12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117 |
- import hashlib
- import pickle
- import sys
- import warnings
- import numpy as np
- import pytest
- from numpy.testing import (
- assert_, assert_raises, assert_equal, assert_warns,
- assert_no_warnings, assert_array_equal, assert_array_almost_equal,
- suppress_warnings, IS_WASM
- )
- from numpy.random import MT19937, PCG64
- from numpy import random
- INT_FUNCS = {'binomial': (100.0, 0.6),
- 'geometric': (.5,),
- 'hypergeometric': (20, 20, 10),
- 'logseries': (.5,),
- 'multinomial': (20, np.ones(6) / 6.0),
- 'negative_binomial': (100, .5),
- 'poisson': (10.0,),
- 'zipf': (2,),
- }
- if np.iinfo(int).max < 2**32:
- # Windows and some 32-bit platforms, e.g., ARM
- INT_FUNC_HASHES = {'binomial': '2fbead005fc63942decb5326d36a1f32fe2c9d32c904ee61e46866b88447c263',
- 'logseries': '23ead5dcde35d4cfd4ef2c105e4c3d43304b45dc1b1444b7823b9ee4fa144ebb',
- 'geometric': '0d764db64f5c3bad48c8c33551c13b4d07a1e7b470f77629bef6c985cac76fcf',
- 'hypergeometric': '7b59bf2f1691626c5815cdcd9a49e1dd68697251d4521575219e4d2a1b8b2c67',
- 'multinomial': 'd754fa5b92943a38ec07630de92362dd2e02c43577fc147417dc5b9db94ccdd3',
- 'negative_binomial': '8eb216f7cb2a63cf55605422845caaff002fddc64a7dc8b2d45acd477a49e824',
- 'poisson': '70c891d76104013ebd6f6bcf30d403a9074b886ff62e4e6b8eb605bf1a4673b7',
- 'zipf': '01f074f97517cd5d21747148ac6ca4074dde7fcb7acbaec0a936606fecacd93f',
- }
- else:
- INT_FUNC_HASHES = {'binomial': '8626dd9d052cb608e93d8868de0a7b347258b199493871a1dc56e2a26cacb112',
- 'geometric': '8edd53d272e49c4fc8fbbe6c7d08d563d62e482921f3131d0a0e068af30f0db9',
- 'hypergeometric': '83496cc4281c77b786c9b7ad88b74d42e01603a55c60577ebab81c3ba8d45657',
- 'logseries': '65878a38747c176bc00e930ebafebb69d4e1e16cd3a704e264ea8f5e24f548db',
- 'multinomial': '7a984ae6dca26fd25374479e118b22f55db0aedccd5a0f2584ceada33db98605',
- 'negative_binomial': 'd636d968e6a24ae92ab52fe11c46ac45b0897e98714426764e820a7d77602a61',
- 'poisson': '956552176f77e7c9cb20d0118fc9cf690be488d790ed4b4c4747b965e61b0bb4',
- 'zipf': 'f84ba7feffda41e606e20b28dfc0f1ea9964a74574513d4a4cbc98433a8bfa45',
- }
- @pytest.fixture(scope='module', params=INT_FUNCS)
- def int_func(request):
- return (request.param, INT_FUNCS[request.param],
- INT_FUNC_HASHES[request.param])
- @pytest.fixture
- def restore_singleton_bitgen():
- """Ensures that the singleton bitgen is restored after a test"""
- orig_bitgen = np.random.get_bit_generator()
- yield
- np.random.set_bit_generator(orig_bitgen)
- def assert_mt19937_state_equal(a, b):
- assert_equal(a['bit_generator'], b['bit_generator'])
- assert_array_equal(a['state']['key'], b['state']['key'])
- assert_array_equal(a['state']['pos'], b['state']['pos'])
- assert_equal(a['has_gauss'], b['has_gauss'])
- assert_equal(a['gauss'], b['gauss'])
- class TestSeed:
- def test_scalar(self):
- s = random.RandomState(0)
- assert_equal(s.randint(1000), 684)
- s = random.RandomState(4294967295)
- assert_equal(s.randint(1000), 419)
- def test_array(self):
- s = random.RandomState(range(10))
- assert_equal(s.randint(1000), 468)
- s = random.RandomState(np.arange(10))
- assert_equal(s.randint(1000), 468)
- s = random.RandomState([0])
- assert_equal(s.randint(1000), 973)
- s = random.RandomState([4294967295])
- assert_equal(s.randint(1000), 265)
- def test_invalid_scalar(self):
- # seed must be an unsigned 32 bit integer
- assert_raises(TypeError, random.RandomState, -0.5)
- assert_raises(ValueError, random.RandomState, -1)
- def test_invalid_array(self):
- # seed must be an unsigned 32 bit integer
- assert_raises(TypeError, random.RandomState, [-0.5])
- assert_raises(ValueError, random.RandomState, [-1])
- assert_raises(ValueError, random.RandomState, [4294967296])
- assert_raises(ValueError, random.RandomState, [1, 2, 4294967296])
- assert_raises(ValueError, random.RandomState, [1, -2, 4294967296])
- def test_invalid_array_shape(self):
- # gh-9832
- assert_raises(ValueError, random.RandomState, np.array([],
- dtype=np.int64))
- assert_raises(ValueError, random.RandomState, [[1, 2, 3]])
- assert_raises(ValueError, random.RandomState, [[1, 2, 3],
- [4, 5, 6]])
- def test_cannot_seed(self):
- rs = random.RandomState(PCG64(0))
- with assert_raises(TypeError):
- rs.seed(1234)
- def test_invalid_initialization(self):
- assert_raises(ValueError, random.RandomState, MT19937)
- class TestBinomial:
- def test_n_zero(self):
- # Tests the corner case of n == 0 for the binomial distribution.
- # binomial(0, p) should be zero for any p in [0, 1].
- # This test addresses issue #3480.
- zeros = np.zeros(2, dtype='int')
- for p in [0, .5, 1]:
- assert_(random.binomial(0, p) == 0)
- assert_array_equal(random.binomial(zeros, p), zeros)
- def test_p_is_nan(self):
- # Issue #4571.
- assert_raises(ValueError, random.binomial, 1, np.nan)
- class TestMultinomial:
- def test_basic(self):
- random.multinomial(100, [0.2, 0.8])
- def test_zero_probability(self):
- random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
- def test_int_negative_interval(self):
- assert_(-5 <= random.randint(-5, -1) < -1)
- x = random.randint(-5, -1, 5)
- assert_(np.all(-5 <= x))
- assert_(np.all(x < -1))
- def test_size(self):
- # gh-3173
- p = [0.5, 0.5]
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
- assert_equal(random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
- assert_equal(random.multinomial(1, p, np.array((2, 2))).shape,
- (2, 2, 2))
- assert_raises(TypeError, random.multinomial, 1, p,
- float(1))
- def test_invalid_prob(self):
- assert_raises(ValueError, random.multinomial, 100, [1.1, 0.2])
- assert_raises(ValueError, random.multinomial, 100, [-.1, 0.9])
- def test_invalid_n(self):
- assert_raises(ValueError, random.multinomial, -1, [0.8, 0.2])
- def test_p_non_contiguous(self):
- p = np.arange(15.)
- p /= np.sum(p[1::3])
- pvals = p[1::3]
- random.seed(1432985819)
- non_contig = random.multinomial(100, pvals=pvals)
- random.seed(1432985819)
- contig = random.multinomial(100, pvals=np.ascontiguousarray(pvals))
- assert_array_equal(non_contig, contig)
- def test_multinomial_pvals_float32(self):
- x = np.array([9.9e-01, 9.9e-01, 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09,
- 1.0e-09, 1.0e-09, 1.0e-09, 1.0e-09], dtype=np.float32)
- pvals = x / x.sum()
- match = r"[\w\s]*pvals array is cast to 64-bit floating"
- with pytest.raises(ValueError, match=match):
- random.multinomial(1, pvals)
- class TestSetState:
- def setup_method(self):
- self.seed = 1234567890
- self.random_state = random.RandomState(self.seed)
- self.state = self.random_state.get_state()
- def test_basic(self):
- old = self.random_state.tomaxint(16)
- self.random_state.set_state(self.state)
- new = self.random_state.tomaxint(16)
- assert_(np.all(old == new))
- def test_gaussian_reset(self):
- # Make sure the cached every-other-Gaussian is reset.
- old = self.random_state.standard_normal(size=3)
- self.random_state.set_state(self.state)
- new = self.random_state.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_gaussian_reset_in_media_res(self):
- # When the state is saved with a cached Gaussian, make sure the
- # cached Gaussian is restored.
- self.random_state.standard_normal()
- state = self.random_state.get_state()
- old = self.random_state.standard_normal(size=3)
- self.random_state.set_state(state)
- new = self.random_state.standard_normal(size=3)
- assert_(np.all(old == new))
- def test_backwards_compatibility(self):
- # Make sure we can accept old state tuples that do not have the
- # cached Gaussian value.
- old_state = self.state[:-2]
- x1 = self.random_state.standard_normal(size=16)
- self.random_state.set_state(old_state)
- x2 = self.random_state.standard_normal(size=16)
- self.random_state.set_state(self.state)
- x3 = self.random_state.standard_normal(size=16)
- assert_(np.all(x1 == x2))
- assert_(np.all(x1 == x3))
- def test_negative_binomial(self):
- # Ensure that the negative binomial results take floating point
- # arguments without truncation.
- self.random_state.negative_binomial(0.5, 0.5)
- def test_get_state_warning(self):
- rs = random.RandomState(PCG64())
- with suppress_warnings() as sup:
- w = sup.record(RuntimeWarning)
- state = rs.get_state()
- assert_(len(w) == 1)
- assert isinstance(state, dict)
- assert state['bit_generator'] == 'PCG64'
- def test_invalid_legacy_state_setting(self):
- state = self.random_state.get_state()
- new_state = ('Unknown', ) + state[1:]
- assert_raises(ValueError, self.random_state.set_state, new_state)
- assert_raises(TypeError, self.random_state.set_state,
- np.array(new_state, dtype=object))
- state = self.random_state.get_state(legacy=False)
- del state['bit_generator']
- assert_raises(ValueError, self.random_state.set_state, state)
- def test_pickle(self):
- self.random_state.seed(0)
- self.random_state.random_sample(100)
- self.random_state.standard_normal()
- pickled = self.random_state.get_state(legacy=False)
- assert_equal(pickled['has_gauss'], 1)
- rs_unpick = pickle.loads(pickle.dumps(self.random_state))
- unpickled = rs_unpick.get_state(legacy=False)
- assert_mt19937_state_equal(pickled, unpickled)
- def test_state_setting(self):
- attr_state = self.random_state.__getstate__()
- self.random_state.standard_normal()
- self.random_state.__setstate__(attr_state)
- state = self.random_state.get_state(legacy=False)
- assert_mt19937_state_equal(attr_state, state)
- def test_repr(self):
- assert repr(self.random_state).startswith('RandomState(MT19937)')
- class TestRandint:
- rfunc = random.randint
- # valid integer/boolean types
- itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
- np.int32, np.uint32, np.int64, np.uint64]
- def test_unsupported_type(self):
- assert_raises(TypeError, self.rfunc, 1, dtype=float)
- def test_bounds_checking(self):
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
- assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
- assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
- assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)
- def test_rng_zero_and_extremes(self):
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- tgt = ubnd - 1
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- tgt = lbnd
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- tgt = (lbnd + ubnd)//2
- assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)
- def test_full_range(self):
- # Test for ticket #1690
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- try:
- self.rfunc(lbnd, ubnd, dtype=dt)
- except Exception as e:
- raise AssertionError("No error should have been raised, "
- "but one was with the following "
- "message:\n\n%s" % str(e))
- def test_in_bounds_fuzz(self):
- # Don't use fixed seed
- random.seed()
- for dt in self.itype[1:]:
- for ubnd in [4, 8, 16]:
- vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
- assert_(vals.max() < ubnd)
- assert_(vals.min() >= 2)
- vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)
- assert_(vals.max() < 2)
- assert_(vals.min() >= 0)
- def test_repeatability(self):
- # We use a sha256 hash of generated sequences of 1000 samples
- # in the range [0, 6) for all but bool, where the range
- # is [0, 2). Hashes are for little endian numbers.
- tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71',
- 'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
- 'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
- 'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
- 'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404',
- 'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
- 'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
- 'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
- 'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'}
- for dt in self.itype[1:]:
- random.seed(1234)
- # view as little endian for hash
- if sys.byteorder == 'little':
- val = self.rfunc(0, 6, size=1000, dtype=dt)
- else:
- val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()
- res = hashlib.sha256(val.view(np.int8)).hexdigest()
- assert_(tgt[np.dtype(dt).name] == res)
- # bools do not depend on endianness
- random.seed(1234)
- val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
- res = hashlib.sha256(val).hexdigest()
- assert_(tgt[np.dtype(bool).name] == res)
- @pytest.mark.skipif(np.iinfo('l').max < 2**32,
- reason='Cannot test with 32-bit C long')
- def test_repeatability_32bit_boundary_broadcasting(self):
- desired = np.array([[[3992670689, 2438360420, 2557845020],
- [4107320065, 4142558326, 3216529513],
- [1605979228, 2807061240, 665605495]],
- [[3211410639, 4128781000, 457175120],
- [1712592594, 1282922662, 3081439808],
- [3997822960, 2008322436, 1563495165]],
- [[1398375547, 4269260146, 115316740],
- [3414372578, 3437564012, 2112038651],
- [3572980305, 2260248732, 3908238631]],
- [[2561372503, 223155946, 3127879445],
- [ 441282060, 3514786552, 2148440361],
- [1629275283, 3479737011, 3003195987]],
- [[ 412181688, 940383289, 3047321305],
- [2978368172, 764731833, 2282559898],
- [ 105711276, 720447391, 3596512484]]])
- for size in [None, (5, 3, 3)]:
- random.seed(12345)
- x = self.rfunc([[-1], [0], [1]], [2**32 - 1, 2**32, 2**32 + 1],
- size=size)
- assert_array_equal(x, desired if size is not None else desired[0])
- def test_int64_uint64_corner_case(self):
- # When stored in Numpy arrays, `lbnd` is casted
- # as np.int64, and `ubnd` is casted as np.uint64.
- # Checking whether `lbnd` >= `ubnd` used to be
- # done solely via direct comparison, which is incorrect
- # because when Numpy tries to compare both numbers,
- # it casts both to np.float64 because there is
- # no integer superset of np.int64 and np.uint64. However,
- # `ubnd` is too large to be represented in np.float64,
- # causing it be round down to np.iinfo(np.int64).max,
- # leading to a ValueError because `lbnd` now equals
- # the new `ubnd`.
- dt = np.int64
- tgt = np.iinfo(np.int64).max
- lbnd = np.int64(np.iinfo(np.int64).max)
- ubnd = np.uint64(np.iinfo(np.int64).max + 1)
- # None of these function calls should
- # generate a ValueError now.
- actual = random.randint(lbnd, ubnd, dtype=dt)
- assert_equal(actual, tgt)
- def test_respect_dtype_singleton(self):
- # See gh-7203
- for dt in self.itype:
- lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
- ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
- sample = self.rfunc(lbnd, ubnd, dtype=dt)
- assert_equal(sample.dtype, np.dtype(dt))
- for dt in (bool, int, np.compat.long):
- lbnd = 0 if dt is bool else np.iinfo(dt).min
- ubnd = 2 if dt is bool else np.iinfo(dt).max + 1
- # gh-7284: Ensure that we get Python data types
- sample = self.rfunc(lbnd, ubnd, dtype=dt)
- assert_(not hasattr(sample, 'dtype'))
- assert_equal(type(sample), dt)
- class TestRandomDist:
- # Make sure the random distribution returns the correct value for a
- # given seed
- def setup_method(self):
- self.seed = 1234567890
- def test_rand(self):
- random.seed(self.seed)
- actual = random.rand(3, 2)
- desired = np.array([[0.61879477158567997, 0.59162362775974664],
- [0.88868358904449662, 0.89165480011560816],
- [0.4575674820298663, 0.7781880808593471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_rand_singleton(self):
- random.seed(self.seed)
- actual = random.rand()
- desired = 0.61879477158567997
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_randn(self):
- random.seed(self.seed)
- actual = random.randn(3, 2)
- desired = np.array([[1.34016345771863121, 1.73759122771936081],
- [1.498988344300628, -0.2286433324536169],
- [2.031033998682787, 2.17032494605655257]])
- assert_array_almost_equal(actual, desired, decimal=15)
- random.seed(self.seed)
- actual = random.randn()
- assert_array_almost_equal(actual, desired[0, 0], decimal=15)
- def test_randint(self):
- random.seed(self.seed)
- actual = random.randint(-99, 99, size=(3, 2))
- desired = np.array([[31, 3],
- [-52, 41],
- [-48, -66]])
- assert_array_equal(actual, desired)
- def test_random_integers(self):
- random.seed(self.seed)
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- actual = random.random_integers(-99, 99, size=(3, 2))
- assert_(len(w) == 1)
- desired = np.array([[31, 3],
- [-52, 41],
- [-48, -66]])
- assert_array_equal(actual, desired)
- random.seed(self.seed)
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- actual = random.random_integers(198, size=(3, 2))
- assert_(len(w) == 1)
- assert_array_equal(actual, desired + 100)
- def test_tomaxint(self):
- random.seed(self.seed)
- rs = random.RandomState(self.seed)
- actual = rs.tomaxint(size=(3, 2))
- if np.iinfo(int).max == 2147483647:
- desired = np.array([[1328851649, 731237375],
- [1270502067, 320041495],
- [1908433478, 499156889]], dtype=np.int64)
- else:
- desired = np.array([[5707374374421908479, 5456764827585442327],
- [8196659375100692377, 8224063923314595285],
- [4220315081820346526, 7177518203184491332]],
- dtype=np.int64)
- assert_equal(actual, desired)
- rs.seed(self.seed)
- actual = rs.tomaxint()
- assert_equal(actual, desired[0, 0])
- def test_random_integers_max_int(self):
- # Tests whether random_integers can generate the
- # maximum allowed Python int that can be converted
- # into a C long. Previous implementations of this
- # method have thrown an OverflowError when attempting
- # to generate this integer.
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- actual = random.random_integers(np.iinfo('l').max,
- np.iinfo('l').max)
- assert_(len(w) == 1)
- desired = np.iinfo('l').max
- assert_equal(actual, desired)
- with suppress_warnings() as sup:
- w = sup.record(DeprecationWarning)
- typer = np.dtype('l').type
- actual = random.random_integers(typer(np.iinfo('l').max),
- typer(np.iinfo('l').max))
- assert_(len(w) == 1)
- assert_equal(actual, desired)
- def test_random_integers_deprecated(self):
- with warnings.catch_warnings():
- warnings.simplefilter("error", DeprecationWarning)
- # DeprecationWarning raised with high == None
- assert_raises(DeprecationWarning,
- random.random_integers,
- np.iinfo('l').max)
- # DeprecationWarning raised with high != None
- assert_raises(DeprecationWarning,
- random.random_integers,
- np.iinfo('l').max, np.iinfo('l').max)
- def test_random_sample(self):
- random.seed(self.seed)
- actual = random.random_sample((3, 2))
- desired = np.array([[0.61879477158567997, 0.59162362775974664],
- [0.88868358904449662, 0.89165480011560816],
- [0.4575674820298663, 0.7781880808593471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- random.seed(self.seed)
- actual = random.random_sample()
- assert_array_almost_equal(actual, desired[0, 0], decimal=15)
- def test_choice_uniform_replace(self):
- random.seed(self.seed)
- actual = random.choice(4, 4)
- desired = np.array([2, 3, 2, 3])
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_replace(self):
- random.seed(self.seed)
- actual = random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
- desired = np.array([1, 1, 2, 2])
- assert_array_equal(actual, desired)
- def test_choice_uniform_noreplace(self):
- random.seed(self.seed)
- actual = random.choice(4, 3, replace=False)
- desired = np.array([0, 1, 3])
- assert_array_equal(actual, desired)
- def test_choice_nonuniform_noreplace(self):
- random.seed(self.seed)
- actual = random.choice(4, 3, replace=False, p=[0.1, 0.3, 0.5, 0.1])
- desired = np.array([2, 3, 1])
- assert_array_equal(actual, desired)
- def test_choice_noninteger(self):
- random.seed(self.seed)
- actual = random.choice(['a', 'b', 'c', 'd'], 4)
- desired = np.array(['c', 'd', 'c', 'd'])
- assert_array_equal(actual, desired)
- def test_choice_exceptions(self):
- sample = random.choice
- assert_raises(ValueError, sample, -1, 3)
- assert_raises(ValueError, sample, 3., 3)
- assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
- assert_raises(ValueError, sample, [], 3)
- assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
- p=[[0.25, 0.25], [0.25, 0.25]])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
- assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
- assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
- assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
- # gh-13087
- assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
- assert_raises(ValueError, sample, [1, 2, 3], 2,
- replace=False, p=[1, 0, 0])
- def test_choice_return_shape(self):
- p = [0.1, 0.9]
- # Check scalar
- assert_(np.isscalar(random.choice(2, replace=True)))
- assert_(np.isscalar(random.choice(2, replace=False)))
- assert_(np.isscalar(random.choice(2, replace=True, p=p)))
- assert_(np.isscalar(random.choice(2, replace=False, p=p)))
- assert_(np.isscalar(random.choice([1, 2], replace=True)))
- assert_(random.choice([None], replace=True) is None)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(random.choice(arr, replace=True) is a)
- # Check 0-d array
- s = tuple()
- assert_(not np.isscalar(random.choice(2, s, replace=True)))
- assert_(not np.isscalar(random.choice(2, s, replace=False)))
- assert_(not np.isscalar(random.choice(2, s, replace=True, p=p)))
- assert_(not np.isscalar(random.choice(2, s, replace=False, p=p)))
- assert_(not np.isscalar(random.choice([1, 2], s, replace=True)))
- assert_(random.choice([None], s, replace=True).ndim == 0)
- a = np.array([1, 2])
- arr = np.empty(1, dtype=object)
- arr[0] = a
- assert_(random.choice(arr, s, replace=True).item() is a)
- # Check multi dimensional array
- s = (2, 3)
- p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
- assert_equal(random.choice(6, s, replace=True).shape, s)
- assert_equal(random.choice(6, s, replace=False).shape, s)
- assert_equal(random.choice(6, s, replace=True, p=p).shape, s)
- assert_equal(random.choice(6, s, replace=False, p=p).shape, s)
- assert_equal(random.choice(np.arange(6), s, replace=True).shape, s)
- # Check zero-size
- assert_equal(random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
- assert_equal(random.randint(0, -10, size=0).shape, (0,))
- assert_equal(random.randint(10, 10, size=0).shape, (0,))
- assert_equal(random.choice(0, size=0).shape, (0,))
- assert_equal(random.choice([], size=(0,)).shape, (0,))
- assert_equal(random.choice(['a', 'b'], size=(3, 0, 4)).shape,
- (3, 0, 4))
- assert_raises(ValueError, random.choice, [], 10)
- def test_choice_nan_probabilities(self):
- a = np.array([42, 1, 2])
- p = [None, None, None]
- assert_raises(ValueError, random.choice, a, p=p)
- def test_choice_p_non_contiguous(self):
- p = np.ones(10) / 5
- p[1::2] = 3.0
- random.seed(self.seed)
- non_contig = random.choice(5, 3, p=p[::2])
- random.seed(self.seed)
- contig = random.choice(5, 3, p=np.ascontiguousarray(p[::2]))
- assert_array_equal(non_contig, contig)
- def test_bytes(self):
- random.seed(self.seed)
- actual = random.bytes(10)
- desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
- assert_equal(actual, desired)
- def test_shuffle(self):
- # Test lists, arrays (of various dtypes), and multidimensional versions
- # of both, c-contiguous or not:
- for conv in [lambda x: np.array([]),
- lambda x: x,
- lambda x: np.asarray(x).astype(np.int8),
- lambda x: np.asarray(x).astype(np.float32),
- lambda x: np.asarray(x).astype(np.complex64),
- lambda x: np.asarray(x).astype(object),
- lambda x: [(i, i) for i in x],
- lambda x: np.asarray([[i, i] for i in x]),
- lambda x: np.vstack([x, x]).T,
- # gh-11442
- lambda x: (np.asarray([(i, i) for i in x],
- [("a", int), ("b", int)])
- .view(np.recarray)),
- # gh-4270
- lambda x: np.asarray([(i, i) for i in x],
- [("a", object, (1,)),
- ("b", np.int32, (1,))])]:
- random.seed(self.seed)
- alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
- random.shuffle(alist)
- actual = alist
- desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
- assert_array_equal(actual, desired)
- def test_shuffle_masked(self):
- # gh-3263
- a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
- b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
- a_orig = a.copy()
- b_orig = b.copy()
- for i in range(50):
- random.shuffle(a)
- assert_equal(
- sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
- random.shuffle(b)
- assert_equal(
- sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))
- def test_shuffle_invalid_objects(self):
- x = np.array(3)
- assert_raises(TypeError, random.shuffle, x)
- def test_permutation(self):
- random.seed(self.seed)
- alist = [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
- actual = random.permutation(alist)
- desired = [0, 1, 9, 6, 2, 4, 5, 8, 7, 3]
- assert_array_equal(actual, desired)
- random.seed(self.seed)
- arr_2d = np.atleast_2d([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]).T
- actual = random.permutation(arr_2d)
- assert_array_equal(actual, np.atleast_2d(desired).T)
- random.seed(self.seed)
- bad_x_str = "abcd"
- assert_raises(IndexError, random.permutation, bad_x_str)
- random.seed(self.seed)
- bad_x_float = 1.2
- assert_raises(IndexError, random.permutation, bad_x_float)
- integer_val = 10
- desired = [9, 0, 8, 5, 1, 3, 4, 7, 6, 2]
- random.seed(self.seed)
- actual = random.permutation(integer_val)
- assert_array_equal(actual, desired)
- def test_beta(self):
- random.seed(self.seed)
- actual = random.beta(.1, .9, size=(3, 2))
- desired = np.array(
- [[1.45341850513746058e-02, 5.31297615662868145e-04],
- [1.85366619058432324e-06, 4.19214516800110563e-03],
- [1.58405155108498093e-04, 1.26252891949397652e-04]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_binomial(self):
- random.seed(self.seed)
- actual = random.binomial(100.123, .456, size=(3, 2))
- desired = np.array([[37, 43],
- [42, 48],
- [46, 45]])
- assert_array_equal(actual, desired)
- random.seed(self.seed)
- actual = random.binomial(100.123, .456)
- desired = 37
- assert_array_equal(actual, desired)
- def test_chisquare(self):
- random.seed(self.seed)
- actual = random.chisquare(50, size=(3, 2))
- desired = np.array([[63.87858175501090585, 68.68407748911370447],
- [65.77116116901505904, 47.09686762438974483],
- [72.3828403199695174, 74.18408615260374006]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_dirichlet(self):
- random.seed(self.seed)
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
- actual = random.dirichlet(alpha, size=(3, 2))
- desired = np.array([[[0.54539444573611562, 0.45460555426388438],
- [0.62345816822039413, 0.37654183177960598]],
- [[0.55206000085785778, 0.44793999914214233],
- [0.58964023305154301, 0.41035976694845688]],
- [[0.59266909280647828, 0.40733090719352177],
- [0.56974431743975207, 0.43025568256024799]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- bad_alpha = np.array([5.4e-01, -1.0e-16])
- assert_raises(ValueError, random.dirichlet, bad_alpha)
- random.seed(self.seed)
- alpha = np.array([51.72840233779265162, 39.74494232180943953])
- actual = random.dirichlet(alpha)
- assert_array_almost_equal(actual, desired[0, 0], decimal=15)
- def test_dirichlet_size(self):
- # gh-3173
- p = np.array([51.72840233779265162, 39.74494232180943953])
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, np.uint32(1)).shape, (1, 2))
- assert_equal(random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
- assert_equal(random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
- assert_equal(random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))
- assert_raises(TypeError, random.dirichlet, p, float(1))
- def test_dirichlet_bad_alpha(self):
- # gh-2089
- alpha = np.array([5.4e-01, -1.0e-16])
- assert_raises(ValueError, random.dirichlet, alpha)
- def test_dirichlet_alpha_non_contiguous(self):
- a = np.array([51.72840233779265162, -1.0, 39.74494232180943953])
- alpha = a[::2]
- random.seed(self.seed)
- non_contig = random.dirichlet(alpha, size=(3, 2))
- random.seed(self.seed)
- contig = random.dirichlet(np.ascontiguousarray(alpha),
- size=(3, 2))
- assert_array_almost_equal(non_contig, contig)
- def test_exponential(self):
- random.seed(self.seed)
- actual = random.exponential(1.1234, size=(3, 2))
- desired = np.array([[1.08342649775011624, 1.00607889924557314],
- [2.46628830085216721, 2.49668106809923884],
- [0.68717433461363442, 1.69175666993575979]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_exponential_0(self):
- assert_equal(random.exponential(scale=0), 0)
- assert_raises(ValueError, random.exponential, scale=-0.)
- def test_f(self):
- random.seed(self.seed)
- actual = random.f(12, 77, size=(3, 2))
- desired = np.array([[1.21975394418575878, 1.75135759791559775],
- [1.44803115017146489, 1.22108959480396262],
- [1.02176975757740629, 1.34431827623300415]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gamma(self):
- random.seed(self.seed)
- actual = random.gamma(5, 3, size=(3, 2))
- desired = np.array([[24.60509188649287182, 28.54993563207210627],
- [26.13476110204064184, 12.56988482927716078],
- [31.71863275789960568, 33.30143302795922011]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_gamma_0(self):
- assert_equal(random.gamma(shape=0, scale=0), 0)
- assert_raises(ValueError, random.gamma, shape=-0., scale=-0.)
- def test_geometric(self):
- random.seed(self.seed)
- actual = random.geometric(.123456789, size=(3, 2))
- desired = np.array([[8, 7],
- [17, 17],
- [5, 12]])
- assert_array_equal(actual, desired)
- def test_geometric_exceptions(self):
- assert_raises(ValueError, random.geometric, 1.1)
- assert_raises(ValueError, random.geometric, [1.1] * 10)
- assert_raises(ValueError, random.geometric, -0.1)
- assert_raises(ValueError, random.geometric, [-0.1] * 10)
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
- assert_raises(ValueError, random.geometric, np.nan)
- assert_raises(ValueError, random.geometric, [np.nan] * 10)
- def test_gumbel(self):
- random.seed(self.seed)
- actual = random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[0.19591898743416816, 0.34405539668096674],
- [-1.4492522252274278, -1.47374816298446865],
- [1.10651090478803416, -0.69535848626236174]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_gumbel_0(self):
- assert_equal(random.gumbel(scale=0), 0)
- assert_raises(ValueError, random.gumbel, scale=-0.)
- def test_hypergeometric(self):
- random.seed(self.seed)
- actual = random.hypergeometric(10.1, 5.5, 14, size=(3, 2))
- desired = np.array([[10, 10],
- [10, 10],
- [9, 9]])
- assert_array_equal(actual, desired)
- # Test nbad = 0
- actual = random.hypergeometric(5, 0, 3, size=4)
- desired = np.array([3, 3, 3, 3])
- assert_array_equal(actual, desired)
- actual = random.hypergeometric(15, 0, 12, size=4)
- desired = np.array([12, 12, 12, 12])
- assert_array_equal(actual, desired)
- # Test ngood = 0
- actual = random.hypergeometric(0, 5, 3, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- actual = random.hypergeometric(0, 15, 12, size=4)
- desired = np.array([0, 0, 0, 0])
- assert_array_equal(actual, desired)
- def test_laplace(self):
- random.seed(self.seed)
- actual = random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[0.66599721112760157, 0.52829452552221945],
- [3.12791959514407125, 3.18202813572992005],
- [-0.05391065675859356, 1.74901336242837324]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_laplace_0(self):
- assert_equal(random.laplace(scale=0), 0)
- assert_raises(ValueError, random.laplace, scale=-0.)
- def test_logistic(self):
- random.seed(self.seed)
- actual = random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[1.09232835305011444, 0.8648196662399954],
- [4.27818590694950185, 4.33897006346929714],
- [-0.21682183359214885, 2.63373365386060332]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_lognormal(self):
- random.seed(self.seed)
- actual = random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
- desired = np.array([[16.50698631688883822, 36.54846706092654784],
- [22.67886599981281748, 0.71617561058995771],
- [65.72798501792723869, 86.84341601437161273]])
- assert_array_almost_equal(actual, desired, decimal=13)
- def test_lognormal_0(self):
- assert_equal(random.lognormal(sigma=0), 1)
- assert_raises(ValueError, random.lognormal, sigma=-0.)
- def test_logseries(self):
- random.seed(self.seed)
- actual = random.logseries(p=.923456789, size=(3, 2))
- desired = np.array([[2, 2],
- [6, 17],
- [3, 6]])
- assert_array_equal(actual, desired)
- def test_logseries_zero(self):
- assert random.logseries(0) == 1
- @pytest.mark.parametrize("value", [np.nextafter(0., -1), 1., np.nan, 5.])
- def test_logseries_exceptions(self, value):
- with np.errstate(invalid="ignore"):
- with pytest.raises(ValueError):
- random.logseries(value)
- with pytest.raises(ValueError):
- # contiguous path:
- random.logseries(np.array([value] * 10))
- with pytest.raises(ValueError):
- # non-contiguous path:
- random.logseries(np.array([value] * 10)[::2])
- def test_multinomial(self):
- random.seed(self.seed)
- actual = random.multinomial(20, [1 / 6.] * 6, size=(3, 2))
- desired = np.array([[[4, 3, 5, 4, 2, 2],
- [5, 2, 8, 2, 2, 1]],
- [[3, 4, 3, 6, 0, 4],
- [2, 1, 4, 3, 6, 4]],
- [[4, 4, 2, 5, 2, 3],
- [4, 3, 4, 2, 3, 4]]])
- assert_array_equal(actual, desired)
- def test_multivariate_normal(self):
- random.seed(self.seed)
- mean = (.123456789, 10)
- cov = [[1, 0], [0, 1]]
- size = (3, 2)
- actual = random.multivariate_normal(mean, cov, size)
- desired = np.array([[[1.463620246718631, 11.73759122771936],
- [1.622445133300628, 9.771356667546383]],
- [[2.154490787682787, 12.170324946056553],
- [1.719909438201865, 9.230548443648306]],
- [[0.689515026297799, 9.880729819607714],
- [-0.023054015651998, 9.201096623542879]]])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check for default size, was raising deprecation warning
- actual = random.multivariate_normal(mean, cov)
- desired = np.array([0.895289569463708, 9.17180864067987])
- assert_array_almost_equal(actual, desired, decimal=15)
- # Check that non positive-semidefinite covariance warns with
- # RuntimeWarning
- mean = [0, 0]
- cov = [[1, 2], [2, 1]]
- assert_warns(RuntimeWarning, random.multivariate_normal, mean, cov)
- # and that it doesn't warn with RuntimeWarning check_valid='ignore'
- assert_no_warnings(random.multivariate_normal, mean, cov,
- check_valid='ignore')
- # and that it raises with RuntimeWarning check_valid='raises'
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='raise')
- cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
- with suppress_warnings() as sup:
- random.multivariate_normal(mean, cov)
- w = sup.record(RuntimeWarning)
- assert len(w) == 0
- mu = np.zeros(2)
- cov = np.eye(2)
- assert_raises(ValueError, random.multivariate_normal, mean, cov,
- check_valid='other')
- assert_raises(ValueError, random.multivariate_normal,
- np.zeros((2, 1, 1)), cov)
- assert_raises(ValueError, random.multivariate_normal,
- mu, np.empty((3, 2)))
- assert_raises(ValueError, random.multivariate_normal,
- mu, np.eye(3))
- def test_negative_binomial(self):
- random.seed(self.seed)
- actual = random.negative_binomial(n=100, p=.12345, size=(3, 2))
- desired = np.array([[848, 841],
- [892, 611],
- [779, 647]])
- assert_array_equal(actual, desired)
- def test_negative_binomial_exceptions(self):
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
- assert_raises(ValueError, random.negative_binomial, 100, np.nan)
- assert_raises(ValueError, random.negative_binomial, 100,
- [np.nan] * 10)
- def test_noncentral_chisquare(self):
- random.seed(self.seed)
- actual = random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
- desired = np.array([[23.91905354498517511, 13.35324692733826346],
- [31.22452661329736401, 16.60047399466177254],
- [5.03461598262724586, 17.94973089023519464]])
- assert_array_almost_equal(actual, desired, decimal=14)
- actual = random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
- desired = np.array([[1.47145377828516666, 0.15052899268012659],
- [0.00943803056963588, 1.02647251615666169],
- [0.332334982684171, 0.15451287602753125]])
- assert_array_almost_equal(actual, desired, decimal=14)
- random.seed(self.seed)
- actual = random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
- desired = np.array([[9.597154162763948, 11.725484450296079],
- [10.413711048138335, 3.694475922923986],
- [13.484222138963087, 14.377255424602957]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_noncentral_f(self):
- random.seed(self.seed)
- actual = random.noncentral_f(dfnum=5, dfden=2, nonc=1,
- size=(3, 2))
- desired = np.array([[1.40598099674926669, 0.34207973179285761],
- [3.57715069265772545, 7.92632662577829805],
- [0.43741599463544162, 1.1774208752428319]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_noncentral_f_nan(self):
- random.seed(self.seed)
- actual = random.noncentral_f(dfnum=5, dfden=2, nonc=np.nan)
- assert np.isnan(actual)
- def test_normal(self):
- random.seed(self.seed)
- actual = random.normal(loc=.123456789, scale=2.0, size=(3, 2))
- desired = np.array([[2.80378370443726244, 3.59863924443872163],
- [3.121433477601256, -0.33382987590723379],
- [4.18552478636557357, 4.46410668111310471]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_normal_0(self):
- assert_equal(random.normal(scale=0), 0)
- assert_raises(ValueError, random.normal, scale=-0.)
- def test_pareto(self):
- random.seed(self.seed)
- actual = random.pareto(a=.123456789, size=(3, 2))
- desired = np.array(
- [[2.46852460439034849e+03, 1.41286880810518346e+03],
- [5.28287797029485181e+07, 6.57720981047328785e+07],
- [1.40840323350391515e+02, 1.98390255135251704e+05]])
- # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
- # matrix differs by 24 nulps. Discussion:
- # https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
- # Consensus is that this is probably some gcc quirk that affects
- # rounding but not in any important way, so we just use a looser
- # tolerance on this test:
- np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)
- def test_poisson(self):
- random.seed(self.seed)
- actual = random.poisson(lam=.123456789, size=(3, 2))
- desired = np.array([[0, 0],
- [1, 0],
- [0, 0]])
- assert_array_equal(actual, desired)
- def test_poisson_exceptions(self):
- lambig = np.iinfo('l').max
- lamneg = -1
- assert_raises(ValueError, random.poisson, lamneg)
- assert_raises(ValueError, random.poisson, [lamneg] * 10)
- assert_raises(ValueError, random.poisson, lambig)
- assert_raises(ValueError, random.poisson, [lambig] * 10)
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
- assert_raises(ValueError, random.poisson, np.nan)
- assert_raises(ValueError, random.poisson, [np.nan] * 10)
- def test_power(self):
- random.seed(self.seed)
- actual = random.power(a=.123456789, size=(3, 2))
- desired = np.array([[0.02048932883240791, 0.01424192241128213],
- [0.38446073748535298, 0.39499689943484395],
- [0.00177699707563439, 0.13115505880863756]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_rayleigh(self):
- random.seed(self.seed)
- actual = random.rayleigh(scale=10, size=(3, 2))
- desired = np.array([[13.8882496494248393, 13.383318339044731],
- [20.95413364294492098, 21.08285015800712614],
- [11.06066537006854311, 17.35468505778271009]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_rayleigh_0(self):
- assert_equal(random.rayleigh(scale=0), 0)
- assert_raises(ValueError, random.rayleigh, scale=-0.)
- def test_standard_cauchy(self):
- random.seed(self.seed)
- actual = random.standard_cauchy(size=(3, 2))
- desired = np.array([[0.77127660196445336, -6.55601161955910605],
- [0.93582023391158309, -2.07479293013759447],
- [-4.74601644297011926, 0.18338989290760804]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_exponential(self):
- random.seed(self.seed)
- actual = random.standard_exponential(size=(3, 2))
- desired = np.array([[0.96441739162374596, 0.89556604882105506],
- [2.1953785836319808, 2.22243285392490542],
- [0.6116915921431676, 1.50592546727413201]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_gamma(self):
- random.seed(self.seed)
- actual = random.standard_gamma(shape=3, size=(3, 2))
- desired = np.array([[5.50841531318455058, 6.62953470301903103],
- [5.93988484943779227, 2.31044849402133989],
- [7.54838614231317084, 8.012756093271868]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_standard_gamma_0(self):
- assert_equal(random.standard_gamma(shape=0), 0)
- assert_raises(ValueError, random.standard_gamma, shape=-0.)
- def test_standard_normal(self):
- random.seed(self.seed)
- actual = random.standard_normal(size=(3, 2))
- desired = np.array([[1.34016345771863121, 1.73759122771936081],
- [1.498988344300628, -0.2286433324536169],
- [2.031033998682787, 2.17032494605655257]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_randn_singleton(self):
- random.seed(self.seed)
- actual = random.randn()
- desired = np.array(1.34016345771863121)
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_standard_t(self):
- random.seed(self.seed)
- actual = random.standard_t(df=10, size=(3, 2))
- desired = np.array([[0.97140611862659965, -0.08830486548450577],
- [1.36311143689505321, -0.55317463909867071],
- [-0.18473749069684214, 0.61181537341755321]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_triangular(self):
- random.seed(self.seed)
- actual = random.triangular(left=5.12, mode=10.23, right=20.34,
- size=(3, 2))
- desired = np.array([[12.68117178949215784, 12.4129206149193152],
- [16.20131377335158263, 16.25692138747600524],
- [11.20400690911820263, 14.4978144835829923]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_uniform(self):
- random.seed(self.seed)
- actual = random.uniform(low=1.23, high=10.54, size=(3, 2))
- desired = np.array([[6.99097932346268003, 6.73801597444323974],
- [9.50364421400426274, 9.53130618907631089],
- [5.48995325769805476, 8.47493103280052118]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_uniform_range_bounds(self):
- fmin = np.finfo('float').min
- fmax = np.finfo('float').max
- func = random.uniform
- assert_raises(OverflowError, func, -np.inf, 0)
- assert_raises(OverflowError, func, 0, np.inf)
- assert_raises(OverflowError, func, fmin, fmax)
- assert_raises(OverflowError, func, [-np.inf], [0])
- assert_raises(OverflowError, func, [0], [np.inf])
- # (fmax / 1e17) - fmin is within range, so this should not throw
- # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
- # DBL_MAX by increasing fmin a bit
- random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
- def test_scalar_exception_propagation(self):
- # Tests that exceptions are correctly propagated in distributions
- # when called with objects that throw exceptions when converted to
- # scalars.
- #
- # Regression test for gh: 8865
- class ThrowingFloat(np.ndarray):
- def __float__(self):
- raise TypeError
- throwing_float = np.array(1.0).view(ThrowingFloat)
- assert_raises(TypeError, random.uniform, throwing_float,
- throwing_float)
- class ThrowingInteger(np.ndarray):
- def __int__(self):
- raise TypeError
- throwing_int = np.array(1).view(ThrowingInteger)
- assert_raises(TypeError, random.hypergeometric, throwing_int, 1, 1)
- def test_vonmises(self):
- random.seed(self.seed)
- actual = random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
- desired = np.array([[2.28567572673902042, 2.89163838442285037],
- [0.38198375564286025, 2.57638023113890746],
- [1.19153771588353052, 1.83509849681825354]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_vonmises_small(self):
- # check infinite loop, gh-4720
- random.seed(self.seed)
- r = random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
- assert_(np.isfinite(r).all())
- def test_vonmises_large(self):
- # guard against changes in RandomState when Generator is fixed
- random.seed(self.seed)
- actual = random.vonmises(mu=0., kappa=1e7, size=3)
- desired = np.array([4.634253748521111e-04,
- 3.558873596114509e-04,
- -2.337119622577433e-04])
- assert_array_almost_equal(actual, desired, decimal=8)
- def test_vonmises_nan(self):
- random.seed(self.seed)
- r = random.vonmises(mu=0., kappa=np.nan)
- assert_(np.isnan(r))
- def test_wald(self):
- random.seed(self.seed)
- actual = random.wald(mean=1.23, scale=1.54, size=(3, 2))
- desired = np.array([[3.82935265715889983, 5.13125249184285526],
- [0.35045403618358717, 1.50832396872003538],
- [0.24124319895843183, 0.22031101461955038]])
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_weibull(self):
- random.seed(self.seed)
- actual = random.weibull(a=1.23, size=(3, 2))
- desired = np.array([[0.97097342648766727, 0.91422896443565516],
- [1.89517770034962929, 1.91414357960479564],
- [0.67057783752390987, 1.39494046635066793]])
- assert_array_almost_equal(actual, desired, decimal=15)
- def test_weibull_0(self):
- random.seed(self.seed)
- assert_equal(random.weibull(a=0, size=12), np.zeros(12))
- assert_raises(ValueError, random.weibull, a=-0.)
- def test_zipf(self):
- random.seed(self.seed)
- actual = random.zipf(a=1.23, size=(3, 2))
- desired = np.array([[66, 29],
- [1, 1],
- [3, 13]])
- assert_array_equal(actual, desired)
- class TestBroadcast:
- # tests that functions that broadcast behave
- # correctly when presented with non-scalar arguments
- def setup_method(self):
- self.seed = 123456789
- def set_seed(self):
- random.seed(self.seed)
- def test_uniform(self):
- low = [0]
- high = [1]
- uniform = random.uniform
- desired = np.array([0.53283302478975902,
- 0.53413660089041659,
- 0.50955303552646702])
- self.set_seed()
- actual = uniform(low * 3, high)
- assert_array_almost_equal(actual, desired, decimal=14)
- self.set_seed()
- actual = uniform(low, high * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_normal(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- normal = random.normal
- desired = np.array([2.2129019979039612,
- 2.1283977976520019,
- 1.8417114045748335])
- self.set_seed()
- actual = normal(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, normal, loc * 3, bad_scale)
- self.set_seed()
- actual = normal(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, normal, loc, bad_scale * 3)
- def test_beta(self):
- a = [1]
- b = [2]
- bad_a = [-1]
- bad_b = [-2]
- beta = random.beta
- desired = np.array([0.19843558305989056,
- 0.075230336409423643,
- 0.24976865978980844])
- self.set_seed()
- actual = beta(a * 3, b)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, beta, bad_a * 3, b)
- assert_raises(ValueError, beta, a * 3, bad_b)
- self.set_seed()
- actual = beta(a, b * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, beta, bad_a, b * 3)
- assert_raises(ValueError, beta, a, bad_b * 3)
- def test_exponential(self):
- scale = [1]
- bad_scale = [-1]
- exponential = random.exponential
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.set_seed()
- actual = exponential(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, exponential, bad_scale * 3)
- def test_standard_gamma(self):
- shape = [1]
- bad_shape = [-1]
- std_gamma = random.standard_gamma
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.set_seed()
- actual = std_gamma(shape * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, std_gamma, bad_shape * 3)
- def test_gamma(self):
- shape = [1]
- scale = [2]
- bad_shape = [-1]
- bad_scale = [-2]
- gamma = random.gamma
- desired = np.array([1.5221370731769048,
- 1.5277256455738331,
- 1.4248762625178359])
- self.set_seed()
- actual = gamma(shape * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape * 3, scale)
- assert_raises(ValueError, gamma, shape * 3, bad_scale)
- self.set_seed()
- actual = gamma(shape, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gamma, bad_shape, scale * 3)
- assert_raises(ValueError, gamma, shape, bad_scale * 3)
- def test_f(self):
- dfnum = [1]
- dfden = [2]
- bad_dfnum = [-1]
- bad_dfden = [-2]
- f = random.f
- desired = np.array([0.80038951638264799,
- 0.86768719635363512,
- 2.7251095168386801])
- self.set_seed()
- actual = f(dfnum * 3, dfden)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum * 3, dfden)
- assert_raises(ValueError, f, dfnum * 3, bad_dfden)
- self.set_seed()
- actual = f(dfnum, dfden * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, f, bad_dfnum, dfden * 3)
- assert_raises(ValueError, f, dfnum, bad_dfden * 3)
- def test_noncentral_f(self):
- dfnum = [2]
- dfden = [3]
- nonc = [4]
- bad_dfnum = [0]
- bad_dfden = [-1]
- bad_nonc = [-2]
- nonc_f = random.noncentral_f
- desired = np.array([9.1393943263705211,
- 13.025456344595602,
- 8.8018098359100545])
- self.set_seed()
- actual = nonc_f(dfnum * 3, dfden, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert np.all(np.isnan(nonc_f(dfnum, dfden, [np.nan] * 3)))
- assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
- assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)
- self.set_seed()
- actual = nonc_f(dfnum, dfden * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
- assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)
- self.set_seed()
- actual = nonc_f(dfnum, dfden, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
- assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)
- def test_noncentral_f_small_df(self):
- self.set_seed()
- desired = np.array([6.869638627492048, 0.785880199263955])
- actual = random.noncentral_f(0.9, 0.9, 2, size=2)
- assert_array_almost_equal(actual, desired, decimal=14)
- def test_chisquare(self):
- df = [1]
- bad_df = [-1]
- chisquare = random.chisquare
- desired = np.array([0.57022801133088286,
- 0.51947702108840776,
- 0.1320969254923558])
- self.set_seed()
- actual = chisquare(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, chisquare, bad_df * 3)
- def test_noncentral_chisquare(self):
- df = [1]
- nonc = [2]
- bad_df = [-1]
- bad_nonc = [-2]
- nonc_chi = random.noncentral_chisquare
- desired = np.array([9.0015599467913763,
- 4.5804135049718742,
- 6.0872302432834564])
- self.set_seed()
- actual = nonc_chi(df * 3, nonc)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
- assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)
- self.set_seed()
- actual = nonc_chi(df, nonc * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
- assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)
- def test_standard_t(self):
- df = [1]
- bad_df = [-1]
- t = random.standard_t
- desired = np.array([3.0702872575217643,
- 5.8560725167361607,
- 1.0274791436474273])
- self.set_seed()
- actual = t(df * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, t, bad_df * 3)
- assert_raises(ValueError, random.standard_t, bad_df * 3)
- def test_vonmises(self):
- mu = [2]
- kappa = [1]
- bad_kappa = [-1]
- vonmises = random.vonmises
- desired = np.array([2.9883443664201312,
- -2.7064099483995943,
- -1.8672476700665914])
- self.set_seed()
- actual = vonmises(mu * 3, kappa)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, vonmises, mu * 3, bad_kappa)
- self.set_seed()
- actual = vonmises(mu, kappa * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, vonmises, mu, bad_kappa * 3)
- def test_pareto(self):
- a = [1]
- bad_a = [-1]
- pareto = random.pareto
- desired = np.array([1.1405622680198362,
- 1.1465519762044529,
- 1.0389564467453547])
- self.set_seed()
- actual = pareto(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, pareto, bad_a * 3)
- assert_raises(ValueError, random.pareto, bad_a * 3)
- def test_weibull(self):
- a = [1]
- bad_a = [-1]
- weibull = random.weibull
- desired = np.array([0.76106853658845242,
- 0.76386282278691653,
- 0.71243813125891797])
- self.set_seed()
- actual = weibull(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, weibull, bad_a * 3)
- assert_raises(ValueError, random.weibull, bad_a * 3)
- def test_power(self):
- a = [1]
- bad_a = [-1]
- power = random.power
- desired = np.array([0.53283302478975902,
- 0.53413660089041659,
- 0.50955303552646702])
- self.set_seed()
- actual = power(a * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, power, bad_a * 3)
- assert_raises(ValueError, random.power, bad_a * 3)
- def test_laplace(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- laplace = random.laplace
- desired = np.array([0.067921356028507157,
- 0.070715642226971326,
- 0.019290950698972624])
- self.set_seed()
- actual = laplace(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc * 3, bad_scale)
- self.set_seed()
- actual = laplace(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, laplace, loc, bad_scale * 3)
- def test_gumbel(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- gumbel = random.gumbel
- desired = np.array([0.2730318639556768,
- 0.26936705726291116,
- 0.33906220393037939])
- self.set_seed()
- actual = gumbel(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc * 3, bad_scale)
- self.set_seed()
- actual = gumbel(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, gumbel, loc, bad_scale * 3)
- def test_logistic(self):
- loc = [0]
- scale = [1]
- bad_scale = [-1]
- logistic = random.logistic
- desired = np.array([0.13152135837586171,
- 0.13675915696285773,
- 0.038216792802833396])
- self.set_seed()
- actual = logistic(loc * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, logistic, loc * 3, bad_scale)
- self.set_seed()
- actual = logistic(loc, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, logistic, loc, bad_scale * 3)
- assert_equal(random.logistic(1.0, 0.0), 1.0)
- def test_lognormal(self):
- mean = [0]
- sigma = [1]
- bad_sigma = [-1]
- lognormal = random.lognormal
- desired = np.array([9.1422086044848427,
- 8.4013952870126261,
- 6.3073234116578671])
- self.set_seed()
- actual = lognormal(mean * 3, sigma)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, lognormal, mean * 3, bad_sigma)
- assert_raises(ValueError, random.lognormal, mean * 3, bad_sigma)
- self.set_seed()
- actual = lognormal(mean, sigma * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, lognormal, mean, bad_sigma * 3)
- assert_raises(ValueError, random.lognormal, mean, bad_sigma * 3)
- def test_rayleigh(self):
- scale = [1]
- bad_scale = [-1]
- rayleigh = random.rayleigh
- desired = np.array([1.2337491937897689,
- 1.2360119924878694,
- 1.1936818095781789])
- self.set_seed()
- actual = rayleigh(scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, rayleigh, bad_scale * 3)
- def test_wald(self):
- mean = [0.5]
- scale = [1]
- bad_mean = [0]
- bad_scale = [-2]
- wald = random.wald
- desired = np.array([0.11873681120271318,
- 0.12450084820795027,
- 0.9096122728408238])
- self.set_seed()
- actual = wald(mean * 3, scale)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, wald, bad_mean * 3, scale)
- assert_raises(ValueError, wald, mean * 3, bad_scale)
- assert_raises(ValueError, random.wald, bad_mean * 3, scale)
- assert_raises(ValueError, random.wald, mean * 3, bad_scale)
- self.set_seed()
- actual = wald(mean, scale * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, wald, bad_mean, scale * 3)
- assert_raises(ValueError, wald, mean, bad_scale * 3)
- assert_raises(ValueError, wald, 0.0, 1)
- assert_raises(ValueError, wald, 0.5, 0.0)
- def test_triangular(self):
- left = [1]
- right = [3]
- mode = [2]
- bad_left_one = [3]
- bad_mode_one = [4]
- bad_left_two, bad_mode_two = right * 2
- triangular = random.triangular
- desired = np.array([2.03339048710429,
- 2.0347400359389356,
- 2.0095991069536208])
- self.set_seed()
- actual = triangular(left * 3, mode, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
- assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
- assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
- right)
- self.set_seed()
- actual = triangular(left, mode * 3, right)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
- assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
- right)
- self.set_seed()
- actual = triangular(left, mode, right * 3)
- assert_array_almost_equal(actual, desired, decimal=14)
- assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
- assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
- assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
- right * 3)
- assert_raises(ValueError, triangular, 10., 0., 20.)
- assert_raises(ValueError, triangular, 10., 25., 20.)
- assert_raises(ValueError, triangular, 10., 10., 10.)
- def test_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- binom = random.binomial
- desired = np.array([1, 1, 1])
- self.set_seed()
- actual = binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n * 3, p)
- assert_raises(ValueError, binom, n * 3, bad_p_one)
- assert_raises(ValueError, binom, n * 3, bad_p_two)
- self.set_seed()
- actual = binom(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, binom, bad_n, p * 3)
- assert_raises(ValueError, binom, n, bad_p_one * 3)
- assert_raises(ValueError, binom, n, bad_p_two * 3)
- def test_negative_binomial(self):
- n = [1]
- p = [0.5]
- bad_n = [-1]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- neg_binom = random.negative_binomial
- desired = np.array([1, 0, 1])
- self.set_seed()
- actual = neg_binom(n * 3, p)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n * 3, p)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
- assert_raises(ValueError, neg_binom, n * 3, bad_p_two)
- self.set_seed()
- actual = neg_binom(n, p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, neg_binom, bad_n, p * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
- assert_raises(ValueError, neg_binom, n, bad_p_two * 3)
- def test_poisson(self):
- max_lam = random.RandomState()._poisson_lam_max
- lam = [1]
- bad_lam_one = [-1]
- bad_lam_two = [max_lam * 2]
- poisson = random.poisson
- desired = np.array([1, 1, 0])
- self.set_seed()
- actual = poisson(lam * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, poisson, bad_lam_one * 3)
- assert_raises(ValueError, poisson, bad_lam_two * 3)
- def test_zipf(self):
- a = [2]
- bad_a = [0]
- zipf = random.zipf
- desired = np.array([2, 2, 1])
- self.set_seed()
- actual = zipf(a * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, zipf, bad_a * 3)
- with np.errstate(invalid='ignore'):
- assert_raises(ValueError, zipf, np.nan)
- assert_raises(ValueError, zipf, [0, 0, np.nan])
- def test_geometric(self):
- p = [0.5]
- bad_p_one = [-1]
- bad_p_two = [1.5]
- geom = random.geometric
- desired = np.array([2, 2, 2])
- self.set_seed()
- actual = geom(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, geom, bad_p_one * 3)
- assert_raises(ValueError, geom, bad_p_two * 3)
- def test_hypergeometric(self):
- ngood = [1]
- nbad = [2]
- nsample = [2]
- bad_ngood = [-1]
- bad_nbad = [-2]
- bad_nsample_one = [0]
- bad_nsample_two = [4]
- hypergeom = random.hypergeometric
- desired = np.array([1, 1, 1])
- self.set_seed()
- actual = hypergeom(ngood * 3, nbad, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
- assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
- assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
- assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)
- self.set_seed()
- actual = hypergeom(ngood, nbad * 3, nsample)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
- assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
- assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
- assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)
- self.set_seed()
- actual = hypergeom(ngood, nbad, nsample * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
- assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)
- assert_raises(ValueError, hypergeom, -1, 10, 20)
- assert_raises(ValueError, hypergeom, 10, -1, 20)
- assert_raises(ValueError, hypergeom, 10, 10, 0)
- assert_raises(ValueError, hypergeom, 10, 10, 25)
- def test_logseries(self):
- p = [0.5]
- bad_p_one = [2]
- bad_p_two = [-1]
- logseries = random.logseries
- desired = np.array([1, 1, 1])
- self.set_seed()
- actual = logseries(p * 3)
- assert_array_equal(actual, desired)
- assert_raises(ValueError, logseries, bad_p_one * 3)
- assert_raises(ValueError, logseries, bad_p_two * 3)
- @pytest.mark.skipif(IS_WASM, reason="can't start thread")
- class TestThread:
- # make sure each state produces the same sequence even in threads
- def setup_method(self):
- self.seeds = range(4)
- def check_function(self, function, sz):
- from threading import Thread
- out1 = np.empty((len(self.seeds),) + sz)
- out2 = np.empty((len(self.seeds),) + sz)
- # threaded generation
- t = [Thread(target=function, args=(random.RandomState(s), o))
- for s, o in zip(self.seeds, out1)]
- [x.start() for x in t]
- [x.join() for x in t]
- # the same serial
- for s, o in zip(self.seeds, out2):
- function(random.RandomState(s), o)
- # these platforms change x87 fpu precision mode in threads
- if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
- assert_array_almost_equal(out1, out2)
- else:
- assert_array_equal(out1, out2)
- def test_normal(self):
- def gen_random(state, out):
- out[...] = state.normal(size=10000)
- self.check_function(gen_random, sz=(10000,))
- def test_exp(self):
- def gen_random(state, out):
- out[...] = state.exponential(scale=np.ones((100, 1000)))
- self.check_function(gen_random, sz=(100, 1000))
- def test_multinomial(self):
- def gen_random(state, out):
- out[...] = state.multinomial(10, [1 / 6.] * 6, size=10000)
- self.check_function(gen_random, sz=(10000, 6))
- # See Issue #4263
- class TestSingleEltArrayInput:
- def setup_method(self):
- self.argOne = np.array([2])
- self.argTwo = np.array([3])
- self.argThree = np.array([4])
- self.tgtShape = (1,)
- def test_one_arg_funcs(self):
- funcs = (random.exponential, random.standard_gamma,
- random.chisquare, random.standard_t,
- random.pareto, random.weibull,
- random.power, random.rayleigh,
- random.poisson, random.zipf,
- random.geometric, random.logseries)
- probfuncs = (random.geometric, random.logseries)
- for func in funcs:
- if func in probfuncs: # p < 1.0
- out = func(np.array([0.5]))
- else:
- out = func(self.argOne)
- assert_equal(out.shape, self.tgtShape)
- def test_two_arg_funcs(self):
- funcs = (random.uniform, random.normal,
- random.beta, random.gamma,
- random.f, random.noncentral_chisquare,
- random.vonmises, random.laplace,
- random.gumbel, random.logistic,
- random.lognormal, random.wald,
- random.binomial, random.negative_binomial)
- probfuncs = (random.binomial, random.negative_binomial)
- for func in funcs:
- if func in probfuncs: # p <= 1
- argTwo = np.array([0.5])
- else:
- argTwo = self.argTwo
- out = func(self.argOne, argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], argTwo)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, argTwo[0])
- assert_equal(out.shape, self.tgtShape)
- def test_three_arg_funcs(self):
- funcs = [random.noncentral_f, random.triangular,
- random.hypergeometric]
- for func in funcs:
- out = func(self.argOne, self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne[0], self.argTwo, self.argThree)
- assert_equal(out.shape, self.tgtShape)
- out = func(self.argOne, self.argTwo[0], self.argThree)
- assert_equal(out.shape, self.tgtShape)
- # Ensure returned array dtype is correct for platform
- def test_integer_dtype(int_func):
- random.seed(123456789)
- fname, args, sha256 = int_func
- f = getattr(random, fname)
- actual = f(*args, size=2)
- assert_(actual.dtype == np.dtype('l'))
- def test_integer_repeat(int_func):
- random.seed(123456789)
- fname, args, sha256 = int_func
- f = getattr(random, fname)
- val = f(*args, size=1000000)
- if sys.byteorder != 'little':
- val = val.byteswap()
- res = hashlib.sha256(val.view(np.int8)).hexdigest()
- assert_(res == sha256)
- def test_broadcast_size_error():
- # GH-16833
- with pytest.raises(ValueError):
- random.binomial(1, [0.3, 0.7], size=(2, 1))
- with pytest.raises(ValueError):
- random.binomial([1, 2], 0.3, size=(2, 1))
- with pytest.raises(ValueError):
- random.binomial([1, 2], [0.3, 0.7], size=(2, 1))
- def test_randomstate_ctor_old_style_pickle():
- rs = np.random.RandomState(MT19937(0))
- rs.standard_normal(1)
- # Directly call reduce which is used in pickling
- ctor, args, state_a = rs.__reduce__()
- # Simulate unpickling an old pickle that only has the name
- assert args[:1] == ("MT19937",)
- b = ctor(*args[:1])
- b.set_state(state_a)
- state_b = b.get_state(legacy=False)
- assert_equal(state_a['bit_generator'], state_b['bit_generator'])
- assert_array_equal(state_a['state']['key'], state_b['state']['key'])
- assert_array_equal(state_a['state']['pos'], state_b['state']['pos'])
- assert_equal(state_a['has_gauss'], state_b['has_gauss'])
- assert_equal(state_a['gauss'], state_b['gauss'])
- def test_hot_swap(restore_singleton_bitgen):
- # GH 21808
- def_bg = np.random.default_rng(0)
- bg = def_bg.bit_generator
- np.random.set_bit_generator(bg)
- assert isinstance(np.random.mtrand._rand._bit_generator, type(bg))
- second_bg = np.random.get_bit_generator()
- assert bg is second_bg
- def test_seed_alt_bit_gen(restore_singleton_bitgen):
- # GH 21808
- bg = PCG64(0)
- np.random.set_bit_generator(bg)
- state = np.random.get_state(legacy=False)
- np.random.seed(1)
- new_state = np.random.get_state(legacy=False)
- print(state)
- print(new_state)
- assert state["bit_generator"] == "PCG64"
- assert state["state"]["state"] != new_state["state"]["state"]
- assert state["state"]["inc"] != new_state["state"]["inc"]
- def test_state_error_alt_bit_gen(restore_singleton_bitgen):
- # GH 21808
- state = np.random.get_state()
- bg = PCG64(0)
- np.random.set_bit_generator(bg)
- with pytest.raises(ValueError, match="state must be for a PCG64"):
- np.random.set_state(state)
- def test_swap_worked(restore_singleton_bitgen):
- # GH 21808
- np.random.seed(98765)
- vals = np.random.randint(0, 2 ** 30, 10)
- bg = PCG64(0)
- state = bg.state
- np.random.set_bit_generator(bg)
- state_direct = np.random.get_state(legacy=False)
- for field in state:
- assert state[field] == state_direct[field]
- np.random.seed(98765)
- pcg_vals = np.random.randint(0, 2 ** 30, 10)
- assert not np.all(vals == pcg_vals)
- new_state = bg.state
- assert new_state["state"]["state"] != state["state"]["state"]
- assert new_state["state"]["inc"] == new_state["state"]["inc"]
- def test_swapped_singleton_against_direct(restore_singleton_bitgen):
- np.random.set_bit_generator(PCG64(98765))
- singleton_vals = np.random.randint(0, 2 ** 30, 10)
- rg = np.random.RandomState(PCG64(98765))
- non_singleton_vals = rg.randint(0, 2 ** 30, 10)
- assert_equal(non_singleton_vals, singleton_vals)
|