123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 |
- import collections.abc
- import numpy as np
- from numpy import matrix, asmatrix, bmat
- from numpy.testing import (
- assert_, assert_equal, assert_almost_equal, assert_array_equal,
- assert_array_almost_equal, assert_raises
- )
- from numpy.linalg import matrix_power
- from numpy.matrixlib import mat
- class TestCtor:
- def test_basic(self):
- A = np.array([[1, 2], [3, 4]])
- mA = matrix(A)
- assert_(np.all(mA.A == A))
- B = bmat("A,A;A,A")
- C = bmat([[A, A], [A, A]])
- D = np.array([[1, 2, 1, 2],
- [3, 4, 3, 4],
- [1, 2, 1, 2],
- [3, 4, 3, 4]])
- assert_(np.all(B.A == D))
- assert_(np.all(C.A == D))
- E = np.array([[5, 6], [7, 8]])
- AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
- assert_(np.all(bmat([A, E]) == AEresult))
- vec = np.arange(5)
- mvec = matrix(vec)
- assert_(mvec.shape == (1, 5))
- def test_exceptions(self):
- # Check for ValueError when called with invalid string data.
- assert_raises(ValueError, matrix, "invalid")
- def test_bmat_nondefault_str(self):
- A = np.array([[1, 2], [3, 4]])
- B = np.array([[5, 6], [7, 8]])
- Aresult = np.array([[1, 2, 1, 2],
- [3, 4, 3, 4],
- [1, 2, 1, 2],
- [3, 4, 3, 4]])
- mixresult = np.array([[1, 2, 5, 6],
- [3, 4, 7, 8],
- [5, 6, 1, 2],
- [7, 8, 3, 4]])
- assert_(np.all(bmat("A,A;A,A") == Aresult))
- assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
- assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
- assert_(
- np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
- b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
- assert_(np.all(b2 == mixresult))
- class TestProperties:
- def test_sum(self):
- """Test whether matrix.sum(axis=1) preserves orientation.
- Fails in NumPy <= 0.9.6.2127.
- """
- M = matrix([[1, 2, 0, 0],
- [3, 4, 0, 0],
- [1, 2, 1, 2],
- [3, 4, 3, 4]])
- sum0 = matrix([8, 12, 4, 6])
- sum1 = matrix([3, 7, 6, 14]).T
- sumall = 30
- assert_array_equal(sum0, M.sum(axis=0))
- assert_array_equal(sum1, M.sum(axis=1))
- assert_equal(sumall, M.sum())
- assert_array_equal(sum0, np.sum(M, axis=0))
- assert_array_equal(sum1, np.sum(M, axis=1))
- assert_equal(sumall, np.sum(M))
- def test_prod(self):
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(x.prod(), 720)
- assert_equal(x.prod(0), matrix([[4, 10, 18]]))
- assert_equal(x.prod(1), matrix([[6], [120]]))
- assert_equal(np.prod(x), 720)
- assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
- assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))
- y = matrix([0, 1, 3])
- assert_(y.prod() == 0)
- def test_max(self):
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(x.max(), 6)
- assert_equal(x.max(0), matrix([[4, 5, 6]]))
- assert_equal(x.max(1), matrix([[3], [6]]))
- assert_equal(np.max(x), 6)
- assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
- assert_equal(np.max(x, axis=1), matrix([[3], [6]]))
- def test_min(self):
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(x.min(), 1)
- assert_equal(x.min(0), matrix([[1, 2, 3]]))
- assert_equal(x.min(1), matrix([[1], [4]]))
- assert_equal(np.min(x), 1)
- assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
- assert_equal(np.min(x, axis=1), matrix([[1], [4]]))
- def test_ptp(self):
- x = np.arange(4).reshape((2, 2))
- assert_(x.ptp() == 3)
- assert_(np.all(x.ptp(0) == np.array([2, 2])))
- assert_(np.all(x.ptp(1) == np.array([1, 1])))
- def test_var(self):
- x = np.arange(9).reshape((3, 3))
- mx = x.view(np.matrix)
- assert_equal(x.var(ddof=0), mx.var(ddof=0))
- assert_equal(x.var(ddof=1), mx.var(ddof=1))
- def test_basic(self):
- import numpy.linalg as linalg
- A = np.array([[1., 2.],
- [3., 4.]])
- mA = matrix(A)
- assert_(np.allclose(linalg.inv(A), mA.I))
- assert_(np.all(np.array(np.transpose(A) == mA.T)))
- assert_(np.all(np.array(np.transpose(A) == mA.H)))
- assert_(np.all(A == mA.A))
- B = A + 2j*A
- mB = matrix(B)
- assert_(np.allclose(linalg.inv(B), mB.I))
- assert_(np.all(np.array(np.transpose(B) == mB.T)))
- assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))
- def test_pinv(self):
- x = matrix(np.arange(6).reshape(2, 3))
- xpinv = matrix([[-0.77777778, 0.27777778],
- [-0.11111111, 0.11111111],
- [ 0.55555556, -0.05555556]])
- assert_almost_equal(x.I, xpinv)
- def test_comparisons(self):
- A = np.arange(100).reshape(10, 10)
- mA = matrix(A)
- mB = matrix(A) + 0.1
- assert_(np.all(mB == A+0.1))
- assert_(np.all(mB == matrix(A+0.1)))
- assert_(not np.any(mB == matrix(A-0.1)))
- assert_(np.all(mA < mB))
- assert_(np.all(mA <= mB))
- assert_(np.all(mA <= mA))
- assert_(not np.any(mA < mA))
- assert_(not np.any(mB < mA))
- assert_(np.all(mB >= mA))
- assert_(np.all(mB >= mB))
- assert_(not np.any(mB > mB))
- assert_(np.all(mA == mA))
- assert_(not np.any(mA == mB))
- assert_(np.all(mB != mA))
- assert_(not np.all(abs(mA) > 0))
- assert_(np.all(abs(mB > 0)))
- def test_asmatrix(self):
- A = np.arange(100).reshape(10, 10)
- mA = asmatrix(A)
- A[0, 0] = -10
- assert_(A[0, 0] == mA[0, 0])
- def test_noaxis(self):
- A = matrix([[1, 0], [0, 1]])
- assert_(A.sum() == matrix(2))
- assert_(A.mean() == matrix(0.5))
- def test_repr(self):
- A = matrix([[1, 0], [0, 1]])
- assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])")
- def test_make_bool_matrix_from_str(self):
- A = matrix('True; True; False')
- B = matrix([[True], [True], [False]])
- assert_array_equal(A, B)
- class TestCasting:
- def test_basic(self):
- A = np.arange(100).reshape(10, 10)
- mA = matrix(A)
- mB = mA.copy()
- O = np.ones((10, 10), np.float64) * 0.1
- mB = mB + O
- assert_(mB.dtype.type == np.float64)
- assert_(np.all(mA != mB))
- assert_(np.all(mB == mA+0.1))
- mC = mA.copy()
- O = np.ones((10, 10), np.complex128)
- mC = mC * O
- assert_(mC.dtype.type == np.complex128)
- assert_(np.all(mA != mB))
- class TestAlgebra:
- def test_basic(self):
- import numpy.linalg as linalg
- A = np.array([[1., 2.], [3., 4.]])
- mA = matrix(A)
- B = np.identity(2)
- for i in range(6):
- assert_(np.allclose((mA ** i).A, B))
- B = np.dot(B, A)
- Ainv = linalg.inv(A)
- B = np.identity(2)
- for i in range(6):
- assert_(np.allclose((mA ** -i).A, B))
- B = np.dot(B, Ainv)
- assert_(np.allclose((mA * mA).A, np.dot(A, A)))
- assert_(np.allclose((mA + mA).A, (A + A)))
- assert_(np.allclose((3*mA).A, (3*A)))
- mA2 = matrix(A)
- mA2 *= 3
- assert_(np.allclose(mA2.A, 3*A))
- def test_pow(self):
- """Test raising a matrix to an integer power works as expected."""
- m = matrix("1. 2.; 3. 4.")
- m2 = m.copy()
- m2 **= 2
- mi = m.copy()
- mi **= -1
- m4 = m2.copy()
- m4 **= 2
- assert_array_almost_equal(m2, m**2)
- assert_array_almost_equal(m4, np.dot(m2, m2))
- assert_array_almost_equal(np.dot(mi, m), np.eye(2))
- def test_scalar_type_pow(self):
- m = matrix([[1, 2], [3, 4]])
- for scalar_t in [np.int8, np.uint8]:
- two = scalar_t(2)
- assert_array_almost_equal(m ** 2, m ** two)
- def test_notimplemented(self):
- '''Check that 'not implemented' operations produce a failure.'''
- A = matrix([[1., 2.],
- [3., 4.]])
- # __rpow__
- with assert_raises(TypeError):
- 1.0**A
- # __mul__ with something not a list, ndarray, tuple, or scalar
- with assert_raises(TypeError):
- A*object()
- class TestMatrixReturn:
- def test_instance_methods(self):
- a = matrix([1.0], dtype='f8')
- methodargs = {
- 'astype': ('intc',),
- 'clip': (0.0, 1.0),
- 'compress': ([1],),
- 'repeat': (1,),
- 'reshape': (1,),
- 'swapaxes': (0, 0),
- 'dot': np.array([1.0]),
- }
- excluded_methods = [
- 'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
- 'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
- 'searchsorted', 'setflags', 'setfield', 'sort',
- 'partition', 'argpartition',
- 'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
- 'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
- 'prod', 'std', 'ctypes', 'itemset',
- ]
- for attrib in dir(a):
- if attrib.startswith('_') or attrib in excluded_methods:
- continue
- f = getattr(a, attrib)
- if isinstance(f, collections.abc.Callable):
- # reset contents of a
- a.astype('f8')
- a.fill(1.0)
- if attrib in methodargs:
- args = methodargs[attrib]
- else:
- args = ()
- b = f(*args)
- assert_(type(b) is matrix, "%s" % attrib)
- assert_(type(a.real) is matrix)
- assert_(type(a.imag) is matrix)
- c, d = matrix([0.0]).nonzero()
- assert_(type(c) is np.ndarray)
- assert_(type(d) is np.ndarray)
- class TestIndexing:
- def test_basic(self):
- x = asmatrix(np.zeros((3, 2), float))
- y = np.zeros((3, 1), float)
- y[:, 0] = [0.8, 0.2, 0.3]
- x[:, 1] = y > 0.5
- assert_equal(x, [[0, 1], [0, 0], [0, 0]])
- class TestNewScalarIndexing:
- a = matrix([[1, 2], [3, 4]])
- def test_dimesions(self):
- a = self.a
- x = a[0]
- assert_equal(x.ndim, 2)
- def test_array_from_matrix_list(self):
- a = self.a
- x = np.array([a, a])
- assert_equal(x.shape, [2, 2, 2])
- def test_array_to_list(self):
- a = self.a
- assert_equal(a.tolist(), [[1, 2], [3, 4]])
- def test_fancy_indexing(self):
- a = self.a
- x = a[1, [0, 1, 0]]
- assert_(isinstance(x, matrix))
- assert_equal(x, matrix([[3, 4, 3]]))
- x = a[[1, 0]]
- assert_(isinstance(x, matrix))
- assert_equal(x, matrix([[3, 4], [1, 2]]))
- x = a[[[1], [0]], [[1, 0], [0, 1]]]
- assert_(isinstance(x, matrix))
- assert_equal(x, matrix([[4, 3], [1, 2]]))
- def test_matrix_element(self):
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(x[0][0], matrix([[1, 2, 3]]))
- assert_equal(x[0][0].shape, (1, 3))
- assert_equal(x[0].shape, (1, 3))
- assert_equal(x[:, 0].shape, (2, 1))
- x = matrix(0)
- assert_equal(x[0, 0], 0)
- assert_equal(x[0], 0)
- assert_equal(x[:, 0].shape, x.shape)
- def test_scalar_indexing(self):
- x = asmatrix(np.zeros((3, 2), float))
- assert_equal(x[0, 0], x[0][0])
- def test_row_column_indexing(self):
- x = asmatrix(np.eye(2))
- assert_array_equal(x[0,:], [[1, 0]])
- assert_array_equal(x[1,:], [[0, 1]])
- assert_array_equal(x[:, 0], [[1], [0]])
- assert_array_equal(x[:, 1], [[0], [1]])
- def test_boolean_indexing(self):
- A = np.arange(6)
- A.shape = (3, 2)
- x = asmatrix(A)
- assert_array_equal(x[:, np.array([True, False])], x[:, 0])
- assert_array_equal(x[np.array([True, False, False]),:], x[0,:])
- def test_list_indexing(self):
- A = np.arange(6)
- A.shape = (3, 2)
- x = asmatrix(A)
- assert_array_equal(x[:, [1, 0]], x[:, ::-1])
- assert_array_equal(x[[2, 1, 0],:], x[::-1,:])
- class TestPower:
- def test_returntype(self):
- a = np.array([[0, 1], [0, 0]])
- assert_(type(matrix_power(a, 2)) is np.ndarray)
- a = mat(a)
- assert_(type(matrix_power(a, 2)) is matrix)
- def test_list(self):
- assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])
- class TestShape:
- a = np.array([[1], [2]])
- m = matrix([[1], [2]])
- def test_shape(self):
- assert_equal(self.a.shape, (2, 1))
- assert_equal(self.m.shape, (2, 1))
- def test_numpy_ravel(self):
- assert_equal(np.ravel(self.a).shape, (2,))
- assert_equal(np.ravel(self.m).shape, (2,))
- def test_member_ravel(self):
- assert_equal(self.a.ravel().shape, (2,))
- assert_equal(self.m.ravel().shape, (1, 2))
- def test_member_flatten(self):
- assert_equal(self.a.flatten().shape, (2,))
- assert_equal(self.m.flatten().shape, (1, 2))
- def test_numpy_ravel_order(self):
- x = np.array([[1, 2, 3], [4, 5, 6]])
- assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
- assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
- assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
- assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
- assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
- assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
- assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
- def test_matrix_ravel_order(self):
- x = matrix([[1, 2, 3], [4, 5, 6]])
- assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
- assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
- assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
- assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])
- def test_array_memory_sharing(self):
- assert_(np.may_share_memory(self.a, self.a.ravel()))
- assert_(not np.may_share_memory(self.a, self.a.flatten()))
- def test_matrix_memory_sharing(self):
- assert_(np.may_share_memory(self.m, self.m.ravel()))
- assert_(not np.may_share_memory(self.m, self.m.flatten()))
- def test_expand_dims_matrix(self):
- # matrices are always 2d - so expand_dims only makes sense when the
- # type is changed away from matrix.
- a = np.arange(10).reshape((2, 5)).view(np.matrix)
- expanded = np.expand_dims(a, axis=1)
- assert_equal(expanded.ndim, 3)
- assert_(not isinstance(expanded, np.matrix))
|