123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- """ Test functions for linalg module
- """
- import warnings
- import numpy as np
- from numpy import linalg, arange, float64, array, dot, transpose
- from numpy.testing import (
- assert_, assert_raises, assert_equal, assert_array_equal,
- assert_array_almost_equal, assert_array_less
- )
- class TestRegression:
- def test_eig_build(self):
- # Ticket #652
- rva = array([1.03221168e+02 + 0.j,
- -1.91843603e+01 + 0.j,
- -6.04004526e-01 + 15.84422474j,
- -6.04004526e-01 - 15.84422474j,
- -1.13692929e+01 + 0.j,
- -6.57612485e-01 + 10.41755503j,
- -6.57612485e-01 - 10.41755503j,
- 1.82126812e+01 + 0.j,
- 1.06011014e+01 + 0.j,
- 7.80732773e+00 + 0.j,
- -7.65390898e-01 + 0.j,
- 1.51971555e-15 + 0.j,
- -1.51308713e-15 + 0.j])
- a = arange(13 * 13, dtype=float64)
- a.shape = (13, 13)
- a = a % 17
- va, ve = linalg.eig(a)
- va.sort()
- rva.sort()
- assert_array_almost_equal(va, rva)
- def test_eigh_build(self):
- # Ticket 662.
- rvals = [68.60568999, 89.57756725, 106.67185574]
- cov = array([[77.70273908, 3.51489954, 15.64602427],
- [3.51489954, 88.97013878, -1.07431931],
- [15.64602427, -1.07431931, 98.18223512]])
- vals, vecs = linalg.eigh(cov)
- assert_array_almost_equal(vals, rvals)
- def test_svd_build(self):
- # Ticket 627.
- a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
- m, n = a.shape
- u, s, vh = linalg.svd(a)
- b = dot(transpose(u[:, n:]), a)
- assert_array_almost_equal(b, np.zeros((2, 2)))
- def test_norm_vector_badarg(self):
- # Regression for #786: Frobenius norm for vectors raises
- # ValueError.
- assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
- def test_lapack_endian(self):
- # For bug #1482
- a = array([[5.7998084, -2.1825367],
- [-2.1825367, 9.85910595]], dtype='>f8')
- b = array(a, dtype='<f8')
- ap = linalg.cholesky(a)
- bp = linalg.cholesky(b)
- assert_array_equal(ap, bp)
- def test_large_svd_32bit(self):
- # See gh-4442, 64bit would require very large/slow matrices.
- x = np.eye(1000, 66)
- np.linalg.svd(x)
- def test_svd_no_uv(self):
- # gh-4733
- for shape in (3, 4), (4, 4), (4, 3):
- for t in float, complex:
- a = np.ones(shape, dtype=t)
- w = linalg.svd(a, compute_uv=False)
- c = np.count_nonzero(np.absolute(w) > 0.5)
- assert_equal(c, 1)
- assert_equal(np.linalg.matrix_rank(a), 1)
- assert_array_less(1, np.linalg.norm(a, ord=2))
- def test_norm_object_array(self):
- # gh-7575
- testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
- norm = linalg.norm(testvector)
- assert_array_equal(norm, [0, 1])
- assert_(norm.dtype == np.dtype('float64'))
- norm = linalg.norm(testvector, ord=1)
- assert_array_equal(norm, [0, 1])
- assert_(norm.dtype != np.dtype('float64'))
- norm = linalg.norm(testvector, ord=2)
- assert_array_equal(norm, [0, 1])
- assert_(norm.dtype == np.dtype('float64'))
- assert_raises(ValueError, linalg.norm, testvector, ord='fro')
- assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
- assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
- assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
- with warnings.catch_warnings():
- warnings.simplefilter("error", DeprecationWarning)
- assert_raises((AttributeError, DeprecationWarning),
- linalg.norm, testvector, ord=0)
- assert_raises(ValueError, linalg.norm, testvector, ord=-1)
- assert_raises(ValueError, linalg.norm, testvector, ord=-2)
- testmatrix = np.array([[np.array([0, 1]), 0, 0],
- [0, 0, 0]], dtype=object)
- norm = linalg.norm(testmatrix)
- assert_array_equal(norm, [0, 1])
- assert_(norm.dtype == np.dtype('float64'))
- norm = linalg.norm(testmatrix, ord='fro')
- assert_array_equal(norm, [0, 1])
- assert_(norm.dtype == np.dtype('float64'))
- assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
- assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
- assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
- assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
- assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
- assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
- assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
- assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
- assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
- def test_lstsq_complex_larger_rhs(self):
- # gh-9891
- size = 20
- n_rhs = 70
- G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
- u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
- b = G.dot(u)
- # This should work without segmentation fault.
- u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
- # check results just in case
- assert_array_almost_equal(u_lstsq, u)
|