123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638 |
- from collections.abc import Callable
- from typing import Any, Union, overload, TypeVar, Literal
- from numpy import (
- bool_,
- dtype,
- float32,
- float64,
- int8,
- int16,
- int32,
- int64,
- int_,
- ndarray,
- uint,
- uint8,
- uint16,
- uint32,
- uint64,
- )
- from numpy.random import BitGenerator, SeedSequence
- from numpy._typing import (
- ArrayLike,
- _ArrayLikeFloat_co,
- _ArrayLikeInt_co,
- _DoubleCodes,
- _DTypeLikeBool,
- _DTypeLikeInt,
- _DTypeLikeUInt,
- _Float32Codes,
- _Float64Codes,
- _Int8Codes,
- _Int16Codes,
- _Int32Codes,
- _Int64Codes,
- _IntCodes,
- _ShapeLike,
- _SingleCodes,
- _SupportsDType,
- _UInt8Codes,
- _UInt16Codes,
- _UInt32Codes,
- _UInt64Codes,
- _UIntCodes,
- )
- _ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
- _DTypeLikeFloat32 = Union[
- dtype[float32],
- _SupportsDType[dtype[float32]],
- type[float32],
- _Float32Codes,
- _SingleCodes,
- ]
- _DTypeLikeFloat64 = Union[
- dtype[float64],
- _SupportsDType[dtype[float64]],
- type[float],
- type[float64],
- _Float64Codes,
- _DoubleCodes,
- ]
- class Generator:
- def __init__(self, bit_generator: BitGenerator) -> None: ...
- def __repr__(self) -> str: ...
- def __str__(self) -> str: ...
- def __getstate__(self) -> dict[str, Any]: ...
- def __setstate__(self, state: dict[str, Any]) -> None: ...
- def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
- @property
- def bit_generator(self) -> BitGenerator: ...
- def bytes(self, length: int) -> bytes: ...
- @overload
- def standard_normal( # type: ignore[misc]
- self,
- size: None = ...,
- dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
- out: None = ...,
- ) -> float: ...
- @overload
- def standard_normal( # type: ignore[misc]
- self,
- size: _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_normal( # type: ignore[misc]
- self,
- *,
- out: ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_normal( # type: ignore[misc]
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat32 = ...,
- out: None | ndarray[Any, dtype[float32]] = ...,
- ) -> ndarray[Any, dtype[float32]]: ...
- @overload
- def standard_normal( # type: ignore[misc]
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat64 = ...,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
- @overload
- def standard_exponential( # type: ignore[misc]
- self,
- size: None = ...,
- dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
- method: Literal["zig", "inv"] = ...,
- out: None = ...,
- ) -> float: ...
- @overload
- def standard_exponential(
- self,
- size: _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_exponential(
- self,
- *,
- out: ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_exponential(
- self,
- size: _ShapeLike = ...,
- *,
- method: Literal["zig", "inv"] = ...,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_exponential(
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat32 = ...,
- method: Literal["zig", "inv"] = ...,
- out: None | ndarray[Any, dtype[float32]] = ...,
- ) -> ndarray[Any, dtype[float32]]: ...
- @overload
- def standard_exponential(
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat64 = ...,
- method: Literal["zig", "inv"] = ...,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def random( # type: ignore[misc]
- self,
- size: None = ...,
- dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
- out: None = ...,
- ) -> float: ...
- @overload
- def random(
- self,
- *,
- out: ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def random(
- self,
- size: _ShapeLike = ...,
- *,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def random(
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat32 = ...,
- out: None | ndarray[Any, dtype[float32]] = ...,
- ) -> ndarray[Any, dtype[float32]]: ...
- @overload
- def random(
- self,
- size: _ShapeLike = ...,
- dtype: _DTypeLikeFloat64 = ...,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def beta(
- self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def exponential(
- self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- ) -> int: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- size: None = ...,
- dtype: _DTypeLikeBool = ...,
- endpoint: bool = ...,
- ) -> bool: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- size: None = ...,
- dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
- endpoint: bool = ...,
- ) -> int: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: _DTypeLikeBool = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[bool_]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[int8]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[int16]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[int32]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[uint8]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[uint16]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[uint32]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[uint64]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def integers( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
- endpoint: bool = ...,
- ) -> ndarray[Any, dtype[uint]]: ...
- # TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
- @overload
- def choice(
- self,
- a: int,
- size: None = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- axis: int = ...,
- shuffle: bool = ...,
- ) -> int: ...
- @overload
- def choice(
- self,
- a: int,
- size: _ShapeLike = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- axis: int = ...,
- shuffle: bool = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def choice(
- self,
- a: ArrayLike,
- size: None = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- axis: int = ...,
- shuffle: bool = ...,
- ) -> Any: ...
- @overload
- def choice(
- self,
- a: ArrayLike,
- size: _ShapeLike = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- axis: int = ...,
- shuffle: bool = ...,
- ) -> ndarray[Any, Any]: ...
- @overload
- def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def uniform(
- self,
- low: _ArrayLikeFloat_co = ...,
- high: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def normal(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_gamma( # type: ignore[misc]
- self,
- shape: float,
- size: None = ...,
- dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
- out: None = ...,
- ) -> float: ...
- @overload
- def standard_gamma(
- self,
- shape: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_gamma(
- self,
- shape: _ArrayLikeFloat_co,
- *,
- out: ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_gamma(
- self,
- shape: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- dtype: _DTypeLikeFloat32 = ...,
- out: None | ndarray[Any, dtype[float32]] = ...,
- ) -> ndarray[Any, dtype[float32]]: ...
- @overload
- def standard_gamma(
- self,
- shape: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- dtype: _DTypeLikeFloat64 = ...,
- out: None | ndarray[Any, dtype[float64]] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def gamma(
- self,
- shape: _ArrayLikeFloat_co,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def f(
- self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def noncentral_f(
- self,
- dfnum: _ArrayLikeFloat_co,
- dfden: _ArrayLikeFloat_co,
- nonc: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def chisquare(
- self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def noncentral_chisquare(
- self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_t(
- self, df: _ArrayLikeFloat_co, size: None = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_t(
- self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def vonmises(
- self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def pareto(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def weibull(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def power(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def laplace(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def gumbel(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def logistic(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def lognormal(
- self,
- mean: _ArrayLikeFloat_co = ...,
- sigma: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def rayleigh(
- self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def wald(
- self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def triangular(
- self,
- left: _ArrayLikeFloat_co,
- mode: _ArrayLikeFloat_co,
- right: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def binomial(
- self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def negative_binomial(
- self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def poisson(
- self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def zipf(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def geometric(
- self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def hypergeometric(
- self,
- ngood: _ArrayLikeInt_co,
- nbad: _ArrayLikeInt_co,
- nsample: _ArrayLikeInt_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def logseries(
- self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- def multivariate_normal(
- self,
- mean: _ArrayLikeFloat_co,
- cov: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- check_valid: Literal["warn", "raise", "ignore"] = ...,
- tol: float = ...,
- *,
- method: Literal["svd", "eigh", "cholesky"] = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- def multinomial(
- self, n: _ArrayLikeInt_co,
- pvals: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int64]]: ...
- def multivariate_hypergeometric(
- self,
- colors: _ArrayLikeInt_co,
- nsample: int,
- size: None | _ShapeLike = ...,
- method: Literal["marginals", "count"] = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- def dirichlet(
- self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- def permuted(
- self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
- ) -> ndarray[Any, Any]: ...
- def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
- def default_rng(
- seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
- ) -> Generator: ...
|