123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191 |
- from typing import Literal
- import numpy as np
- from pandas._typing import npt
- def group_median_float64(
- out: np.ndarray, # ndarray[float64_t, ndim=2]
- counts: npt.NDArray[np.int64],
- values: np.ndarray, # ndarray[float64_t, ndim=2]
- labels: npt.NDArray[np.int64],
- min_count: int = ..., # Py_ssize_t
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_cumprod(
- out: np.ndarray, # float64_t[:, ::1]
- values: np.ndarray, # const float64_t[:, :]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- is_datetimelike: bool,
- skipna: bool = ...,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_cumsum(
- out: np.ndarray, # int64float_t[:, ::1]
- values: np.ndarray, # ndarray[int64float_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- is_datetimelike: bool,
- skipna: bool = ...,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_shift_indexer(
- out: np.ndarray, # int64_t[::1]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- periods: int,
- ) -> None: ...
- def group_fillna_indexer(
- out: np.ndarray, # ndarray[intp_t]
- labels: np.ndarray, # ndarray[int64_t]
- sorted_labels: npt.NDArray[np.intp],
- mask: npt.NDArray[np.uint8],
- direction: Literal["ffill", "bfill"],
- limit: int, # int64_t
- dropna: bool,
- ) -> None: ...
- def group_any_all(
- out: np.ndarray, # uint8_t[::1]
- values: np.ndarray, # const uint8_t[::1]
- labels: np.ndarray, # const int64_t[:]
- mask: np.ndarray, # const uint8_t[::1]
- val_test: Literal["any", "all"],
- skipna: bool,
- nullable: bool,
- ) -> None: ...
- def group_sum(
- out: np.ndarray, # complexfloatingintuint_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2]
- labels: np.ndarray, # const intp_t[:]
- mask: np.ndarray | None,
- result_mask: np.ndarray | None = ...,
- min_count: int = ...,
- is_datetimelike: bool = ...,
- ) -> None: ...
- def group_prod(
- out: np.ndarray, # int64float_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[int64float_t, ndim=2]
- labels: np.ndarray, # const intp_t[:]
- mask: np.ndarray | None,
- result_mask: np.ndarray | None = ...,
- min_count: int = ...,
- ) -> None: ...
- def group_var(
- out: np.ndarray, # floating[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[floating, ndim=2]
- labels: np.ndarray, # const intp_t[:]
- min_count: int = ..., # Py_ssize_t
- ddof: int = ..., # int64_t
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- is_datetimelike: bool = ...,
- ) -> None: ...
- def group_mean(
- out: np.ndarray, # floating[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[floating, ndim=2]
- labels: np.ndarray, # const intp_t[:]
- min_count: int = ..., # Py_ssize_t
- is_datetimelike: bool = ..., # bint
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_ohlc(
- out: np.ndarray, # floatingintuint_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[floatingintuint_t, ndim=2]
- labels: np.ndarray, # const intp_t[:]
- min_count: int = ...,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_quantile(
- out: npt.NDArray[np.float64],
- values: np.ndarray, # ndarray[numeric, ndim=1]
- labels: npt.NDArray[np.intp],
- mask: npt.NDArray[np.uint8],
- sort_indexer: npt.NDArray[np.intp], # const
- qs: npt.NDArray[np.float64], # const
- interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_last(
- out: np.ndarray, # rank_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[rank_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- mask: npt.NDArray[np.bool_] | None,
- result_mask: npt.NDArray[np.bool_] | None = ...,
- min_count: int = ..., # Py_ssize_t
- is_datetimelike: bool = ...,
- ) -> None: ...
- def group_nth(
- out: np.ndarray, # rank_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[rank_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- mask: npt.NDArray[np.bool_] | None,
- result_mask: npt.NDArray[np.bool_] | None = ...,
- min_count: int = ..., # int64_t
- rank: int = ..., # int64_t
- is_datetimelike: bool = ...,
- ) -> None: ...
- def group_rank(
- out: np.ndarray, # float64_t[:, ::1]
- values: np.ndarray, # ndarray[rank_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- is_datetimelike: bool,
- ties_method: Literal["average", "min", "max", "first", "dense"] = ...,
- ascending: bool = ...,
- pct: bool = ...,
- na_option: Literal["keep", "top", "bottom"] = ...,
- mask: npt.NDArray[np.bool_] | None = ...,
- ) -> None: ...
- def group_max(
- out: np.ndarray, # groupby_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[groupby_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- min_count: int = ...,
- is_datetimelike: bool = ...,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_min(
- out: np.ndarray, # groupby_t[:, ::1]
- counts: np.ndarray, # int64_t[::1]
- values: np.ndarray, # ndarray[groupby_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- min_count: int = ...,
- is_datetimelike: bool = ...,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- ) -> None: ...
- def group_cummin(
- out: np.ndarray, # groupby_t[:, ::1]
- values: np.ndarray, # ndarray[groupby_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- is_datetimelike: bool,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- skipna: bool = ...,
- ) -> None: ...
- def group_cummax(
- out: np.ndarray, # groupby_t[:, ::1]
- values: np.ndarray, # ndarray[groupby_t, ndim=2]
- labels: np.ndarray, # const int64_t[:]
- ngroups: int,
- is_datetimelike: bool,
- mask: np.ndarray | None = ...,
- result_mask: np.ndarray | None = ...,
- skipna: bool = ...,
- ) -> None: ...
|