mtrand.pyi 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570
  1. from collections.abc import Callable
  2. from typing import Any, Union, overload, Literal
  3. from numpy import (
  4. bool_,
  5. dtype,
  6. float32,
  7. float64,
  8. int8,
  9. int16,
  10. int32,
  11. int64,
  12. int_,
  13. ndarray,
  14. uint,
  15. uint8,
  16. uint16,
  17. uint32,
  18. uint64,
  19. )
  20. from numpy.random.bit_generator import BitGenerator
  21. from numpy._typing import (
  22. ArrayLike,
  23. _ArrayLikeFloat_co,
  24. _ArrayLikeInt_co,
  25. _DoubleCodes,
  26. _DTypeLikeBool,
  27. _DTypeLikeInt,
  28. _DTypeLikeUInt,
  29. _Float32Codes,
  30. _Float64Codes,
  31. _Int8Codes,
  32. _Int16Codes,
  33. _Int32Codes,
  34. _Int64Codes,
  35. _IntCodes,
  36. _ShapeLike,
  37. _SingleCodes,
  38. _SupportsDType,
  39. _UInt8Codes,
  40. _UInt16Codes,
  41. _UInt32Codes,
  42. _UInt64Codes,
  43. _UIntCodes,
  44. )
  45. _DTypeLikeFloat32 = Union[
  46. dtype[float32],
  47. _SupportsDType[dtype[float32]],
  48. type[float32],
  49. _Float32Codes,
  50. _SingleCodes,
  51. ]
  52. _DTypeLikeFloat64 = Union[
  53. dtype[float64],
  54. _SupportsDType[dtype[float64]],
  55. type[float],
  56. type[float64],
  57. _Float64Codes,
  58. _DoubleCodes,
  59. ]
  60. class RandomState:
  61. _bit_generator: BitGenerator
  62. def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
  63. def __repr__(self) -> str: ...
  64. def __str__(self) -> str: ...
  65. def __getstate__(self) -> dict[str, Any]: ...
  66. def __setstate__(self, state: dict[str, Any]) -> None: ...
  67. def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
  68. def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
  69. @overload
  70. def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
  71. @overload
  72. def get_state(
  73. self, legacy: Literal[True] = ...
  74. ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
  75. def set_state(
  76. self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
  77. ) -> None: ...
  78. @overload
  79. def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
  80. @overload
  81. def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  82. @overload
  83. def random(self, size: None = ...) -> float: ... # type: ignore[misc]
  84. @overload
  85. def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  86. @overload
  87. def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
  88. @overload
  89. def beta(
  90. self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  91. ) -> ndarray[Any, dtype[float64]]: ...
  92. @overload
  93. def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  94. @overload
  95. def exponential(
  96. self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  97. ) -> ndarray[Any, dtype[float64]]: ...
  98. @overload
  99. def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
  100. @overload
  101. def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  102. @overload
  103. def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
  104. @overload
  105. def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
  106. @overload
  107. def randint( # type: ignore[misc]
  108. self,
  109. low: int,
  110. high: None | int = ...,
  111. ) -> int: ...
  112. @overload
  113. def randint( # type: ignore[misc]
  114. self,
  115. low: int,
  116. high: None | int = ...,
  117. size: None = ...,
  118. dtype: _DTypeLikeBool = ...,
  119. ) -> bool: ...
  120. @overload
  121. def randint( # type: ignore[misc]
  122. self,
  123. low: int,
  124. high: None | int = ...,
  125. size: None = ...,
  126. dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
  127. ) -> int: ...
  128. @overload
  129. def randint( # type: ignore[misc]
  130. self,
  131. low: _ArrayLikeInt_co,
  132. high: None | _ArrayLikeInt_co = ...,
  133. size: None | _ShapeLike = ...,
  134. ) -> ndarray[Any, dtype[int_]]: ...
  135. @overload
  136. def randint( # type: ignore[misc]
  137. self,
  138. low: _ArrayLikeInt_co,
  139. high: None | _ArrayLikeInt_co = ...,
  140. size: None | _ShapeLike = ...,
  141. dtype: _DTypeLikeBool = ...,
  142. ) -> ndarray[Any, dtype[bool_]]: ...
  143. @overload
  144. def randint( # type: ignore[misc]
  145. self,
  146. low: _ArrayLikeInt_co,
  147. high: None | _ArrayLikeInt_co = ...,
  148. size: None | _ShapeLike = ...,
  149. dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
  150. ) -> ndarray[Any, dtype[int8]]: ...
  151. @overload
  152. def randint( # type: ignore[misc]
  153. self,
  154. low: _ArrayLikeInt_co,
  155. high: None | _ArrayLikeInt_co = ...,
  156. size: None | _ShapeLike = ...,
  157. dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
  158. ) -> ndarray[Any, dtype[int16]]: ...
  159. @overload
  160. def randint( # type: ignore[misc]
  161. self,
  162. low: _ArrayLikeInt_co,
  163. high: None | _ArrayLikeInt_co = ...,
  164. size: None | _ShapeLike = ...,
  165. dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
  166. ) -> ndarray[Any, dtype[int32]]: ...
  167. @overload
  168. def randint( # type: ignore[misc]
  169. self,
  170. low: _ArrayLikeInt_co,
  171. high: None | _ArrayLikeInt_co = ...,
  172. size: None | _ShapeLike = ...,
  173. dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
  174. ) -> ndarray[Any, dtype[int64]]: ...
  175. @overload
  176. def randint( # type: ignore[misc]
  177. self,
  178. low: _ArrayLikeInt_co,
  179. high: None | _ArrayLikeInt_co = ...,
  180. size: None | _ShapeLike = ...,
  181. dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
  182. ) -> ndarray[Any, dtype[uint8]]: ...
  183. @overload
  184. def randint( # type: ignore[misc]
  185. self,
  186. low: _ArrayLikeInt_co,
  187. high: None | _ArrayLikeInt_co = ...,
  188. size: None | _ShapeLike = ...,
  189. dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
  190. ) -> ndarray[Any, dtype[uint16]]: ...
  191. @overload
  192. def randint( # type: ignore[misc]
  193. self,
  194. low: _ArrayLikeInt_co,
  195. high: None | _ArrayLikeInt_co = ...,
  196. size: None | _ShapeLike = ...,
  197. dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
  198. ) -> ndarray[Any, dtype[uint32]]: ...
  199. @overload
  200. def randint( # type: ignore[misc]
  201. self,
  202. low: _ArrayLikeInt_co,
  203. high: None | _ArrayLikeInt_co = ...,
  204. size: None | _ShapeLike = ...,
  205. dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
  206. ) -> ndarray[Any, dtype[uint64]]: ...
  207. @overload
  208. def randint( # type: ignore[misc]
  209. self,
  210. low: _ArrayLikeInt_co,
  211. high: None | _ArrayLikeInt_co = ...,
  212. size: None | _ShapeLike = ...,
  213. dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
  214. ) -> ndarray[Any, dtype[int_]]: ...
  215. @overload
  216. def randint( # type: ignore[misc]
  217. self,
  218. low: _ArrayLikeInt_co,
  219. high: None | _ArrayLikeInt_co = ...,
  220. size: None | _ShapeLike = ...,
  221. dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
  222. ) -> ndarray[Any, dtype[uint]]: ...
  223. def bytes(self, length: int) -> bytes: ...
  224. @overload
  225. def choice(
  226. self,
  227. a: int,
  228. size: None = ...,
  229. replace: bool = ...,
  230. p: None | _ArrayLikeFloat_co = ...,
  231. ) -> int: ...
  232. @overload
  233. def choice(
  234. self,
  235. a: int,
  236. size: _ShapeLike = ...,
  237. replace: bool = ...,
  238. p: None | _ArrayLikeFloat_co = ...,
  239. ) -> ndarray[Any, dtype[int_]]: ...
  240. @overload
  241. def choice(
  242. self,
  243. a: ArrayLike,
  244. size: None = ...,
  245. replace: bool = ...,
  246. p: None | _ArrayLikeFloat_co = ...,
  247. ) -> Any: ...
  248. @overload
  249. def choice(
  250. self,
  251. a: ArrayLike,
  252. size: _ShapeLike = ...,
  253. replace: bool = ...,
  254. p: None | _ArrayLikeFloat_co = ...,
  255. ) -> ndarray[Any, Any]: ...
  256. @overload
  257. def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  258. @overload
  259. def uniform(
  260. self,
  261. low: _ArrayLikeFloat_co = ...,
  262. high: _ArrayLikeFloat_co = ...,
  263. size: None | _ShapeLike = ...,
  264. ) -> ndarray[Any, dtype[float64]]: ...
  265. @overload
  266. def rand(self) -> float: ...
  267. @overload
  268. def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  269. @overload
  270. def randn(self) -> float: ...
  271. @overload
  272. def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  273. @overload
  274. def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ... # type: ignore[misc]
  275. @overload
  276. def random_integers(
  277. self,
  278. low: _ArrayLikeInt_co,
  279. high: None | _ArrayLikeInt_co = ...,
  280. size: None | _ShapeLike = ...,
  281. ) -> ndarray[Any, dtype[int_]]: ...
  282. @overload
  283. def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
  284. @overload
  285. def standard_normal( # type: ignore[misc]
  286. self, size: _ShapeLike = ...
  287. ) -> ndarray[Any, dtype[float64]]: ...
  288. @overload
  289. def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  290. @overload
  291. def normal(
  292. self,
  293. loc: _ArrayLikeFloat_co = ...,
  294. scale: _ArrayLikeFloat_co = ...,
  295. size: None | _ShapeLike = ...,
  296. ) -> ndarray[Any, dtype[float64]]: ...
  297. @overload
  298. def standard_gamma( # type: ignore[misc]
  299. self,
  300. shape: float,
  301. size: None = ...,
  302. ) -> float: ...
  303. @overload
  304. def standard_gamma(
  305. self,
  306. shape: _ArrayLikeFloat_co,
  307. size: None | _ShapeLike = ...,
  308. ) -> ndarray[Any, dtype[float64]]: ...
  309. @overload
  310. def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  311. @overload
  312. def gamma(
  313. self,
  314. shape: _ArrayLikeFloat_co,
  315. scale: _ArrayLikeFloat_co = ...,
  316. size: None | _ShapeLike = ...,
  317. ) -> ndarray[Any, dtype[float64]]: ...
  318. @overload
  319. def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
  320. @overload
  321. def f(
  322. self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  323. ) -> ndarray[Any, dtype[float64]]: ...
  324. @overload
  325. def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  326. @overload
  327. def noncentral_f(
  328. self,
  329. dfnum: _ArrayLikeFloat_co,
  330. dfden: _ArrayLikeFloat_co,
  331. nonc: _ArrayLikeFloat_co,
  332. size: None | _ShapeLike = ...,
  333. ) -> ndarray[Any, dtype[float64]]: ...
  334. @overload
  335. def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  336. @overload
  337. def chisquare(
  338. self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  339. ) -> ndarray[Any, dtype[float64]]: ...
  340. @overload
  341. def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  342. @overload
  343. def noncentral_chisquare(
  344. self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  345. ) -> ndarray[Any, dtype[float64]]: ...
  346. @overload
  347. def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  348. @overload
  349. def standard_t(
  350. self, df: _ArrayLikeFloat_co, size: None = ...
  351. ) -> ndarray[Any, dtype[float64]]: ...
  352. @overload
  353. def standard_t(
  354. self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
  355. ) -> ndarray[Any, dtype[float64]]: ...
  356. @overload
  357. def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
  358. @overload
  359. def vonmises(
  360. self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  361. ) -> ndarray[Any, dtype[float64]]: ...
  362. @overload
  363. def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  364. @overload
  365. def pareto(
  366. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  367. ) -> ndarray[Any, dtype[float64]]: ...
  368. @overload
  369. def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  370. @overload
  371. def weibull(
  372. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  373. ) -> ndarray[Any, dtype[float64]]: ...
  374. @overload
  375. def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  376. @overload
  377. def power(
  378. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  379. ) -> ndarray[Any, dtype[float64]]: ...
  380. @overload
  381. def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
  382. @overload
  383. def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  384. @overload
  385. def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  386. @overload
  387. def laplace(
  388. self,
  389. loc: _ArrayLikeFloat_co = ...,
  390. scale: _ArrayLikeFloat_co = ...,
  391. size: None | _ShapeLike = ...,
  392. ) -> ndarray[Any, dtype[float64]]: ...
  393. @overload
  394. def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  395. @overload
  396. def gumbel(
  397. self,
  398. loc: _ArrayLikeFloat_co = ...,
  399. scale: _ArrayLikeFloat_co = ...,
  400. size: None | _ShapeLike = ...,
  401. ) -> ndarray[Any, dtype[float64]]: ...
  402. @overload
  403. def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  404. @overload
  405. def logistic(
  406. self,
  407. loc: _ArrayLikeFloat_co = ...,
  408. scale: _ArrayLikeFloat_co = ...,
  409. size: None | _ShapeLike = ...,
  410. ) -> ndarray[Any, dtype[float64]]: ...
  411. @overload
  412. def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  413. @overload
  414. def lognormal(
  415. self,
  416. mean: _ArrayLikeFloat_co = ...,
  417. sigma: _ArrayLikeFloat_co = ...,
  418. size: None | _ShapeLike = ...,
  419. ) -> ndarray[Any, dtype[float64]]: ...
  420. @overload
  421. def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  422. @overload
  423. def rayleigh(
  424. self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  425. ) -> ndarray[Any, dtype[float64]]: ...
  426. @overload
  427. def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
  428. @overload
  429. def wald(
  430. self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  431. ) -> ndarray[Any, dtype[float64]]: ...
  432. @overload
  433. def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
  434. @overload
  435. def triangular(
  436. self,
  437. left: _ArrayLikeFloat_co,
  438. mode: _ArrayLikeFloat_co,
  439. right: _ArrayLikeFloat_co,
  440. size: None | _ShapeLike = ...,
  441. ) -> ndarray[Any, dtype[float64]]: ...
  442. @overload
  443. def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  444. @overload
  445. def binomial(
  446. self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  447. ) -> ndarray[Any, dtype[int_]]: ...
  448. @overload
  449. def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  450. @overload
  451. def negative_binomial(
  452. self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  453. ) -> ndarray[Any, dtype[int_]]: ...
  454. @overload
  455. def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
  456. @overload
  457. def poisson(
  458. self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  459. ) -> ndarray[Any, dtype[int_]]: ...
  460. @overload
  461. def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
  462. @overload
  463. def zipf(
  464. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  465. ) -> ndarray[Any, dtype[int_]]: ...
  466. @overload
  467. def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  468. @overload
  469. def geometric(
  470. self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  471. ) -> ndarray[Any, dtype[int_]]: ...
  472. @overload
  473. def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
  474. @overload
  475. def hypergeometric(
  476. self,
  477. ngood: _ArrayLikeInt_co,
  478. nbad: _ArrayLikeInt_co,
  479. nsample: _ArrayLikeInt_co,
  480. size: None | _ShapeLike = ...,
  481. ) -> ndarray[Any, dtype[int_]]: ...
  482. @overload
  483. def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  484. @overload
  485. def logseries(
  486. self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  487. ) -> ndarray[Any, dtype[int_]]: ...
  488. def multivariate_normal(
  489. self,
  490. mean: _ArrayLikeFloat_co,
  491. cov: _ArrayLikeFloat_co,
  492. size: None | _ShapeLike = ...,
  493. check_valid: Literal["warn", "raise", "ignore"] = ...,
  494. tol: float = ...,
  495. ) -> ndarray[Any, dtype[float64]]: ...
  496. def multinomial(
  497. self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  498. ) -> ndarray[Any, dtype[int_]]: ...
  499. def dirichlet(
  500. self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  501. ) -> ndarray[Any, dtype[float64]]: ...
  502. def shuffle(self, x: ArrayLike) -> None: ...
  503. @overload
  504. def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
  505. @overload
  506. def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
  507. _rand: RandomState
  508. beta = _rand.beta
  509. binomial = _rand.binomial
  510. bytes = _rand.bytes
  511. chisquare = _rand.chisquare
  512. choice = _rand.choice
  513. dirichlet = _rand.dirichlet
  514. exponential = _rand.exponential
  515. f = _rand.f
  516. gamma = _rand.gamma
  517. get_state = _rand.get_state
  518. geometric = _rand.geometric
  519. gumbel = _rand.gumbel
  520. hypergeometric = _rand.hypergeometric
  521. laplace = _rand.laplace
  522. logistic = _rand.logistic
  523. lognormal = _rand.lognormal
  524. logseries = _rand.logseries
  525. multinomial = _rand.multinomial
  526. multivariate_normal = _rand.multivariate_normal
  527. negative_binomial = _rand.negative_binomial
  528. noncentral_chisquare = _rand.noncentral_chisquare
  529. noncentral_f = _rand.noncentral_f
  530. normal = _rand.normal
  531. pareto = _rand.pareto
  532. permutation = _rand.permutation
  533. poisson = _rand.poisson
  534. power = _rand.power
  535. rand = _rand.rand
  536. randint = _rand.randint
  537. randn = _rand.randn
  538. random = _rand.random
  539. random_integers = _rand.random_integers
  540. random_sample = _rand.random_sample
  541. rayleigh = _rand.rayleigh
  542. seed = _rand.seed
  543. set_state = _rand.set_state
  544. shuffle = _rand.shuffle
  545. standard_cauchy = _rand.standard_cauchy
  546. standard_exponential = _rand.standard_exponential
  547. standard_gamma = _rand.standard_gamma
  548. standard_normal = _rand.standard_normal
  549. standard_t = _rand.standard_t
  550. triangular = _rand.triangular
  551. uniform = _rand.uniform
  552. vonmises = _rand.vonmises
  553. wald = _rand.wald
  554. weibull = _rand.weibull
  555. zipf = _rand.zipf
  556. # Two legacy that are trivial wrappers around random_sample
  557. sample = _rand.random_sample
  558. ranf = _rand.random_sample
  559. def set_bit_generator(bitgen: BitGenerator) -> None:
  560. ...
  561. def get_bit_generator() -> BitGenerator:
  562. ...