123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- """
- Module for formatting output data into CSV files.
- """
- from __future__ import annotations
- import csv as csvlib
- import os
- from typing import (
- TYPE_CHECKING,
- Any,
- Hashable,
- Iterator,
- Sequence,
- cast,
- )
- import numpy as np
- from pandas._libs import writers as libwriters
- from pandas._typing import (
- CompressionOptions,
- FilePath,
- FloatFormatType,
- IndexLabel,
- StorageOptions,
- WriteBuffer,
- )
- from pandas.util._decorators import cache_readonly
- from pandas.core.dtypes.generic import (
- ABCDatetimeIndex,
- ABCIndex,
- ABCMultiIndex,
- ABCPeriodIndex,
- )
- from pandas.core.dtypes.missing import notna
- from pandas.core.indexes.api import Index
- from pandas.io.common import get_handle
- if TYPE_CHECKING:
- from pandas.io.formats.format import DataFrameFormatter
- class CSVFormatter:
- cols: np.ndarray
- def __init__(
- self,
- formatter: DataFrameFormatter,
- path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
- sep: str = ",",
- cols: Sequence[Hashable] | None = None,
- index_label: IndexLabel | None = None,
- mode: str = "w",
- encoding: str | None = None,
- errors: str = "strict",
- compression: CompressionOptions = "infer",
- quoting: int | None = None,
- lineterminator: str | None = "\n",
- chunksize: int | None = None,
- quotechar: str | None = '"',
- date_format: str | None = None,
- doublequote: bool = True,
- escapechar: str | None = None,
- storage_options: StorageOptions = None,
- ) -> None:
- self.fmt = formatter
- self.obj = self.fmt.frame
- self.filepath_or_buffer = path_or_buf
- self.encoding = encoding
- self.compression: CompressionOptions = compression
- self.mode = mode
- self.storage_options = storage_options
- self.sep = sep
- self.index_label = self._initialize_index_label(index_label)
- self.errors = errors
- self.quoting = quoting or csvlib.QUOTE_MINIMAL
- self.quotechar = self._initialize_quotechar(quotechar)
- self.doublequote = doublequote
- self.escapechar = escapechar
- self.lineterminator = lineterminator or os.linesep
- self.date_format = date_format
- self.cols = self._initialize_columns(cols)
- self.chunksize = self._initialize_chunksize(chunksize)
- @property
- def na_rep(self) -> str:
- return self.fmt.na_rep
- @property
- def float_format(self) -> FloatFormatType | None:
- return self.fmt.float_format
- @property
- def decimal(self) -> str:
- return self.fmt.decimal
- @property
- def header(self) -> bool | Sequence[str]:
- return self.fmt.header
- @property
- def index(self) -> bool:
- return self.fmt.index
- def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
- if index_label is not False:
- if index_label is None:
- return self._get_index_label_from_obj()
- elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
- # given a string for a DF with Index
- return [index_label]
- return index_label
- def _get_index_label_from_obj(self) -> Sequence[Hashable]:
- if isinstance(self.obj.index, ABCMultiIndex):
- return self._get_index_label_multiindex()
- else:
- return self._get_index_label_flat()
- def _get_index_label_multiindex(self) -> Sequence[Hashable]:
- return [name or "" for name in self.obj.index.names]
- def _get_index_label_flat(self) -> Sequence[Hashable]:
- index_label = self.obj.index.name
- return [""] if index_label is None else [index_label]
- def _initialize_quotechar(self, quotechar: str | None) -> str | None:
- if self.quoting != csvlib.QUOTE_NONE:
- # prevents crash in _csv
- return quotechar
- return None
- @property
- def has_mi_columns(self) -> bool:
- return bool(isinstance(self.obj.columns, ABCMultiIndex))
- def _initialize_columns(self, cols: Sequence[Hashable] | None) -> np.ndarray:
- # validate mi options
- if self.has_mi_columns:
- if cols is not None:
- msg = "cannot specify cols with a MultiIndex on the columns"
- raise TypeError(msg)
- if cols is not None:
- if isinstance(cols, ABCIndex):
- cols = cols._format_native_types(**self._number_format)
- else:
- cols = list(cols)
- self.obj = self.obj.loc[:, cols]
- # update columns to include possible multiplicity of dupes
- # and make sure cols is just a list of labels
- new_cols = self.obj.columns
- return new_cols._format_native_types(**self._number_format)
- def _initialize_chunksize(self, chunksize: int | None) -> int:
- if chunksize is None:
- return (100000 // (len(self.cols) or 1)) or 1
- return int(chunksize)
- @property
- def _number_format(self) -> dict[str, Any]:
- """Dictionary used for storing number formatting settings."""
- return {
- "na_rep": self.na_rep,
- "float_format": self.float_format,
- "date_format": self.date_format,
- "quoting": self.quoting,
- "decimal": self.decimal,
- }
- @cache_readonly
- def data_index(self) -> Index:
- data_index = self.obj.index
- if (
- isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
- and self.date_format is not None
- ):
- data_index = Index(
- [x.strftime(self.date_format) if notna(x) else "" for x in data_index]
- )
- elif isinstance(data_index, ABCMultiIndex):
- data_index = data_index.remove_unused_levels()
- return data_index
- @property
- def nlevels(self) -> int:
- if self.index:
- return getattr(self.data_index, "nlevels", 1)
- else:
- return 0
- @property
- def _has_aliases(self) -> bool:
- return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
- @property
- def _need_to_save_header(self) -> bool:
- return bool(self._has_aliases or self.header)
- @property
- def write_cols(self) -> Sequence[Hashable]:
- if self._has_aliases:
- assert not isinstance(self.header, bool)
- if len(self.header) != len(self.cols):
- raise ValueError(
- f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
- )
- return self.header
- else:
- # self.cols is an ndarray derived from Index._format_native_types,
- # so its entries are strings, i.e. hashable
- return cast(Sequence[Hashable], self.cols)
- @property
- def encoded_labels(self) -> list[Hashable]:
- encoded_labels: list[Hashable] = []
- if self.index and self.index_label:
- assert isinstance(self.index_label, Sequence)
- encoded_labels = list(self.index_label)
- if not self.has_mi_columns or self._has_aliases:
- encoded_labels += list(self.write_cols)
- return encoded_labels
- def save(self) -> None:
- """
- Create the writer & save.
- """
- # apply compression and byte/text conversion
- with get_handle(
- self.filepath_or_buffer,
- self.mode,
- encoding=self.encoding,
- errors=self.errors,
- compression=self.compression,
- storage_options=self.storage_options,
- ) as handles:
- # Note: self.encoding is irrelevant here
- self.writer = csvlib.writer(
- handles.handle,
- lineterminator=self.lineterminator,
- delimiter=self.sep,
- quoting=self.quoting,
- doublequote=self.doublequote,
- escapechar=self.escapechar,
- quotechar=self.quotechar,
- )
- self._save()
- def _save(self) -> None:
- if self._need_to_save_header:
- self._save_header()
- self._save_body()
- def _save_header(self) -> None:
- if not self.has_mi_columns or self._has_aliases:
- self.writer.writerow(self.encoded_labels)
- else:
- for row in self._generate_multiindex_header_rows():
- self.writer.writerow(row)
- def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
- columns = self.obj.columns
- for i in range(columns.nlevels):
- # we need at least 1 index column to write our col names
- col_line = []
- if self.index:
- # name is the first column
- col_line.append(columns.names[i])
- if isinstance(self.index_label, list) and len(self.index_label) > 1:
- col_line.extend([""] * (len(self.index_label) - 1))
- col_line.extend(columns._get_level_values(i))
- yield col_line
- # Write out the index line if it's not empty.
- # Otherwise, we will print out an extraneous
- # blank line between the mi and the data rows.
- if self.encoded_labels and set(self.encoded_labels) != {""}:
- yield self.encoded_labels + [""] * len(columns)
- def _save_body(self) -> None:
- nrows = len(self.data_index)
- chunks = (nrows // self.chunksize) + 1
- for i in range(chunks):
- start_i = i * self.chunksize
- end_i = min(start_i + self.chunksize, nrows)
- if start_i >= end_i:
- break
- self._save_chunk(start_i, end_i)
- def _save_chunk(self, start_i: int, end_i: int) -> None:
- # create the data for a chunk
- slicer = slice(start_i, end_i)
- df = self.obj.iloc[slicer]
- res = df._mgr.to_native_types(**self._number_format)
- data = [res.iget_values(i) for i in range(len(res.items))]
- ix = self.data_index[slicer]._format_native_types(**self._number_format)
- libwriters.write_csv_rows(
- data,
- ix,
- self.nlevels,
- self.cols,
- self.writer,
- )
|