123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- #!/usr/bin/env python3
- #cython: language_level=3
- """
- This file shows how the to use a BitGenerator to create a distribution.
- """
- import numpy as np
- cimport numpy as np
- cimport cython
- from cpython.pycapsule cimport PyCapsule_IsValid, PyCapsule_GetPointer
- from libc.stdint cimport uint16_t, uint64_t
- from numpy.random cimport bitgen_t
- from numpy.random import PCG64
- from numpy.random.c_distributions cimport (
- random_standard_uniform_fill, random_standard_uniform_fill_f)
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def uniforms(Py_ssize_t n):
- """
- Create an array of `n` uniformly distributed doubles.
- A 'real' distribution would want to process the values into
- some non-uniform distribution
- """
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef double[::1] random_values
- x = PCG64()
- capsule = x.capsule
- # Optional check that the capsule if from a BitGenerator
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- # Cast the pointer
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n, dtype='float64')
- with x.lock, nogil:
- for i in range(n):
- # Call the function
- random_values[i] = rng.next_double(rng.state)
- randoms = np.asarray(random_values)
- return randoms
- # cython example 2
- @cython.boundscheck(False)
- @cython.wraparound(False)
- def uint10_uniforms(Py_ssize_t n):
- """Uniform 10 bit integers stored as 16-bit unsigned integers"""
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef uint16_t[::1] random_values
- cdef int bits_remaining
- cdef int width = 10
- cdef uint64_t buff, mask = 0x3FF
- x = PCG64()
- capsule = x.capsule
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- random_values = np.empty(n, dtype='uint16')
- # Best practice is to release GIL and acquire the lock
- bits_remaining = 0
- with x.lock, nogil:
- for i in range(n):
- if bits_remaining < width:
- buff = rng.next_uint64(rng.state)
- random_values[i] = buff & mask
- buff >>= width
- randoms = np.asarray(random_values)
- return randoms
- # cython example 3
- def uniforms_ex(bit_generator, Py_ssize_t n, dtype=np.float64):
- """
- Create an array of `n` uniformly distributed doubles via a "fill" function.
- A 'real' distribution would want to process the values into
- some non-uniform distribution
- Parameters
- ----------
- bit_generator: BitGenerator instance
- n: int
- Output vector length
- dtype: {str, dtype}, optional
- Desired dtype, either 'd' (or 'float64') or 'f' (or 'float32'). The
- default dtype value is 'd'
- """
- cdef Py_ssize_t i
- cdef bitgen_t *rng
- cdef const char *capsule_name = "BitGenerator"
- cdef np.ndarray randoms
- capsule = bit_generator.capsule
- # Optional check that the capsule if from a BitGenerator
- if not PyCapsule_IsValid(capsule, capsule_name):
- raise ValueError("Invalid pointer to anon_func_state")
- # Cast the pointer
- rng = <bitgen_t *> PyCapsule_GetPointer(capsule, capsule_name)
- _dtype = np.dtype(dtype)
- randoms = np.empty(n, dtype=_dtype)
- if _dtype == np.float32:
- with bit_generator.lock:
- random_standard_uniform_fill_f(rng, n, <float*>np.PyArray_DATA(randoms))
- elif _dtype == np.float64:
- with bit_generator.lock:
- random_standard_uniform_fill(rng, n, <double*>np.PyArray_DATA(randoms))
- else:
- raise TypeError('Unsupported dtype %r for random' % _dtype)
- return randoms
|