123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- from typing import (
- Any,
- Hashable,
- Literal,
- )
- import numpy as np
- from pandas._typing import npt
- def unique_label_indices(
- labels: np.ndarray, # const int64_t[:]
- ) -> np.ndarray: ...
- class Factorizer:
- count: int
- uniques: Any
- def __init__(self, size_hint: int) -> None: ...
- def get_count(self) -> int: ...
- def factorize(
- self,
- values: np.ndarray,
- sort: bool = ...,
- na_sentinel=...,
- na_value=...,
- mask=...,
- ) -> npt.NDArray[np.intp]: ...
- class ObjectFactorizer(Factorizer):
- table: PyObjectHashTable
- uniques: ObjectVector
- class Int64Factorizer(Factorizer):
- table: Int64HashTable
- uniques: Int64Vector
- class UInt64Factorizer(Factorizer):
- table: UInt64HashTable
- uniques: UInt64Vector
- class Int32Factorizer(Factorizer):
- table: Int32HashTable
- uniques: Int32Vector
- class UInt32Factorizer(Factorizer):
- table: UInt32HashTable
- uniques: UInt32Vector
- class Int16Factorizer(Factorizer):
- table: Int16HashTable
- uniques: Int16Vector
- class UInt16Factorizer(Factorizer):
- table: UInt16HashTable
- uniques: UInt16Vector
- class Int8Factorizer(Factorizer):
- table: Int8HashTable
- uniques: Int8Vector
- class UInt8Factorizer(Factorizer):
- table: UInt8HashTable
- uniques: UInt8Vector
- class Float64Factorizer(Factorizer):
- table: Float64HashTable
- uniques: Float64Vector
- class Float32Factorizer(Factorizer):
- table: Float32HashTable
- uniques: Float32Vector
- class Complex64Factorizer(Factorizer):
- table: Complex64HashTable
- uniques: Complex64Vector
- class Complex128Factorizer(Factorizer):
- table: Complex128HashTable
- uniques: Complex128Vector
- class Int64Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.int64]: ...
- class Int32Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.int32]: ...
- class Int16Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.int16]: ...
- class Int8Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.int8]: ...
- class UInt64Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.uint64]: ...
- class UInt32Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.uint32]: ...
- class UInt16Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.uint16]: ...
- class UInt8Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.uint8]: ...
- class Float64Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.float64]: ...
- class Float32Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.float32]: ...
- class Complex128Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.complex128]: ...
- class Complex64Vector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.complex64]: ...
- class StringVector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.object_]: ...
- class ObjectVector:
- def __init__(self, *args) -> None: ...
- def __len__(self) -> int: ...
- def to_array(self) -> npt.NDArray[np.object_]: ...
- class HashTable:
- # NB: The base HashTable class does _not_ actually have these methods;
- # we are putting them here for the sake of mypy to avoid
- # reproducing them in each subclass below.
- def __init__(self, size_hint: int = ..., uses_mask: bool = ...) -> None: ...
- def __len__(self) -> int: ...
- def __contains__(self, key: Hashable) -> bool: ...
- def sizeof(self, deep: bool = ...) -> int: ...
- def get_state(self) -> dict[str, int]: ...
- # TODO: `item` type is subclass-specific
- def get_item(self, item): ... # TODO: return type?
- def set_item(self, item, val) -> None: ...
- def get_na(self): ... # TODO: return type?
- def set_na(self, val) -> None: ...
- def map_locations(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- mask: npt.NDArray[np.bool_] | None = ...,
- ) -> None: ...
- def lookup(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- mask: npt.NDArray[np.bool_] | None = ...,
- ) -> npt.NDArray[np.intp]: ...
- def get_labels(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- uniques, # SubclassTypeVector
- count_prior: int = ...,
- na_sentinel: int = ...,
- na_value: object = ...,
- mask=...,
- ) -> npt.NDArray[np.intp]: ...
- def unique(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- return_inverse: bool = ...,
- ) -> (
- tuple[
- np.ndarray, # np.ndarray[subclass-specific]
- npt.NDArray[np.intp],
- ]
- | np.ndarray
- ): ... # np.ndarray[subclass-specific]
- def factorize(
- self,
- values: np.ndarray, # np.ndarray[subclass-specific]
- na_sentinel: int = ...,
- na_value: object = ...,
- mask=...,
- ) -> tuple[np.ndarray, npt.NDArray[np.intp]]: ... # np.ndarray[subclass-specific]
- class Complex128HashTable(HashTable): ...
- class Complex64HashTable(HashTable): ...
- class Float64HashTable(HashTable): ...
- class Float32HashTable(HashTable): ...
- class Int64HashTable(HashTable):
- # Only Int64HashTable has get_labels_groupby, map_keys_to_values
- def get_labels_groupby(
- self,
- values: npt.NDArray[np.int64], # const int64_t[:]
- ) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.int64]]: ...
- def map_keys_to_values(
- self,
- keys: npt.NDArray[np.int64],
- values: npt.NDArray[np.int64], # const int64_t[:]
- ) -> None: ...
- class Int32HashTable(HashTable): ...
- class Int16HashTable(HashTable): ...
- class Int8HashTable(HashTable): ...
- class UInt64HashTable(HashTable): ...
- class UInt32HashTable(HashTable): ...
- class UInt16HashTable(HashTable): ...
- class UInt8HashTable(HashTable): ...
- class StringHashTable(HashTable): ...
- class PyObjectHashTable(HashTable): ...
- class IntpHashTable(HashTable): ...
- def duplicated(
- values: np.ndarray,
- keep: Literal["last", "first", False] = ...,
- mask: npt.NDArray[np.bool_] | None = ...,
- ) -> npt.NDArray[np.bool_]: ...
- def mode(
- values: np.ndarray, dropna: bool, mask: npt.NDArray[np.bool_] | None = ...
- ) -> np.ndarray: ...
- def value_count(
- values: np.ndarray,
- dropna: bool,
- mask: npt.NDArray[np.bool_] | None = ...,
- ) -> tuple[np.ndarray, npt.NDArray[np.int64]]: ... # np.ndarray[same-as-values]
- # arr and values should have same dtype
- def ismember(
- arr: np.ndarray,
- values: np.ndarray,
- ) -> npt.NDArray[np.bool_]: ...
- def object_hash(obj) -> int: ...
- def objects_are_equal(a, b) -> bool: ...
|