123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787 |
- import numpy as np
- import functools
- import sys
- import pytest
- from numpy.lib.shape_base import (
- apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit,
- vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis,
- put_along_axis
- )
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_raises, assert_warns
- )
- IS_64BIT = sys.maxsize > 2**32
- def _add_keepdims(func):
- """ hack in keepdims behavior into a function taking an axis """
- @functools.wraps(func)
- def wrapped(a, axis, **kwargs):
- res = func(a, axis=axis, **kwargs)
- if axis is None:
- axis = 0 # res is now a scalar, so we can insert this anywhere
- return np.expand_dims(res, axis=axis)
- return wrapped
- class TestTakeAlongAxis:
- def test_argequivalent(self):
- """ Test it translates from arg<func> to <func> """
- from numpy.random import rand
- a = rand(3, 4, 5)
- funcs = [
- (np.sort, np.argsort, dict()),
- (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
- (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
- (np.partition, np.argpartition, dict(kth=2)),
- ]
- for func, argfunc, kwargs in funcs:
- for axis in list(range(a.ndim)) + [None]:
- a_func = func(a, axis=axis, **kwargs)
- ai_func = argfunc(a, axis=axis, **kwargs)
- assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))
- def test_invalid(self):
- """ Test it errors when indices has too few dimensions """
- a = np.ones((10, 10))
- ai = np.ones((10, 2), dtype=np.intp)
- # sanity check
- take_along_axis(a, ai, axis=1)
- # not enough indices
- assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
- # bool arrays not allowed
- assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
- # float arrays not allowed
- assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
- # invalid axis
- assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)
- def test_empty(self):
- """ Test everything is ok with empty results, even with inserted dims """
- a = np.ones((3, 4, 5))
- ai = np.ones((3, 0, 5), dtype=np.intp)
- actual = take_along_axis(a, ai, axis=1)
- assert_equal(actual.shape, ai.shape)
- def test_broadcast(self):
- """ Test that non-indexing dimensions are broadcast in both directions """
- a = np.ones((3, 4, 1))
- ai = np.ones((1, 2, 5), dtype=np.intp)
- actual = take_along_axis(a, ai, axis=1)
- assert_equal(actual.shape, (3, 2, 5))
- class TestPutAlongAxis:
- def test_replace_max(self):
- a_base = np.array([[10, 30, 20], [60, 40, 50]])
- for axis in list(range(a_base.ndim)) + [None]:
- # we mutate this in the loop
- a = a_base.copy()
- # replace the max with a small value
- i_max = _add_keepdims(np.argmax)(a, axis=axis)
- put_along_axis(a, i_max, -99, axis=axis)
- # find the new minimum, which should max
- i_min = _add_keepdims(np.argmin)(a, axis=axis)
- assert_equal(i_min, i_max)
- def test_broadcast(self):
- """ Test that non-indexing dimensions are broadcast in both directions """
- a = np.ones((3, 4, 1))
- ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
- put_along_axis(a, ai, 20, axis=1)
- assert_equal(take_along_axis(a, ai, axis=1), 20)
- class TestApplyAlongAxis:
- def test_simple(self):
- a = np.ones((20, 10), 'd')
- assert_array_equal(
- apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
- def test_simple101(self):
- a = np.ones((10, 101), 'd')
- assert_array_equal(
- apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))
- def test_3d(self):
- a = np.arange(27).reshape((3, 3, 3))
- assert_array_equal(apply_along_axis(np.sum, 0, a),
- [[27, 30, 33], [36, 39, 42], [45, 48, 51]])
- def test_preserve_subclass(self):
- def double(row):
- return row * 2
- class MyNDArray(np.ndarray):
- pass
- m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
- expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)
- result = apply_along_axis(double, 0, m)
- assert_(isinstance(result, MyNDArray))
- assert_array_equal(result, expected)
- result = apply_along_axis(double, 1, m)
- assert_(isinstance(result, MyNDArray))
- assert_array_equal(result, expected)
- def test_subclass(self):
- class MinimalSubclass(np.ndarray):
- data = 1
- def minimal_function(array):
- return array.data
- a = np.zeros((6, 3)).view(MinimalSubclass)
- assert_array_equal(
- apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1])
- )
- def test_scalar_array(self, cls=np.ndarray):
- a = np.ones((6, 3)).view(cls)
- res = apply_along_axis(np.sum, 0, a)
- assert_(isinstance(res, cls))
- assert_array_equal(res, np.array([6, 6, 6]).view(cls))
- def test_0d_array(self, cls=np.ndarray):
- def sum_to_0d(x):
- """ Sum x, returning a 0d array of the same class """
- assert_equal(x.ndim, 1)
- return np.squeeze(np.sum(x, keepdims=True))
- a = np.ones((6, 3)).view(cls)
- res = apply_along_axis(sum_to_0d, 0, a)
- assert_(isinstance(res, cls))
- assert_array_equal(res, np.array([6, 6, 6]).view(cls))
- res = apply_along_axis(sum_to_0d, 1, a)
- assert_(isinstance(res, cls))
- assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))
- def test_axis_insertion(self, cls=np.ndarray):
- def f1to2(x):
- """produces an asymmetric non-square matrix from x"""
- assert_equal(x.ndim, 1)
- return (x[::-1] * x[1:,None]).view(cls)
- a2d = np.arange(6*3).reshape((6, 3))
- # 2d insertion along first axis
- actual = apply_along_axis(f1to2, 0, a2d)
- expected = np.stack([
- f1to2(a2d[:,i]) for i in range(a2d.shape[1])
- ], axis=-1).view(cls)
- assert_equal(type(actual), type(expected))
- assert_equal(actual, expected)
- # 2d insertion along last axis
- actual = apply_along_axis(f1to2, 1, a2d)
- expected = np.stack([
- f1to2(a2d[i,:]) for i in range(a2d.shape[0])
- ], axis=0).view(cls)
- assert_equal(type(actual), type(expected))
- assert_equal(actual, expected)
- # 3d insertion along middle axis
- a3d = np.arange(6*5*3).reshape((6, 5, 3))
- actual = apply_along_axis(f1to2, 1, a3d)
- expected = np.stack([
- np.stack([
- f1to2(a3d[i,:,j]) for i in range(a3d.shape[0])
- ], axis=0)
- for j in range(a3d.shape[2])
- ], axis=-1).view(cls)
- assert_equal(type(actual), type(expected))
- assert_equal(actual, expected)
- def test_subclass_preservation(self):
- class MinimalSubclass(np.ndarray):
- pass
- self.test_scalar_array(MinimalSubclass)
- self.test_0d_array(MinimalSubclass)
- self.test_axis_insertion(MinimalSubclass)
- def test_axis_insertion_ma(self):
- def f1to2(x):
- """produces an asymmetric non-square matrix from x"""
- assert_equal(x.ndim, 1)
- res = x[::-1] * x[1:,None]
- return np.ma.masked_where(res%5==0, res)
- a = np.arange(6*3).reshape((6, 3))
- res = apply_along_axis(f1to2, 0, a)
- assert_(isinstance(res, np.ma.masked_array))
- assert_equal(res.ndim, 3)
- assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask)
- assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask)
- assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask)
- def test_tuple_func1d(self):
- def sample_1d(x):
- return x[1], x[0]
- res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
- assert_array_equal(res, np.array([[2, 1], [4, 3]]))
- def test_empty(self):
- # can't apply_along_axis when there's no chance to call the function
- def never_call(x):
- assert_(False) # should never be reached
- a = np.empty((0, 0))
- assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
- assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)
- # but it's sometimes ok with some non-zero dimensions
- def empty_to_1(x):
- assert_(len(x) == 0)
- return 1
- a = np.empty((10, 0))
- actual = np.apply_along_axis(empty_to_1, 1, a)
- assert_equal(actual, np.ones(10))
- assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)
- def test_with_iterable_object(self):
- # from issue 5248
- d = np.array([
- [{1, 11}, {2, 22}, {3, 33}],
- [{4, 44}, {5, 55}, {6, 66}]
- ])
- actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
- expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
- assert_equal(actual, expected)
- # issue 8642 - assert_equal doesn't detect this!
- for i in np.ndindex(actual.shape):
- assert_equal(type(actual[i]), type(expected[i]))
- class TestApplyOverAxes:
- def test_simple(self):
- a = np.arange(24).reshape(2, 3, 4)
- aoa_a = apply_over_axes(np.sum, a, [0, 2])
- assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))
- class TestExpandDims:
- def test_functionality(self):
- s = (2, 3, 4, 5)
- a = np.empty(s)
- for axis in range(-5, 4):
- b = expand_dims(a, axis)
- assert_(b.shape[axis] == 1)
- assert_(np.squeeze(b).shape == s)
- def test_axis_tuple(self):
- a = np.empty((3, 3, 3))
- assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
- assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
- assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
- assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)
- def test_axis_out_of_range(self):
- s = (2, 3, 4, 5)
- a = np.empty(s)
- assert_raises(np.AxisError, expand_dims, a, -6)
- assert_raises(np.AxisError, expand_dims, a, 5)
- a = np.empty((3, 3, 3))
- assert_raises(np.AxisError, expand_dims, a, (0, -6))
- assert_raises(np.AxisError, expand_dims, a, (0, 5))
- def test_repeated_axis(self):
- a = np.empty((3, 3, 3))
- assert_raises(ValueError, expand_dims, a, axis=(1, 1))
- def test_subclasses(self):
- a = np.arange(10).reshape((2, 5))
- a = np.ma.array(a, mask=a%3 == 0)
- expanded = np.expand_dims(a, axis=1)
- assert_(isinstance(expanded, np.ma.MaskedArray))
- assert_equal(expanded.shape, (2, 1, 5))
- assert_equal(expanded.mask.shape, (2, 1, 5))
- class TestArraySplit:
- def test_integer_0_split(self):
- a = np.arange(10)
- assert_raises(ValueError, array_split, a, 0)
- def test_integer_split(self):
- a = np.arange(10)
- res = array_split(a, 1)
- desired = [np.arange(10)]
- compare_results(res, desired)
- res = array_split(a, 2)
- desired = [np.arange(5), np.arange(5, 10)]
- compare_results(res, desired)
- res = array_split(a, 3)
- desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
- compare_results(res, desired)
- res = array_split(a, 4)
- desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8),
- np.arange(8, 10)]
- compare_results(res, desired)
- res = array_split(a, 5)
- desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
- np.arange(6, 8), np.arange(8, 10)]
- compare_results(res, desired)
- res = array_split(a, 6)
- desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
- np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)]
- compare_results(res, desired)
- res = array_split(a, 7)
- desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
- np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
- np.arange(9, 10)]
- compare_results(res, desired)
- res = array_split(a, 8)
- desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5),
- np.arange(5, 6), np.arange(6, 7), np.arange(7, 8),
- np.arange(8, 9), np.arange(9, 10)]
- compare_results(res, desired)
- res = array_split(a, 9)
- desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4),
- np.arange(4, 5), np.arange(5, 6), np.arange(6, 7),
- np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)]
- compare_results(res, desired)
- res = array_split(a, 10)
- desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
- np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
- np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
- np.arange(9, 10)]
- compare_results(res, desired)
- res = array_split(a, 11)
- desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
- np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
- np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
- np.arange(9, 10), np.array([])]
- compare_results(res, desired)
- def test_integer_split_2D_rows(self):
- a = np.array([np.arange(10), np.arange(10)])
- res = array_split(a, 3, axis=0)
- tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
- np.zeros((0, 10))]
- compare_results(res, tgt)
- assert_(a.dtype.type is res[-1].dtype.type)
- # Same thing for manual splits:
- res = array_split(a, [0, 1], axis=0)
- tgt = [np.zeros((0, 10)), np.array([np.arange(10)]),
- np.array([np.arange(10)])]
- compare_results(res, tgt)
- assert_(a.dtype.type is res[-1].dtype.type)
- def test_integer_split_2D_cols(self):
- a = np.array([np.arange(10), np.arange(10)])
- res = array_split(a, 3, axis=-1)
- desired = [np.array([np.arange(4), np.arange(4)]),
- np.array([np.arange(4, 7), np.arange(4, 7)]),
- np.array([np.arange(7, 10), np.arange(7, 10)])]
- compare_results(res, desired)
- def test_integer_split_2D_default(self):
- """ This will fail if we change default axis
- """
- a = np.array([np.arange(10), np.arange(10)])
- res = array_split(a, 3)
- tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
- np.zeros((0, 10))]
- compare_results(res, tgt)
- assert_(a.dtype.type is res[-1].dtype.type)
- # perhaps should check higher dimensions
- @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
- def test_integer_split_2D_rows_greater_max_int32(self):
- a = np.broadcast_to([0], (1 << 32, 2))
- res = array_split(a, 4)
- chunk = np.broadcast_to([0], (1 << 30, 2))
- tgt = [chunk] * 4
- for i in range(len(tgt)):
- assert_equal(res[i].shape, tgt[i].shape)
- def test_index_split_simple(self):
- a = np.arange(10)
- indices = [1, 5, 7]
- res = array_split(a, indices, axis=-1)
- desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7),
- np.arange(7, 10)]
- compare_results(res, desired)
- def test_index_split_low_bound(self):
- a = np.arange(10)
- indices = [0, 5, 7]
- res = array_split(a, indices, axis=-1)
- desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
- np.arange(7, 10)]
- compare_results(res, desired)
- def test_index_split_high_bound(self):
- a = np.arange(10)
- indices = [0, 5, 7, 10, 12]
- res = array_split(a, indices, axis=-1)
- desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
- np.arange(7, 10), np.array([]), np.array([])]
- compare_results(res, desired)
- class TestSplit:
- # The split function is essentially the same as array_split,
- # except that it test if splitting will result in an
- # equal split. Only test for this case.
- def test_equal_split(self):
- a = np.arange(10)
- res = split(a, 2)
- desired = [np.arange(5), np.arange(5, 10)]
- compare_results(res, desired)
- def test_unequal_split(self):
- a = np.arange(10)
- assert_raises(ValueError, split, a, 3)
- class TestColumnStack:
- def test_non_iterable(self):
- assert_raises(TypeError, column_stack, 1)
- def test_1D_arrays(self):
- # example from docstring
- a = np.array((1, 2, 3))
- b = np.array((2, 3, 4))
- expected = np.array([[1, 2],
- [2, 3],
- [3, 4]])
- actual = np.column_stack((a, b))
- assert_equal(actual, expected)
- def test_2D_arrays(self):
- # same as hstack 2D docstring example
- a = np.array([[1], [2], [3]])
- b = np.array([[2], [3], [4]])
- expected = np.array([[1, 2],
- [2, 3],
- [3, 4]])
- actual = np.column_stack((a, b))
- assert_equal(actual, expected)
- def test_generator(self):
- with assert_warns(FutureWarning):
- column_stack((np.arange(3) for _ in range(2)))
- class TestDstack:
- def test_non_iterable(self):
- assert_raises(TypeError, dstack, 1)
- def test_0D_array(self):
- a = np.array(1)
- b = np.array(2)
- res = dstack([a, b])
- desired = np.array([[[1, 2]]])
- assert_array_equal(res, desired)
- def test_1D_array(self):
- a = np.array([1])
- b = np.array([2])
- res = dstack([a, b])
- desired = np.array([[[1, 2]]])
- assert_array_equal(res, desired)
- def test_2D_array(self):
- a = np.array([[1], [2]])
- b = np.array([[1], [2]])
- res = dstack([a, b])
- desired = np.array([[[1, 1]], [[2, 2, ]]])
- assert_array_equal(res, desired)
- def test_2D_array2(self):
- a = np.array([1, 2])
- b = np.array([1, 2])
- res = dstack([a, b])
- desired = np.array([[[1, 1], [2, 2]]])
- assert_array_equal(res, desired)
- def test_generator(self):
- with assert_warns(FutureWarning):
- dstack((np.arange(3) for _ in range(2)))
- # array_split has more comprehensive test of splitting.
- # only do simple test on hsplit, vsplit, and dsplit
- class TestHsplit:
- """Only testing for integer splits.
- """
- def test_non_iterable(self):
- assert_raises(ValueError, hsplit, 1, 1)
- def test_0D_array(self):
- a = np.array(1)
- try:
- hsplit(a, 2)
- assert_(0)
- except ValueError:
- pass
- def test_1D_array(self):
- a = np.array([1, 2, 3, 4])
- res = hsplit(a, 2)
- desired = [np.array([1, 2]), np.array([3, 4])]
- compare_results(res, desired)
- def test_2D_array(self):
- a = np.array([[1, 2, 3, 4],
- [1, 2, 3, 4]])
- res = hsplit(a, 2)
- desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
- compare_results(res, desired)
- class TestVsplit:
- """Only testing for integer splits.
- """
- def test_non_iterable(self):
- assert_raises(ValueError, vsplit, 1, 1)
- def test_0D_array(self):
- a = np.array(1)
- assert_raises(ValueError, vsplit, a, 2)
- def test_1D_array(self):
- a = np.array([1, 2, 3, 4])
- try:
- vsplit(a, 2)
- assert_(0)
- except ValueError:
- pass
- def test_2D_array(self):
- a = np.array([[1, 2, 3, 4],
- [1, 2, 3, 4]])
- res = vsplit(a, 2)
- desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
- compare_results(res, desired)
- class TestDsplit:
- # Only testing for integer splits.
- def test_non_iterable(self):
- assert_raises(ValueError, dsplit, 1, 1)
- def test_0D_array(self):
- a = np.array(1)
- assert_raises(ValueError, dsplit, a, 2)
- def test_1D_array(self):
- a = np.array([1, 2, 3, 4])
- assert_raises(ValueError, dsplit, a, 2)
- def test_2D_array(self):
- a = np.array([[1, 2, 3, 4],
- [1, 2, 3, 4]])
- try:
- dsplit(a, 2)
- assert_(0)
- except ValueError:
- pass
- def test_3D_array(self):
- a = np.array([[[1, 2, 3, 4],
- [1, 2, 3, 4]],
- [[1, 2, 3, 4],
- [1, 2, 3, 4]]])
- res = dsplit(a, 2)
- desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
- np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])]
- compare_results(res, desired)
- class TestSqueeze:
- def test_basic(self):
- from numpy.random import rand
- a = rand(20, 10, 10, 1, 1)
- b = rand(20, 1, 10, 1, 20)
- c = rand(1, 1, 20, 10)
- assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
- assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
- assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))
- # Squeezing to 0-dim should still give an ndarray
- a = [[[1.5]]]
- res = np.squeeze(a)
- assert_equal(res, 1.5)
- assert_equal(res.ndim, 0)
- assert_equal(type(res), np.ndarray)
- class TestKron:
- def test_basic(self):
- # Using 0-dimensional ndarray
- a = np.array(1)
- b = np.array([[1, 2], [3, 4]])
- k = np.array([[1, 2], [3, 4]])
- assert_array_equal(np.kron(a, b), k)
- a = np.array([[1, 2], [3, 4]])
- b = np.array(1)
- assert_array_equal(np.kron(a, b), k)
- # Using 1-dimensional ndarray
- a = np.array([3])
- b = np.array([[1, 2], [3, 4]])
- k = np.array([[3, 6], [9, 12]])
- assert_array_equal(np.kron(a, b), k)
- a = np.array([[1, 2], [3, 4]])
- b = np.array([3])
- assert_array_equal(np.kron(a, b), k)
- # Using 3-dimensional ndarray
- a = np.array([[[1]], [[2]]])
- b = np.array([[1, 2], [3, 4]])
- k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
- assert_array_equal(np.kron(a, b), k)
- a = np.array([[1, 2], [3, 4]])
- b = np.array([[[1]], [[2]]])
- k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
- assert_array_equal(np.kron(a, b), k)
- def test_return_type(self):
- class myarray(np.ndarray):
- __array_priority__ = 1.0
- a = np.ones([2, 2])
- ma = myarray(a.shape, a.dtype, a.data)
- assert_equal(type(kron(a, a)), np.ndarray)
- assert_equal(type(kron(ma, ma)), myarray)
- assert_equal(type(kron(a, ma)), myarray)
- assert_equal(type(kron(ma, a)), myarray)
- @pytest.mark.parametrize(
- "array_class", [np.asarray, np.mat]
- )
- def test_kron_smoke(self, array_class):
- a = array_class(np.ones([3, 3]))
- b = array_class(np.ones([3, 3]))
- k = array_class(np.ones([9, 9]))
- assert_array_equal(np.kron(a, b), k)
- def test_kron_ma(self):
- x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
- k = np.ma.array(np.diag([1, 4, 4, 16]),
- mask=~np.array(np.identity(4), dtype=bool))
- assert_array_equal(k, np.kron(x, x))
- @pytest.mark.parametrize(
- "shape_a,shape_b", [
- ((1, 1), (1, 1)),
- ((1, 2, 3), (4, 5, 6)),
- ((2, 2), (2, 2, 2)),
- ((1, 0), (1, 1)),
- ((2, 0, 2), (2, 2)),
- ((2, 0, 0, 2), (2, 0, 2)),
- ])
- def test_kron_shape(self, shape_a, shape_b):
- a = np.ones(shape_a)
- b = np.ones(shape_b)
- normalised_shape_a = (1,) * max(0, len(shape_b)-len(shape_a)) + shape_a
- normalised_shape_b = (1,) * max(0, len(shape_a)-len(shape_b)) + shape_b
- expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)
- k = np.kron(a, b)
- assert np.array_equal(
- k.shape, expected_shape), "Unexpected shape from kron"
- class TestTile:
- def test_basic(self):
- a = np.array([0, 1, 2])
- b = [[1, 2], [3, 4]]
- assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
- assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
- assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
- assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
- assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
- assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
- [1, 2, 1, 2], [3, 4, 3, 4]])
- def test_tile_one_repetition_on_array_gh4679(self):
- a = np.arange(5)
- b = tile(a, 1)
- b += 2
- assert_equal(a, np.arange(5))
- def test_empty(self):
- a = np.array([[[]]])
- b = np.array([[], []])
- c = tile(b, 2).shape
- d = tile(a, (3, 2, 5)).shape
- assert_equal(c, (2, 0))
- assert_equal(d, (3, 2, 0))
- def test_kroncompare(self):
- from numpy.random import randint
- reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
- shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
- for s in shape:
- b = randint(0, 10, size=s)
- for r in reps:
- a = np.ones(r, b.dtype)
- large = tile(b, r)
- klarge = kron(a, b)
- assert_equal(large, klarge)
- class TestMayShareMemory:
- def test_basic(self):
- d = np.ones((50, 60))
- d2 = np.ones((30, 60, 6))
- assert_(np.may_share_memory(d, d))
- assert_(np.may_share_memory(d, d[::-1]))
- assert_(np.may_share_memory(d, d[::2]))
- assert_(np.may_share_memory(d, d[1:, ::-1]))
- assert_(not np.may_share_memory(d[::-1], d2))
- assert_(not np.may_share_memory(d[::2], d2))
- assert_(not np.may_share_memory(d[1:, ::-1], d2))
- assert_(np.may_share_memory(d2[1:, ::-1], d2))
- # Utility
- def compare_results(res, desired):
- """Compare lists of arrays."""
- if len(res) != len(desired):
- raise ValueError("Iterables have different lengths")
- # See also PEP 618 for Python 3.10
- for x, y in zip(res, desired):
- assert_array_equal(x, y)
|