123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- """
- ========================
- Random Number Generation
- ========================
- Use ``default_rng()`` to create a `Generator` and call its methods.
- =============== =========================================================
- Generator
- --------------- ---------------------------------------------------------
- Generator Class implementing all of the random number distributions
- default_rng Default constructor for ``Generator``
- =============== =========================================================
- ============================================= ===
- BitGenerator Streams that work with Generator
- --------------------------------------------- ---
- MT19937
- PCG64
- PCG64DXSM
- Philox
- SFC64
- ============================================= ===
- ============================================= ===
- Getting entropy to initialize a BitGenerator
- --------------------------------------------- ---
- SeedSequence
- ============================================= ===
- Legacy
- ------
- For backwards compatibility with previous versions of numpy before 1.17, the
- various aliases to the global `RandomState` methods are left alone and do not
- use the new `Generator` API.
- ==================== =========================================================
- Utility functions
- -------------------- ---------------------------------------------------------
- random Uniformly distributed floats over ``[0, 1)``
- bytes Uniformly distributed random bytes.
- permutation Randomly permute a sequence / generate a random sequence.
- shuffle Randomly permute a sequence in place.
- choice Random sample from 1-D array.
- ==================== =========================================================
- ==================== =========================================================
- Compatibility
- functions - removed
- in the new API
- -------------------- ---------------------------------------------------------
- rand Uniformly distributed values.
- randn Normally distributed values.
- ranf Uniformly distributed floating point numbers.
- random_integers Uniformly distributed integers in a given range.
- (deprecated, use ``integers(..., closed=True)`` instead)
- random_sample Alias for `random_sample`
- randint Uniformly distributed integers in a given range
- seed Seed the legacy random number generator.
- ==================== =========================================================
- ==================== =========================================================
- Univariate
- distributions
- -------------------- ---------------------------------------------------------
- beta Beta distribution over ``[0, 1]``.
- binomial Binomial distribution.
- chisquare :math:`\\chi^2` distribution.
- exponential Exponential distribution.
- f F (Fisher-Snedecor) distribution.
- gamma Gamma distribution.
- geometric Geometric distribution.
- gumbel Gumbel distribution.
- hypergeometric Hypergeometric distribution.
- laplace Laplace distribution.
- logistic Logistic distribution.
- lognormal Log-normal distribution.
- logseries Logarithmic series distribution.
- negative_binomial Negative binomial distribution.
- noncentral_chisquare Non-central chi-square distribution.
- noncentral_f Non-central F distribution.
- normal Normal / Gaussian distribution.
- pareto Pareto distribution.
- poisson Poisson distribution.
- power Power distribution.
- rayleigh Rayleigh distribution.
- triangular Triangular distribution.
- uniform Uniform distribution.
- vonmises Von Mises circular distribution.
- wald Wald (inverse Gaussian) distribution.
- weibull Weibull distribution.
- zipf Zipf's distribution over ranked data.
- ==================== =========================================================
- ==================== ==========================================================
- Multivariate
- distributions
- -------------------- ----------------------------------------------------------
- dirichlet Multivariate generalization of Beta distribution.
- multinomial Multivariate generalization of the binomial distribution.
- multivariate_normal Multivariate generalization of the normal distribution.
- ==================== ==========================================================
- ==================== =========================================================
- Standard
- distributions
- -------------------- ---------------------------------------------------------
- standard_cauchy Standard Cauchy-Lorentz distribution.
- standard_exponential Standard exponential distribution.
- standard_gamma Standard Gamma distribution.
- standard_normal Standard normal distribution.
- standard_t Standard Student's t-distribution.
- ==================== =========================================================
- ==================== =========================================================
- Internal functions
- -------------------- ---------------------------------------------------------
- get_state Get tuple representing internal state of generator.
- set_state Set state of generator.
- ==================== =========================================================
- """
- __all__ = [
- 'beta',
- 'binomial',
- 'bytes',
- 'chisquare',
- 'choice',
- 'dirichlet',
- 'exponential',
- 'f',
- 'gamma',
- 'geometric',
- 'get_state',
- 'gumbel',
- 'hypergeometric',
- 'laplace',
- 'logistic',
- 'lognormal',
- 'logseries',
- 'multinomial',
- 'multivariate_normal',
- 'negative_binomial',
- 'noncentral_chisquare',
- 'noncentral_f',
- 'normal',
- 'pareto',
- 'permutation',
- 'poisson',
- 'power',
- 'rand',
- 'randint',
- 'randn',
- 'random',
- 'random_integers',
- 'random_sample',
- 'ranf',
- 'rayleigh',
- 'sample',
- 'seed',
- 'set_state',
- 'shuffle',
- 'standard_cauchy',
- 'standard_exponential',
- 'standard_gamma',
- 'standard_normal',
- 'standard_t',
- 'triangular',
- 'uniform',
- 'vonmises',
- 'wald',
- 'weibull',
- 'zipf',
- ]
- # add these for module-freeze analysis (like PyInstaller)
- from . import _pickle
- from . import _common
- from . import _bounded_integers
- from ._generator import Generator, default_rng
- from .bit_generator import SeedSequence, BitGenerator
- from ._mt19937 import MT19937
- from ._pcg64 import PCG64, PCG64DXSM
- from ._philox import Philox
- from ._sfc64 import SFC64
- from .mtrand import *
- __all__ += ['Generator', 'RandomState', 'SeedSequence', 'MT19937',
- 'Philox', 'PCG64', 'PCG64DXSM', 'SFC64', 'default_rng',
- 'BitGenerator']
- def __RandomState_ctor():
- """Return a RandomState instance.
- This function exists solely to assist (un)pickling.
- Note that the state of the RandomState returned here is irrelevant, as this
- function's entire purpose is to return a newly allocated RandomState whose
- state pickle can set. Consequently the RandomState returned by this function
- is a freshly allocated copy with a seed=0.
- See https://github.com/numpy/numpy/issues/4763 for a detailed discussion
- """
- return RandomState(seed=0)
- from numpy._pytesttester import PytestTester
- test = PytestTester(__name__)
- del PytestTester
|