyperlinks`` format can only be 'html' or 'latex'")
- pat = r"((http|ftp)s?:\/\/|www.)[\w/\-?=%.:@]+\.[\w/\-&?=%.,':;~!@#$*()\[\]]+"
- return re.sub(pat, lambda m: href.format(m.group(0)), x)
- return x
- def _maybe_wrap_formatter(
- formatter: BaseFormatter | None = None,
- na_rep: str | None = None,
- precision: int | None = None,
- decimal: str = ".",
- thousands: str | None = None,
- escape: str | None = None,
- hyperlinks: str | None = None,
- ) -> Callable:
- """
- Allows formatters to be expressed as str, callable or None, where None returns
- a default formatting function. wraps with na_rep, and precision where they are
- available.
- """
- # Get initial func from input string, input callable, or from default factory
- if isinstance(formatter, str):
- func_0 = lambda x: formatter.format(x)
- elif callable(formatter):
- func_0 = formatter
- elif formatter is None:
- precision = (
- get_option("styler.format.precision") if precision is None else precision
- )
- func_0 = partial(
- _default_formatter, precision=precision, thousands=(thousands is not None)
- )
- else:
- raise TypeError(f"'formatter' expected str or callable, got {type(formatter)}")
- # Replace chars if escaping
- if escape is not None:
- func_1 = lambda x: func_0(_str_escape(x, escape=escape))
- else:
- func_1 = func_0
- # Replace decimals and thousands if non-standard inputs detected
- if decimal != "." or (thousands is not None and thousands != ","):
- func_2 = _wrap_decimal_thousands(func_1, decimal=decimal, thousands=thousands)
- else:
- func_2 = func_1
- # Render links
- if hyperlinks is not None:
- func_3 = lambda x: func_2(_render_href(x, format=hyperlinks))
- else:
- func_3 = func_2
- # Replace missing values if na_rep
- if na_rep is None:
- return func_3
- else:
- return lambda x: na_rep if (isna(x) is True) else func_3(x)
- def non_reducing_slice(slice_: Subset):
- """
- Ensure that a slice doesn't reduce to a Series or Scalar.
- Any user-passed `subset` should have this called on it
- to make sure we're always working with DataFrames.
- """
- # default to column slice, like DataFrame
- # ['A', 'B'] -> IndexSlices[:, ['A', 'B']]
- kinds = (ABCSeries, np.ndarray, Index, list, str)
- if isinstance(slice_, kinds):
- slice_ = IndexSlice[:, slice_]
- def pred(part) -> bool:
- """
- Returns
- -------
- bool
- True if slice does *not* reduce,
- False if `part` is a tuple.
- """
- # true when slice does *not* reduce, False when part is a tuple,
- # i.e. MultiIndex slice
- if isinstance(part, tuple):
- # GH#39421 check for sub-slice:
- return any((isinstance(s, slice) or is_list_like(s)) for s in part)
- else:
- return isinstance(part, slice) or is_list_like(part)
- if not is_list_like(slice_):
- if not isinstance(slice_, slice):
- # a 1-d slice, like df.loc[1]
- slice_ = [[slice_]]
- else:
- # slice(a, b, c)
- slice_ = [slice_] # to tuplize later
- else:
- # error: Item "slice" of "Union[slice, Sequence[Any]]" has no attribute
- # "__iter__" (not iterable) -> is specifically list_like in conditional
- slice_ = [p if pred(p) else [p] for p in slice_] # type: ignore[union-attr]
- return tuple(slice_)
- def maybe_convert_css_to_tuples(style: CSSProperties) -> CSSList:
- """
- Convert css-string to sequence of tuples format if needed.
- 'color:red; border:1px solid black;' -> [('color', 'red'),
- ('border','1px solid red')]
- """
- if isinstance(style, str):
- s = style.split(";")
- try:
- return [
- (x.split(":")[0].strip(), x.split(":")[1].strip())
- for x in s
- if x.strip() != ""
- ]
- except IndexError:
- raise ValueError(
- "Styles supplied as string must follow CSS rule formats, "
- f"for example 'attr: val;'. '{style}' was given."
- )
- return style
- def refactor_levels(
- level: Level | list[Level] | None,
- obj: Index,
- ) -> list[int]:
- """
- Returns a consistent levels arg for use in ``hide_index`` or ``hide_columns``.
- Parameters
- ----------
- level : int, str, list
- Original ``level`` arg supplied to above methods.
- obj:
- Either ``self.index`` or ``self.columns``
- Returns
- -------
- list : refactored arg with a list of levels to hide
- """
- if level is None:
- levels_: list[int] = list(range(obj.nlevels))
- elif isinstance(level, int):
- levels_ = [level]
- elif isinstance(level, str):
- levels_ = [obj._get_level_number(level)]
- elif isinstance(level, list):
- levels_ = [
- obj._get_level_number(lev) if not isinstance(lev, int) else lev
- for lev in level
- ]
- else:
- raise ValueError("`level` must be of type `int`, `str` or list of such")
- return levels_
- class Tooltips:
- """
- An extension to ``Styler`` that allows for and manipulates tooltips on hover
- of ``<td>`` cells in the HTML result.
- Parameters
- ----------
- css_name: str, default "pd-t"
- Name of the CSS class that controls visualisation of tooltips.
- css_props: list-like, default; see Notes
- List of (attr, value) tuples defining properties of the CSS class.
- tooltips: DataFrame, default empty
- DataFrame of strings aligned with underlying Styler data for tooltip
- display.
- Notes
- -----
- The default properties for the tooltip CSS class are:
- - visibility: hidden
- - position: absolute
- - z-index: 1
- - background-color: black
- - color: white
- - transform: translate(-20px, -20px)
- Hidden visibility is a key prerequisite to the hover functionality, and should
- always be included in any manual properties specification.
- """
- def __init__(
- self,
- css_props: CSSProperties = [
- ("visibility", "hidden"),
- ("position", "absolute"),
- ("z-index", 1),
- ("background-color", "black"),
- ("color", "white"),
- ("transform", "translate(-20px, -20px)"),
- ],
- css_name: str = "pd-t",
- tooltips: DataFrame = DataFrame(),
- ) -> None:
- self.class_name = css_name
- self.class_properties = css_props
- self.tt_data = tooltips
- self.table_styles: CSSStyles = []
- @property
- def _class_styles(self):
- """
- Combine the ``_Tooltips`` CSS class name and CSS properties to the format
- required to extend the underlying ``Styler`` `table_styles` to allow
- tooltips to render in HTML.
- Returns
- -------
- styles : List
- """
- return [
- {
- "selector": f".{self.class_name}",
- "props": maybe_convert_css_to_tuples(self.class_properties),
- }
- ]
- def _pseudo_css(self, uuid: str, name: str, row: int, col: int, text: str):
- """
- For every table data-cell that has a valid tooltip (not None, NaN or
- empty string) must create two pseudo CSS entries for the specific
- <td> element id which are added to overall table styles:
- an on hover visibility change and a content change
- dependent upon the user's chosen display string.
- For example:
- [{"selector": "T__row1_col1:hover .pd-t",
- "props": [("visibility", "visible")]},
- {"selector": "T__row1_col1 .pd-t::after",
- "props": [("content", "Some Valid Text String")]}]
- Parameters
- ----------
- uuid: str
- The uuid of the Styler instance
- name: str
- The css-name of the class used for styling tooltips
- row : int
- The row index of the specified tooltip string data
- col : int
- The col index of the specified tooltip string data
- text : str
- The textual content of the tooltip to be displayed in HTML.
- Returns
- -------
- pseudo_css : List
- """
- selector_id = "#T_" + uuid + "_row" + str(row) + "_col" + str(col)
- return [
- {
- "selector": selector_id + f":hover .{name}",
- "props": [("visibility", "visible")],
- },
- {
- "selector": selector_id + f" .{name}::after",
- "props": [("content", f'"{text}"')],
- },
- ]
- def _translate(self, styler: StylerRenderer, d: dict):
- """
- Mutate the render dictionary to allow for tooltips:
- - Add ``<span>`` HTML element to each data cells ``display_value``. Ignores
- headers.
- - Add table level CSS styles to control pseudo classes.
- Parameters
- ----------
- styler_data : DataFrame
- Underlying ``Styler`` DataFrame used for reindexing.
- uuid : str
- The underlying ``Styler`` uuid for CSS id.
- d : dict
- The dictionary prior to final render
- Returns
- -------
- render_dict : Dict
- """
- self.tt_data = self.tt_data.reindex_like(styler.data)
- if self.tt_data.empty:
- return d
- name = self.class_name
- mask = (self.tt_data.isna()) | (self.tt_data.eq("")) # empty string = no ttip
- self.table_styles = [
- style
- for sublist in [
- self._pseudo_css(styler.uuid, name, i, j, str(self.tt_data.iloc[i, j]))
- for i in range(len(self.tt_data.index))
- for j in range(len(self.tt_data.columns))
- if not (
- mask.iloc[i, j]
- or i in styler.hidden_rows
- or j in styler.hidden_columns
- )
- ]
- for style in sublist
- ]
- if self.table_styles:
- # add span class to every cell only if at least 1 non-empty tooltip
- for row in d["body"]:
- for item in row:
- if item["type"] == "td":
- item["display_value"] = (
- str(item["display_value"])
- + f'<span class="{self.class_name}"></span>'
- )
- d["table_styles"].extend(self._class_styles)
- d["table_styles"].extend(self.table_styles)
- return d
- def _parse_latex_table_wrapping(table_styles: CSSStyles, caption: str | None) -> bool:
- """
- Indicate whether LaTeX {tabular} should be wrapped with a {table} environment.
- Parses the `table_styles` and detects any selectors which must be included outside
- of {tabular}, i.e. indicating that wrapping must occur, and therefore return True,
- or if a caption exists and requires similar.
- """
- IGNORED_WRAPPERS = ["toprule", "midrule", "bottomrule", "column_format"]
- # ignored selectors are included with {tabular} so do not need wrapping
- return (
- table_styles is not None
- and any(d["selector"] not in IGNORED_WRAPPERS for d in table_styles)
- ) or caption is not None
- def _parse_latex_table_styles(table_styles: CSSStyles, selector: str) -> str | None:
- """
- Return the first 'props' 'value' from ``tables_styles`` identified by ``selector``.
- Examples
- --------
- >>> table_styles = [{'selector': 'foo', 'props': [('attr','value')]},
- ... {'selector': 'bar', 'props': [('attr', 'overwritten')]},
- ... {'selector': 'bar', 'props': [('a1', 'baz'), ('a2', 'ignore')]}]
- >>> _parse_latex_table_styles(table_styles, selector='bar')
- 'baz'
- Notes
- -----
- The replacement of "§" with ":" is to avoid the CSS problem where ":" has structural
- significance and cannot be used in LaTeX labels, but is often required by them.
- """
- for style in table_styles[::-1]: # in reverse for most recently applied style
- if style["selector"] == selector:
- return str(style["props"][0][1]).replace("§", ":")
- return None
- def _parse_latex_cell_styles(
- latex_styles: CSSList, display_value: str, convert_css: bool = False
- ) -> str:
- r"""
- Mutate the ``display_value`` string including LaTeX commands from ``latex_styles``.
- This method builds a recursive latex chain of commands based on the
- CSSList input, nested around ``display_value``.
- If a CSS style is given as ('<command>', '<options>') this is translated to
- '\<command><options>{display_value}', and this value is treated as the
- display value for the next iteration.
- The most recent style forms the inner component, for example for styles:
- `[('c1', 'o1'), ('c2', 'o2')]` this returns: `\c1o1{\c2o2{display_value}}`
- Sometimes latex commands have to be wrapped with curly braces in different ways:
- We create some parsing flags to identify the different behaviours:
- - `--rwrap` : `\<command><options>{<display_value>}`
- - `--wrap` : `{\<command><options> <display_value>}`
- - `--nowrap` : `\<command><options> <display_value>`
- - `--lwrap` : `{\<command><options>} <display_value>`
- - `--dwrap` : `{\<command><options>}{<display_value>}`
- For example for styles:
- `[('c1', 'o1--wrap'), ('c2', 'o2')]` this returns: `{\c1o1 \c2o2{display_value}}
- """
- if convert_css:
- latex_styles = _parse_latex_css_conversion(latex_styles)
- for command, options in latex_styles[::-1]: # in reverse for most recent style
- formatter = {
- "--wrap": f"{{\\{command}--to_parse {display_value}}}",
- "--nowrap": f"\\{command}--to_parse {display_value}",
- "--lwrap": f"{{\\{command}--to_parse}} {display_value}",
- "--rwrap": f"\\{command}--to_parse{{{display_value}}}",
- "--dwrap": f"{{\\{command}--to_parse}}{{{display_value}}}",
- }
- display_value = f"\\{command}{options} {display_value}"
- for arg in ["--nowrap", "--wrap", "--lwrap", "--rwrap", "--dwrap"]:
- if arg in str(options):
- display_value = formatter[arg].replace(
- "--to_parse", _parse_latex_options_strip(value=options, arg=arg)
- )
- break # only ever one purposeful entry
- return display_value
- def _parse_latex_header_span(
- cell: dict[str, Any],
- multirow_align: str,
- multicol_align: str,
- wrap: bool = False,
- convert_css: bool = False,
- ) -> str:
- r"""
- Refactor the cell `display_value` if a 'colspan' or 'rowspan' attribute is present.
- 'rowspan' and 'colspan' do not occur simultaneouly. If they are detected then
- the `display_value` is altered to a LaTeX `multirow` or `multicol` command
- respectively, with the appropriate cell-span.
- ``wrap`` is used to enclose the `display_value` in braces which is needed for
- column headers using an siunitx package.
- Requires the package {multirow}, whereas multicol support is usually built in
- to the {tabular} environment.
- Examples
- --------
- >>> cell = {'cellstyle': '', 'display_value':'text', 'attributes': 'colspan="3"'}
- >>> _parse_latex_header_span(cell, 't', 'c')
- '\\multicolumn{3}{c}{text}'
- """
- display_val = _parse_latex_cell_styles(
- cell["cellstyle"], cell["display_value"], convert_css
- )
- if "attributes" in cell:
- attrs = cell["attributes"]
- if 'colspan="' in attrs:
- colspan = attrs[attrs.find('colspan="') + 9 :] # len('colspan="') = 9
- colspan = int(colspan[: colspan.find('"')])
- if "naive-l" == multicol_align:
- out = f"{{{display_val}}}" if wrap else f"{display_val}"
- blanks = " & {}" if wrap else " &"
- return out + blanks * (colspan - 1)
- elif "naive-r" == multicol_align:
- out = f"{{{display_val}}}" if wrap else f"{display_val}"
- blanks = "{} & " if wrap else "& "
- return blanks * (colspan - 1) + out
- return f"\\multicolumn{{{colspan}}}{{{multicol_align}}}{{{display_val}}}"
- elif 'rowspan="' in attrs:
- if multirow_align == "naive":
- return display_val
- rowspan = attrs[attrs.find('rowspan="') + 9 :]
- rowspan = int(rowspan[: rowspan.find('"')])
- return f"\\multirow[{multirow_align}]{{{rowspan}}}{{*}}{{{display_val}}}"
- if wrap:
- return f"{{{display_val}}}"
- else:
- return display_val
- def _parse_latex_options_strip(value: str | float, arg: str) -> str:
- """
- Strip a css_value which may have latex wrapping arguments, css comment identifiers,
- and whitespaces, to a valid string for latex options parsing.
- For example: 'red /* --wrap */ ' --> 'red'
- """
- return str(value).replace(arg, "").replace("/*", "").replace("*/", "").strip()
- def _parse_latex_css_conversion(styles: CSSList) -> CSSList:
- """
- Convert CSS (attribute,value) pairs to equivalent LaTeX (command,options) pairs.
- Ignore conversion if tagged with `--latex` option, skipped if no conversion found.
- """
- def font_weight(value, arg):
- if value in ("bold", "bolder"):
- return "bfseries", f"{arg}"
- return None
- def font_style(value, arg):
- if value == "italic":
- return "itshape", f"{arg}"
- if value == "oblique":
- return "slshape", f"{arg}"
- return None
- def color(value, user_arg, command, comm_arg):
- """
- CSS colors have 5 formats to process:
- - 6 digit hex code: "#ff23ee" --> [HTML]{FF23EE}
- - 3 digit hex code: "#f0e" --> [HTML]{FF00EE}
- - rgba: rgba(128, 255, 0, 0.5) --> [rgb]{0.502, 1.000, 0.000}
- - rgb: rgb(128, 255, 0,) --> [rbg]{0.502, 1.000, 0.000}
- - string: red --> {red}
- Additionally rgb or rgba can be expressed in % which is also parsed.
- """
- arg = user_arg if user_arg != "" else comm_arg
- if value[0] == "#" and len(value) == 7: # color is hex code
- return command, f"[HTML]{{{value[1:].upper()}}}{arg}"
- if value[0] == "#" and len(value) == 4: # color is short hex code
- val = f"{value[1].upper()*2}{value[2].upper()*2}{value[3].upper()*2}"
- return command, f"[HTML]{{{val}}}{arg}"
- elif value[:3] == "rgb": # color is rgb or rgba
- r = re.findall("(?<=\\()[0-9\\s%]+(?=,)", value)[0].strip()
- r = float(r[:-1]) / 100 if "%" in r else int(r) / 255
- g = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[0].strip()
- g = float(g[:-1]) / 100 if "%" in g else int(g) / 255
- if value[3] == "a": # color is rgba
- b = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[1].strip()
- else: # color is rgb
- b = re.findall("(?<=,)[0-9\\s%]+(?=\\))", value)[0].strip()
- b = float(b[:-1]) / 100 if "%" in b else int(b) / 255
- return command, f"[rgb]{{{r:.3f}, {g:.3f}, {b:.3f}}}{arg}"
- else:
- return command, f"{{{value}}}{arg}" # color is likely string-named
- CONVERTED_ATTRIBUTES: dict[str, Callable] = {
- "font-weight": font_weight,
- "background-color": partial(color, command="cellcolor", comm_arg="--lwrap"),
- "color": partial(color, command="color", comm_arg=""),
- "font-style": font_style,
- }
- latex_styles: CSSList = []
- for attribute, value in styles:
- if isinstance(value, str) and "--latex" in value:
- # return the style without conversion but drop '--latex'
- latex_styles.append((attribute, value.replace("--latex", "")))
- if attribute in CONVERTED_ATTRIBUTES:
- arg = ""
- for x in ["--wrap", "--nowrap", "--lwrap", "--dwrap", "--rwrap"]:
- if x in str(value):
- arg, value = x, _parse_latex_options_strip(value, x)
- break
- latex_style = CONVERTED_ATTRIBUTES[attribute](value, arg)
- if latex_style is not None:
- latex_styles.extend([latex_style])
- return latex_styles
- def _escape_latex(s):
- r"""
- Replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, ``{``, ``}``,
- ``~``, ``^``, and ``\`` in the string with LaTeX-safe sequences.
- Use this if you need to display text that might contain such characters in LaTeX.
- Parameters
- ----------
- s : str
- Input to be escaped
- Return
- ------
- str :
- Escaped string
- """
- return (
- s.replace("\\", "ab2§=§8yz") # rare string for final conversion: avoid \\ clash
- .replace("ab2§=§8yz ", "ab2§=§8yz\\space ") # since \backslash gobbles spaces
- .replace("&", "\\&")
- .replace("%", "\\%")
- .replace("$", "\\$")
- .replace("#", "\\#")
- .replace("_", "\\_")
- .replace("{", "\\{")
- .replace("}", "\\}")
- .replace("~ ", "~\\space ") # since \textasciitilde gobbles spaces
- .replace("~", "\\textasciitilde ")
- .replace("^ ", "^\\space ") # since \textasciicircum gobbles spaces
- .replace("^", "\\textasciicircum ")
- .replace("ab2§=§8yz", "\\textbackslash ")
- )
|