123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- from __future__ import annotations
- import numpy as np
- from pandas.core.dtypes.base import register_extension_dtype
- from pandas.core.dtypes.common import is_float_dtype
- from pandas.core.arrays.numeric import (
- NumericArray,
- NumericDtype,
- )
- class FloatingDtype(NumericDtype):
- """
- An ExtensionDtype to hold a single size of floating dtype.
- These specific implementations are subclasses of the non-public
- FloatingDtype. For example we have Float32Dtype to represent float32.
- The attributes name & type are set when these subclasses are created.
- """
- _default_np_dtype = np.dtype(np.float64)
- _checker = is_float_dtype
- @classmethod
- def construct_array_type(cls) -> type[FloatingArray]:
- """
- Return the array type associated with this dtype.
- Returns
- -------
- type
- """
- return FloatingArray
- @classmethod
- def _str_to_dtype_mapping(cls):
- return FLOAT_STR_TO_DTYPE
- @classmethod
- def _safe_cast(cls, values: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray:
- """
- Safely cast the values to the given dtype.
- "safe" in this context means the casting is lossless.
- """
- # This is really only here for compatibility with IntegerDtype
- # Here for compat with IntegerDtype
- return values.astype(dtype, copy=copy)
- class FloatingArray(NumericArray):
- """
- Array of floating (optional missing) values.
- .. versionadded:: 1.2.0
- .. warning::
- FloatingArray is currently experimental, and its API or internal
- implementation may change without warning. Especially the behaviour
- regarding NaN (distinct from NA missing values) is subject to change.
- We represent a FloatingArray with 2 numpy arrays:
- - data: contains a numpy float array of the appropriate dtype
- - mask: a boolean array holding a mask on the data, True is missing
- To construct an FloatingArray from generic array-like input, use
- :func:`pandas.array` with one of the float dtypes (see examples).
- See :ref:`integer_na` for more.
- Parameters
- ----------
- values : numpy.ndarray
- A 1-d float-dtype array.
- mask : numpy.ndarray
- A 1-d boolean-dtype array indicating missing values.
- copy : bool, default False
- Whether to copy the `values` and `mask`.
- Attributes
- ----------
- None
- Methods
- -------
- None
- Returns
- -------
- FloatingArray
- Examples
- --------
- Create an FloatingArray with :func:`pandas.array`:
- >>> pd.array([0.1, None, 0.3], dtype=pd.Float32Dtype())
- <FloatingArray>
- [0.1, <NA>, 0.3]
- Length: 3, dtype: Float32
- String aliases for the dtypes are also available. They are capitalized.
- >>> pd.array([0.1, None, 0.3], dtype="Float32")
- <FloatingArray>
- [0.1, <NA>, 0.3]
- Length: 3, dtype: Float32
- """
- _dtype_cls = FloatingDtype
- # The value used to fill '_data' to avoid upcasting
- _internal_fill_value = np.nan
- # Fill values used for any/all
- # Incompatible types in assignment (expression has type "float", base class
- # "BaseMaskedArray" defined the type as "<typing special form>")
- _truthy_value = 1.0 # type: ignore[assignment]
- _falsey_value = 0.0 # type: ignore[assignment]
- _dtype_docstring = """
- An ExtensionDtype for {dtype} data.
- This dtype uses ``pd.NA`` as missing value indicator.
- Attributes
- ----------
- None
- Methods
- -------
- None
- """
- # create the Dtype
- @register_extension_dtype
- class Float32Dtype(FloatingDtype):
- type = np.float32
- name = "Float32"
- __doc__ = _dtype_docstring.format(dtype="float32")
- @register_extension_dtype
- class Float64Dtype(FloatingDtype):
- type = np.float64
- name = "Float64"
- __doc__ = _dtype_docstring.format(dtype="float64")
- FLOAT_STR_TO_DTYPE = {
- "float32": Float32Dtype(),
- "float64": Float64Dtype(),
- }
|