1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246 |
- import warnings
- import pytest
- import inspect
- import numpy as np
- from numpy.core.numeric import normalize_axis_tuple
- from numpy.lib.nanfunctions import _nan_mask, _replace_nan
- from numpy.testing import (
- assert_, assert_equal, assert_almost_equal, assert_raises,
- assert_array_equal, suppress_warnings
- )
- # Test data
- _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170],
- [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833],
- [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954],
- [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]])
- # Rows of _ndat with nans removed
- _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]),
- np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]),
- np.array([0.1042, -0.5954]),
- np.array([0.1610, 0.1859, 0.3146])]
- # Rows of _ndat with nans converted to ones
- _ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170],
- [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833],
- [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954],
- [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]])
- # Rows of _ndat with nans converted to zeros
- _ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170],
- [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833],
- [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954],
- [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]])
- class TestSignatureMatch:
- NANFUNCS = {
- np.nanmin: np.amin,
- np.nanmax: np.amax,
- np.nanargmin: np.argmin,
- np.nanargmax: np.argmax,
- np.nansum: np.sum,
- np.nanprod: np.prod,
- np.nancumsum: np.cumsum,
- np.nancumprod: np.cumprod,
- np.nanmean: np.mean,
- np.nanmedian: np.median,
- np.nanpercentile: np.percentile,
- np.nanquantile: np.quantile,
- np.nanvar: np.var,
- np.nanstd: np.std,
- }
- IDS = [k.__name__ for k in NANFUNCS]
- @staticmethod
- def get_signature(func, default="..."):
- """Construct a signature and replace all default parameter-values."""
- prm_list = []
- signature = inspect.signature(func)
- for prm in signature.parameters.values():
- if prm.default is inspect.Parameter.empty:
- prm_list.append(prm)
- else:
- prm_list.append(prm.replace(default=default))
- return inspect.Signature(prm_list)
- @pytest.mark.parametrize("nan_func,func", NANFUNCS.items(), ids=IDS)
- def test_signature_match(self, nan_func, func):
- # Ignore the default parameter-values as they can sometimes differ
- # between the two functions (*e.g.* one has `False` while the other
- # has `np._NoValue`)
- signature = self.get_signature(func)
- nan_signature = self.get_signature(nan_func)
- np.testing.assert_equal(signature, nan_signature)
- def test_exhaustiveness(self):
- """Validate that all nan functions are actually tested."""
- np.testing.assert_equal(
- set(self.IDS), set(np.lib.nanfunctions.__all__)
- )
- class TestNanFunctions_MinMax:
- nanfuncs = [np.nanmin, np.nanmax]
- stdfuncs = [np.min, np.max]
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- for f in self.nanfuncs:
- f(ndat)
- assert_equal(ndat, _ndat)
- def test_keepdims(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for axis in [None, 0, 1]:
- tgt = rf(mat, axis=axis, keepdims=True)
- res = nf(mat, axis=axis, keepdims=True)
- assert_(res.ndim == tgt.ndim)
- def test_out(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- resout = np.zeros(3)
- tgt = rf(mat, axis=1)
- res = nf(mat, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- def test_dtype_from_input(self):
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- mat = np.eye(3, dtype=c)
- tgt = rf(mat, axis=1).dtype.type
- res = nf(mat, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, axis=None).dtype.type
- res = nf(mat, axis=None).dtype.type
- assert_(res is tgt)
- def test_result_values(self):
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- tgt = [rf(d) for d in _rdat]
- res = nf(_ndat, axis=1)
- assert_almost_equal(res, tgt)
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- match = "All-NaN slice encountered"
- for func in self.nanfuncs:
- with pytest.warns(RuntimeWarning, match=match):
- out = func(array, axis=axis)
- assert np.isnan(out).all()
- assert out.dtype == array.dtype
- def test_masked(self):
- mat = np.ma.fix_invalid(_ndat)
- msk = mat._mask.copy()
- for f in [np.nanmin]:
- res = f(mat, axis=1)
- tgt = f(_ndat, axis=1)
- assert_equal(res, tgt)
- assert_equal(mat._mask, msk)
- assert_(not np.isinf(mat).any())
- def test_scalar(self):
- for f in self.nanfuncs:
- assert_(f(0.) == 0.)
- def test_subclass(self):
- class MyNDArray(np.ndarray):
- pass
- # Check that it works and that type and
- # shape are preserved
- mine = np.eye(3).view(MyNDArray)
- for f in self.nanfuncs:
- res = f(mine, axis=0)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == (3,))
- res = f(mine, axis=1)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == (3,))
- res = f(mine)
- assert_(res.shape == ())
- # check that rows of nan are dealt with for subclasses (#4628)
- mine[1] = np.nan
- for f in self.nanfuncs:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mine, axis=0)
- assert_(isinstance(res, MyNDArray))
- assert_(not np.any(np.isnan(res)))
- assert_(len(w) == 0)
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mine, axis=1)
- assert_(isinstance(res, MyNDArray))
- assert_(np.isnan(res[1]) and not np.isnan(res[0])
- and not np.isnan(res[2]))
- assert_(len(w) == 1, 'no warning raised')
- assert_(issubclass(w[0].category, RuntimeWarning))
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- res = f(mine)
- assert_(res.shape == ())
- assert_(res != np.nan)
- assert_(len(w) == 0)
- def test_object_array(self):
- arr = np.array([[1.0, 2.0], [np.nan, 4.0], [np.nan, np.nan]], dtype=object)
- assert_equal(np.nanmin(arr), 1.0)
- assert_equal(np.nanmin(arr, axis=0), [1.0, 2.0])
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- # assert_equal does not work on object arrays of nan
- assert_equal(list(np.nanmin(arr, axis=1)), [1.0, 4.0, np.nan])
- assert_(len(w) == 1, 'no warning raised')
- assert_(issubclass(w[0].category, RuntimeWarning))
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_initial(self, dtype):
- class MyNDArray(np.ndarray):
- pass
- ar = np.arange(9).astype(dtype)
- ar[:5] = np.nan
- for f in self.nanfuncs:
- initial = 100 if f is np.nanmax else 0
- ret1 = f(ar, initial=initial)
- assert ret1.dtype == dtype
- assert ret1 == initial
- ret2 = f(ar.view(MyNDArray), initial=initial)
- assert ret2.dtype == dtype
- assert ret2 == initial
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_where(self, dtype):
- class MyNDArray(np.ndarray):
- pass
- ar = np.arange(9).reshape(3, 3).astype(dtype)
- ar[0, :] = np.nan
- where = np.ones_like(ar, dtype=np.bool_)
- where[:, 0] = False
- for f in self.nanfuncs:
- reference = 4 if f is np.nanmin else 8
- ret1 = f(ar, where=where, initial=5)
- assert ret1.dtype == dtype
- assert ret1 == reference
- ret2 = f(ar.view(MyNDArray), where=where, initial=5)
- assert ret2.dtype == dtype
- assert ret2 == reference
- class TestNanFunctions_ArgminArgmax:
- nanfuncs = [np.nanargmin, np.nanargmax]
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- for f in self.nanfuncs:
- f(ndat)
- assert_equal(ndat, _ndat)
- def test_result_values(self):
- for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
- for row in _ndat:
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "invalid value encountered in")
- ind = f(row)
- val = row[ind]
- # comparing with NaN is tricky as the result
- # is always false except for NaN != NaN
- assert_(not np.isnan(val))
- assert_(not fcmp(val, row).any())
- assert_(not np.equal(val, row[:ind]).any())
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- for func in self.nanfuncs:
- with pytest.raises(ValueError, match="All-NaN slice encountered"):
- func(array, axis=axis)
- def test_empty(self):
- mat = np.zeros((0, 3))
- for f in self.nanfuncs:
- for axis in [0, None]:
- assert_raises(ValueError, f, mat, axis=axis)
- for axis in [1]:
- res = f(mat, axis=axis)
- assert_equal(res, np.zeros(0))
- def test_scalar(self):
- for f in self.nanfuncs:
- assert_(f(0.) == 0.)
- def test_subclass(self):
- class MyNDArray(np.ndarray):
- pass
- # Check that it works and that type and
- # shape are preserved
- mine = np.eye(3).view(MyNDArray)
- for f in self.nanfuncs:
- res = f(mine, axis=0)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == (3,))
- res = f(mine, axis=1)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == (3,))
- res = f(mine)
- assert_(res.shape == ())
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_keepdims(self, dtype):
- ar = np.arange(9).astype(dtype)
- ar[:5] = np.nan
- for f in self.nanfuncs:
- reference = 5 if f is np.nanargmin else 8
- ret = f(ar, keepdims=True)
- assert ret.ndim == ar.ndim
- assert ret == reference
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_out(self, dtype):
- ar = np.arange(9).astype(dtype)
- ar[:5] = np.nan
- for f in self.nanfuncs:
- out = np.zeros((), dtype=np.intp)
- reference = 5 if f is np.nanargmin else 8
- ret = f(ar, out=out)
- assert ret is out
- assert ret == reference
- _TEST_ARRAYS = {
- "0d": np.array(5),
- "1d": np.array([127, 39, 93, 87, 46])
- }
- for _v in _TEST_ARRAYS.values():
- _v.setflags(write=False)
- @pytest.mark.parametrize(
- "dtype",
- np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O",
- )
- @pytest.mark.parametrize("mat", _TEST_ARRAYS.values(), ids=_TEST_ARRAYS.keys())
- class TestNanFunctions_NumberTypes:
- nanfuncs = {
- np.nanmin: np.min,
- np.nanmax: np.max,
- np.nanargmin: np.argmin,
- np.nanargmax: np.argmax,
- np.nansum: np.sum,
- np.nanprod: np.prod,
- np.nancumsum: np.cumsum,
- np.nancumprod: np.cumprod,
- np.nanmean: np.mean,
- np.nanmedian: np.median,
- np.nanvar: np.var,
- np.nanstd: np.std,
- }
- nanfunc_ids = [i.__name__ for i in nanfuncs]
- @pytest.mark.parametrize("nanfunc,func", nanfuncs.items(), ids=nanfunc_ids)
- @np.errstate(over="ignore")
- def test_nanfunc(self, mat, dtype, nanfunc, func):
- mat = mat.astype(dtype)
- tgt = func(mat)
- out = nanfunc(mat)
- assert_almost_equal(out, tgt)
- if dtype == "O":
- assert type(out) is type(tgt)
- else:
- assert out.dtype == tgt.dtype
- @pytest.mark.parametrize(
- "nanfunc,func",
- [(np.nanquantile, np.quantile), (np.nanpercentile, np.percentile)],
- ids=["nanquantile", "nanpercentile"],
- )
- def test_nanfunc_q(self, mat, dtype, nanfunc, func):
- mat = mat.astype(dtype)
- tgt = func(mat, q=1)
- out = nanfunc(mat, q=1)
- assert_almost_equal(out, tgt)
- if dtype == "O":
- assert type(out) is type(tgt)
- else:
- assert out.dtype == tgt.dtype
- @pytest.mark.parametrize(
- "nanfunc,func",
- [(np.nanvar, np.var), (np.nanstd, np.std)],
- ids=["nanvar", "nanstd"],
- )
- def test_nanfunc_ddof(self, mat, dtype, nanfunc, func):
- mat = mat.astype(dtype)
- tgt = func(mat, ddof=0.5)
- out = nanfunc(mat, ddof=0.5)
- assert_almost_equal(out, tgt)
- if dtype == "O":
- assert type(out) is type(tgt)
- else:
- assert out.dtype == tgt.dtype
- class SharedNanFunctionsTestsMixin:
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- for f in self.nanfuncs:
- f(ndat)
- assert_equal(ndat, _ndat)
- def test_keepdims(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for axis in [None, 0, 1]:
- tgt = rf(mat, axis=axis, keepdims=True)
- res = nf(mat, axis=axis, keepdims=True)
- assert_(res.ndim == tgt.ndim)
- def test_out(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- resout = np.zeros(3)
- tgt = rf(mat, axis=1)
- res = nf(mat, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- def test_dtype_from_dtype(self):
- mat = np.eye(3)
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- with suppress_warnings() as sup:
- if nf in {np.nanstd, np.nanvar} and c in 'FDG':
- # Giving the warning is a small bug, see gh-8000
- sup.filter(np.ComplexWarning)
- tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
- assert_(res is tgt)
- def test_dtype_from_char(self):
- mat = np.eye(3)
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- with suppress_warnings() as sup:
- if nf in {np.nanstd, np.nanvar} and c in 'FDG':
- # Giving the warning is a small bug, see gh-8000
- sup.filter(np.ComplexWarning)
- tgt = rf(mat, dtype=c, axis=1).dtype.type
- res = nf(mat, dtype=c, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=c, axis=None).dtype.type
- res = nf(mat, dtype=c, axis=None).dtype.type
- assert_(res is tgt)
- def test_dtype_from_input(self):
- codes = 'efdgFDG'
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- for c in codes:
- mat = np.eye(3, dtype=c)
- tgt = rf(mat, axis=1).dtype.type
- res = nf(mat, axis=1).dtype.type
- assert_(res is tgt, "res %s, tgt %s" % (res, tgt))
- # scalar case
- tgt = rf(mat, axis=None).dtype.type
- res = nf(mat, axis=None).dtype.type
- assert_(res is tgt)
- def test_result_values(self):
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- tgt = [rf(d) for d in _rdat]
- res = nf(_ndat, axis=1)
- assert_almost_equal(res, tgt)
- def test_scalar(self):
- for f in self.nanfuncs:
- assert_(f(0.) == 0.)
- def test_subclass(self):
- class MyNDArray(np.ndarray):
- pass
- # Check that it works and that type and
- # shape are preserved
- array = np.eye(3)
- mine = array.view(MyNDArray)
- for f in self.nanfuncs:
- expected_shape = f(array, axis=0).shape
- res = f(mine, axis=0)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == expected_shape)
- expected_shape = f(array, axis=1).shape
- res = f(mine, axis=1)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == expected_shape)
- expected_shape = f(array).shape
- res = f(mine)
- assert_(isinstance(res, MyNDArray))
- assert_(res.shape == expected_shape)
- class TestNanFunctions_SumProd(SharedNanFunctionsTestsMixin):
- nanfuncs = [np.nansum, np.nanprod]
- stdfuncs = [np.sum, np.prod]
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- for func, identity in zip(self.nanfuncs, [0, 1]):
- out = func(array, axis=axis)
- assert np.all(out == identity)
- assert out.dtype == array.dtype
- def test_empty(self):
- for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]):
- mat = np.zeros((0, 3))
- tgt = [tgt_value]*3
- res = f(mat, axis=0)
- assert_equal(res, tgt)
- tgt = []
- res = f(mat, axis=1)
- assert_equal(res, tgt)
- tgt = tgt_value
- res = f(mat, axis=None)
- assert_equal(res, tgt)
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_initial(self, dtype):
- ar = np.arange(9).astype(dtype)
- ar[:5] = np.nan
- for f in self.nanfuncs:
- reference = 28 if f is np.nansum else 3360
- ret = f(ar, initial=2)
- assert ret.dtype == dtype
- assert ret == reference
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_where(self, dtype):
- ar = np.arange(9).reshape(3, 3).astype(dtype)
- ar[0, :] = np.nan
- where = np.ones_like(ar, dtype=np.bool_)
- where[:, 0] = False
- for f in self.nanfuncs:
- reference = 26 if f is np.nansum else 2240
- ret = f(ar, where=where, initial=2)
- assert ret.dtype == dtype
- assert ret == reference
- class TestNanFunctions_CumSumProd(SharedNanFunctionsTestsMixin):
- nanfuncs = [np.nancumsum, np.nancumprod]
- stdfuncs = [np.cumsum, np.cumprod]
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan)
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- for func, identity in zip(self.nanfuncs, [0, 1]):
- out = func(array)
- assert np.all(out == identity)
- assert out.dtype == array.dtype
- def test_empty(self):
- for f, tgt_value in zip(self.nanfuncs, [0, 1]):
- mat = np.zeros((0, 3))
- tgt = tgt_value*np.ones((0, 3))
- res = f(mat, axis=0)
- assert_equal(res, tgt)
- tgt = mat
- res = f(mat, axis=1)
- assert_equal(res, tgt)
- tgt = np.zeros((0))
- res = f(mat, axis=None)
- assert_equal(res, tgt)
- def test_keepdims(self):
- for f, g in zip(self.nanfuncs, self.stdfuncs):
- mat = np.eye(3)
- for axis in [None, 0, 1]:
- tgt = f(mat, axis=axis, out=None)
- res = g(mat, axis=axis, out=None)
- assert_(res.ndim == tgt.ndim)
- for f in self.nanfuncs:
- d = np.ones((3, 5, 7, 11))
- # Randomly set some elements to NaN:
- rs = np.random.RandomState(0)
- d[rs.rand(*d.shape) < 0.5] = np.nan
- res = f(d, axis=None)
- assert_equal(res.shape, (1155,))
- for axis in np.arange(4):
- res = f(d, axis=axis)
- assert_equal(res.shape, (3, 5, 7, 11))
- def test_result_values(self):
- for axis in (-2, -1, 0, 1, None):
- tgt = np.cumprod(_ndat_ones, axis=axis)
- res = np.nancumprod(_ndat, axis=axis)
- assert_almost_equal(res, tgt)
- tgt = np.cumsum(_ndat_zeros,axis=axis)
- res = np.nancumsum(_ndat, axis=axis)
- assert_almost_equal(res, tgt)
- def test_out(self):
- mat = np.eye(3)
- for nf, rf in zip(self.nanfuncs, self.stdfuncs):
- resout = np.eye(3)
- for axis in (-2, -1, 0, 1):
- tgt = rf(mat, axis=axis)
- res = nf(mat, axis=axis, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- class TestNanFunctions_MeanVarStd(SharedNanFunctionsTestsMixin):
- nanfuncs = [np.nanmean, np.nanvar, np.nanstd]
- stdfuncs = [np.mean, np.var, np.std]
- def test_dtype_error(self):
- for f in self.nanfuncs:
- for dtype in [np.bool_, np.int_, np.object_]:
- assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype)
- def test_out_dtype_error(self):
- for f in self.nanfuncs:
- for dtype in [np.bool_, np.int_, np.object_]:
- out = np.empty(_ndat.shape[0], dtype=dtype)
- assert_raises(TypeError, f, _ndat, axis=1, out=out)
- def test_ddof(self):
- nanfuncs = [np.nanvar, np.nanstd]
- stdfuncs = [np.var, np.std]
- for nf, rf in zip(nanfuncs, stdfuncs):
- for ddof in [0, 1]:
- tgt = [rf(d, ddof=ddof) for d in _rdat]
- res = nf(_ndat, axis=1, ddof=ddof)
- assert_almost_equal(res, tgt)
- def test_ddof_too_big(self):
- nanfuncs = [np.nanvar, np.nanstd]
- stdfuncs = [np.var, np.std]
- dsize = [len(d) for d in _rdat]
- for nf, rf in zip(nanfuncs, stdfuncs):
- for ddof in range(5):
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
- sup.filter(np.ComplexWarning)
- tgt = [ddof >= d for d in dsize]
- res = nf(_ndat, axis=1, ddof=ddof)
- assert_equal(np.isnan(res), tgt)
- if any(tgt):
- assert_(len(sup.log) == 1)
- else:
- assert_(len(sup.log) == 0)
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- match = "(Degrees of freedom <= 0 for slice.)|(Mean of empty slice)"
- for func in self.nanfuncs:
- with pytest.warns(RuntimeWarning, match=match):
- out = func(array, axis=axis)
- assert np.isnan(out).all()
- # `nanvar` and `nanstd` convert complex inputs to their
- # corresponding floating dtype
- if func is np.nanmean:
- assert out.dtype == array.dtype
- else:
- assert out.dtype == np.abs(array).dtype
- def test_empty(self):
- mat = np.zeros((0, 3))
- for f in self.nanfuncs:
- for axis in [0, None]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_(np.isnan(f(mat, axis=axis)).all())
- assert_(len(w) == 1)
- assert_(issubclass(w[0].category, RuntimeWarning))
- for axis in [1]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_equal(f(mat, axis=axis), np.zeros([]))
- assert_(len(w) == 0)
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_where(self, dtype):
- ar = np.arange(9).reshape(3, 3).astype(dtype)
- ar[0, :] = np.nan
- where = np.ones_like(ar, dtype=np.bool_)
- where[:, 0] = False
- for f, f_std in zip(self.nanfuncs, self.stdfuncs):
- reference = f_std(ar[where][2:])
- dtype_reference = dtype if f is np.nanmean else ar.real.dtype
- ret = f(ar, where=where)
- assert ret.dtype == dtype_reference
- np.testing.assert_allclose(ret, reference)
- _TIME_UNITS = (
- "Y", "M", "W", "D", "h", "m", "s", "ms", "us", "ns", "ps", "fs", "as"
- )
- # All `inexact` + `timdelta64` type codes
- _TYPE_CODES = list(np.typecodes["AllFloat"])
- _TYPE_CODES += [f"m8[{unit}]" for unit in _TIME_UNITS]
- class TestNanFunctions_Median:
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- np.nanmedian(ndat)
- assert_equal(ndat, _ndat)
- def test_keepdims(self):
- mat = np.eye(3)
- for axis in [None, 0, 1]:
- tgt = np.median(mat, axis=axis, out=None, overwrite_input=False)
- res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False)
- assert_(res.ndim == tgt.ndim)
- d = np.ones((3, 5, 7, 11))
- # Randomly set some elements to NaN:
- w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
- w = w.astype(np.intp)
- d[tuple(w)] = np.nan
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning)
- res = np.nanmedian(d, axis=None, keepdims=True)
- assert_equal(res.shape, (1, 1, 1, 1))
- res = np.nanmedian(d, axis=(0, 1), keepdims=True)
- assert_equal(res.shape, (1, 1, 7, 11))
- res = np.nanmedian(d, axis=(0, 3), keepdims=True)
- assert_equal(res.shape, (1, 5, 7, 1))
- res = np.nanmedian(d, axis=(1,), keepdims=True)
- assert_equal(res.shape, (3, 1, 7, 11))
- res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True)
- assert_equal(res.shape, (1, 1, 1, 1))
- res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True)
- assert_equal(res.shape, (1, 1, 7, 1))
- @pytest.mark.parametrize(
- argnames='axis',
- argvalues=[
- None,
- 1,
- (1, ),
- (0, 1),
- (-3, -1),
- ]
- )
- @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
- def test_keepdims_out(self, axis):
- d = np.ones((3, 5, 7, 11))
- # Randomly set some elements to NaN:
- w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
- w = w.astype(np.intp)
- d[tuple(w)] = np.nan
- if axis is None:
- shape_out = (1,) * d.ndim
- else:
- axis_norm = normalize_axis_tuple(axis, d.ndim)
- shape_out = tuple(
- 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
- out = np.empty(shape_out)
- result = np.nanmedian(d, axis=axis, keepdims=True, out=out)
- assert result is out
- assert_equal(result.shape, shape_out)
- def test_out(self):
- mat = np.random.rand(3, 3)
- nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
- resout = np.zeros(3)
- tgt = np.median(mat, axis=1)
- res = np.nanmedian(nan_mat, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- # 0-d output:
- resout = np.zeros(())
- tgt = np.median(mat, axis=None)
- res = np.nanmedian(nan_mat, axis=None, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- def test_small_large(self):
- # test the small and large code paths, current cutoff 400 elements
- for s in [5, 20, 51, 200, 1000]:
- d = np.random.randn(4, s)
- # Randomly set some elements to NaN:
- w = np.random.randint(0, d.size, size=d.size // 5)
- d.ravel()[w] = np.nan
- d[:,0] = 1. # ensure at least one good value
- # use normal median without nans to compare
- tgt = []
- for x in d:
- nonan = np.compress(~np.isnan(x), x)
- tgt.append(np.median(nonan, overwrite_input=True))
- assert_array_equal(np.nanmedian(d, axis=-1), tgt)
- def test_result_values(self):
- tgt = [np.median(d) for d in _rdat]
- res = np.nanmedian(_ndat, axis=1)
- assert_almost_equal(res, tgt)
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", _TYPE_CODES)
- def test_allnans(self, dtype, axis):
- mat = np.full((3, 3), np.nan).astype(dtype)
- with suppress_warnings() as sup:
- sup.record(RuntimeWarning)
- output = np.nanmedian(mat, axis=axis)
- assert output.dtype == mat.dtype
- assert np.isnan(output).all()
- if axis is None:
- assert_(len(sup.log) == 1)
- else:
- assert_(len(sup.log) == 3)
- # Check scalar
- scalar = np.array(np.nan).astype(dtype)[()]
- output_scalar = np.nanmedian(scalar)
- assert output_scalar.dtype == scalar.dtype
- assert np.isnan(output_scalar)
- if axis is None:
- assert_(len(sup.log) == 2)
- else:
- assert_(len(sup.log) == 4)
- def test_empty(self):
- mat = np.zeros((0, 3))
- for axis in [0, None]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
- assert_(len(w) == 1)
- assert_(issubclass(w[0].category, RuntimeWarning))
- for axis in [1]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_equal(np.nanmedian(mat, axis=axis), np.zeros([]))
- assert_(len(w) == 0)
- def test_scalar(self):
- assert_(np.nanmedian(0.) == 0.)
- def test_extended_axis_invalid(self):
- d = np.ones((3, 5, 7, 11))
- assert_raises(np.AxisError, np.nanmedian, d, axis=-5)
- assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5))
- assert_raises(np.AxisError, np.nanmedian, d, axis=4)
- assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4))
- assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
- def test_float_special(self):
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning)
- for inf in [np.inf, -np.inf]:
- a = np.array([[inf, np.nan], [np.nan, np.nan]])
- assert_equal(np.nanmedian(a, axis=0), [inf, np.nan])
- assert_equal(np.nanmedian(a, axis=1), [inf, np.nan])
- assert_equal(np.nanmedian(a), inf)
- # minimum fill value check
- a = np.array([[np.nan, np.nan, inf],
- [np.nan, np.nan, inf]])
- assert_equal(np.nanmedian(a), inf)
- assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf])
- assert_equal(np.nanmedian(a, axis=1), inf)
- # no mask path
- a = np.array([[inf, inf], [inf, inf]])
- assert_equal(np.nanmedian(a, axis=1), inf)
- a = np.array([[inf, 7, -inf, -9],
- [-10, np.nan, np.nan, 5],
- [4, np.nan, np.nan, inf]],
- dtype=np.float32)
- if inf > 0:
- assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.])
- assert_equal(np.nanmedian(a), 4.5)
- else:
- assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.])
- assert_equal(np.nanmedian(a), -2.5)
- assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf])
- for i in range(0, 10):
- for j in range(1, 10):
- a = np.array([([np.nan] * i) + ([inf] * j)] * 2)
- assert_equal(np.nanmedian(a), inf)
- assert_equal(np.nanmedian(a, axis=1), inf)
- assert_equal(np.nanmedian(a, axis=0),
- ([np.nan] * i) + [inf] * j)
- a = np.array([([np.nan] * i) + ([-inf] * j)] * 2)
- assert_equal(np.nanmedian(a), -inf)
- assert_equal(np.nanmedian(a, axis=1), -inf)
- assert_equal(np.nanmedian(a, axis=0),
- ([np.nan] * i) + [-inf] * j)
- class TestNanFunctions_Percentile:
- def test_mutation(self):
- # Check that passed array is not modified.
- ndat = _ndat.copy()
- np.nanpercentile(ndat, 30)
- assert_equal(ndat, _ndat)
- def test_keepdims(self):
- mat = np.eye(3)
- for axis in [None, 0, 1]:
- tgt = np.percentile(mat, 70, axis=axis, out=None,
- overwrite_input=False)
- res = np.nanpercentile(mat, 70, axis=axis, out=None,
- overwrite_input=False)
- assert_(res.ndim == tgt.ndim)
- d = np.ones((3, 5, 7, 11))
- # Randomly set some elements to NaN:
- w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
- w = w.astype(np.intp)
- d[tuple(w)] = np.nan
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning)
- res = np.nanpercentile(d, 90, axis=None, keepdims=True)
- assert_equal(res.shape, (1, 1, 1, 1))
- res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
- assert_equal(res.shape, (1, 1, 7, 11))
- res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True)
- assert_equal(res.shape, (1, 5, 7, 1))
- res = np.nanpercentile(d, 90, axis=(1,), keepdims=True)
- assert_equal(res.shape, (3, 1, 7, 11))
- res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True)
- assert_equal(res.shape, (1, 1, 1, 1))
- res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True)
- assert_equal(res.shape, (1, 1, 7, 1))
- @pytest.mark.parametrize('q', [7, [1, 7]])
- @pytest.mark.parametrize(
- argnames='axis',
- argvalues=[
- None,
- 1,
- (1,),
- (0, 1),
- (-3, -1),
- ]
- )
- @pytest.mark.filterwarnings("ignore:All-NaN slice:RuntimeWarning")
- def test_keepdims_out(self, q, axis):
- d = np.ones((3, 5, 7, 11))
- # Randomly set some elements to NaN:
- w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
- w = w.astype(np.intp)
- d[tuple(w)] = np.nan
- if axis is None:
- shape_out = (1,) * d.ndim
- else:
- axis_norm = normalize_axis_tuple(axis, d.ndim)
- shape_out = tuple(
- 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
- shape_out = np.shape(q) + shape_out
- out = np.empty(shape_out)
- result = np.nanpercentile(d, q, axis=axis, keepdims=True, out=out)
- assert result is out
- assert_equal(result.shape, shape_out)
- def test_out(self):
- mat = np.random.rand(3, 3)
- nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
- resout = np.zeros(3)
- tgt = np.percentile(mat, 42, axis=1)
- res = np.nanpercentile(nan_mat, 42, axis=1, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- # 0-d output:
- resout = np.zeros(())
- tgt = np.percentile(mat, 42, axis=None)
- res = np.nanpercentile(nan_mat, 42, axis=None, out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout)
- assert_almost_equal(res, resout)
- assert_almost_equal(res, tgt)
- def test_result_values(self):
- tgt = [np.percentile(d, 28) for d in _rdat]
- res = np.nanpercentile(_ndat, 28, axis=1)
- assert_almost_equal(res, tgt)
- # Transpose the array to fit the output convention of numpy.percentile
- tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat])
- res = np.nanpercentile(_ndat, (28, 98), axis=1)
- assert_almost_equal(res, tgt)
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
- out = np.nanpercentile(array, 60, axis=axis)
- assert np.isnan(out).all()
- assert out.dtype == array.dtype
- def test_empty(self):
- mat = np.zeros((0, 3))
- for axis in [0, None]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all())
- assert_(len(w) == 1)
- assert_(issubclass(w[0].category, RuntimeWarning))
- for axis in [1]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([]))
- assert_(len(w) == 0)
- def test_scalar(self):
- assert_equal(np.nanpercentile(0., 100), 0.)
- a = np.arange(6)
- r = np.nanpercentile(a, 50, axis=0)
- assert_equal(r, 2.5)
- assert_(np.isscalar(r))
- def test_extended_axis_invalid(self):
- d = np.ones((3, 5, 7, 11))
- assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5)
- assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
- assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=4)
- assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, 4))
- assert_raises(ValueError, np.nanpercentile, d, q=5, axis=(1, 1))
- def test_multiple_percentiles(self):
- perc = [50, 100]
- mat = np.ones((4, 3))
- nan_mat = np.nan * mat
- # For checking consistency in higher dimensional case
- large_mat = np.ones((3, 4, 5))
- large_mat[:, 0:2:4, :] = 0
- large_mat[:, :, 3:] *= 2
- for axis in [None, 0, 1]:
- for keepdim in [False, True]:
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, "All-NaN slice encountered")
- val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
- nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
- keepdims=keepdim)
- assert_equal(nan_val.shape, val.shape)
- val = np.percentile(large_mat, perc, axis=axis,
- keepdims=keepdim)
- nan_val = np.nanpercentile(large_mat, perc, axis=axis,
- keepdims=keepdim)
- assert_equal(nan_val, val)
- megamat = np.ones((3, 4, 5, 6))
- assert_equal(np.nanpercentile(megamat, perc, axis=(1, 2)).shape, (2, 3, 6))
- class TestNanFunctions_Quantile:
- # most of this is already tested by TestPercentile
- def test_regression(self):
- ar = np.arange(24).reshape(2, 3, 4).astype(float)
- ar[0][1] = np.nan
- assert_equal(np.nanquantile(ar, q=0.5), np.nanpercentile(ar, q=50))
- assert_equal(np.nanquantile(ar, q=0.5, axis=0),
- np.nanpercentile(ar, q=50, axis=0))
- assert_equal(np.nanquantile(ar, q=0.5, axis=1),
- np.nanpercentile(ar, q=50, axis=1))
- assert_equal(np.nanquantile(ar, q=[0.5], axis=1),
- np.nanpercentile(ar, q=[50], axis=1))
- assert_equal(np.nanquantile(ar, q=[0.25, 0.5, 0.75], axis=1),
- np.nanpercentile(ar, q=[25, 50, 75], axis=1))
- def test_basic(self):
- x = np.arange(8) * 0.5
- assert_equal(np.nanquantile(x, 0), 0.)
- assert_equal(np.nanquantile(x, 1), 3.5)
- assert_equal(np.nanquantile(x, 0.5), 1.75)
- def test_no_p_overwrite(self):
- # this is worth retesting, because quantile does not make a copy
- p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
- p = p0.copy()
- np.nanquantile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, p0)
- p0 = p0.tolist()
- p = p.tolist()
- np.nanquantile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, p0)
- @pytest.mark.parametrize("axis", [None, 0, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- @pytest.mark.parametrize("array", [
- np.array(np.nan),
- np.full((3, 3), np.nan),
- ], ids=["0d", "2d"])
- def test_allnans(self, axis, dtype, array):
- if axis is not None and array.ndim == 0:
- pytest.skip(f"`axis != None` not supported for 0d arrays")
- array = array.astype(dtype)
- with pytest.warns(RuntimeWarning, match="All-NaN slice encountered"):
- out = np.nanquantile(array, 1, axis=axis)
- assert np.isnan(out).all()
- assert out.dtype == array.dtype
- @pytest.mark.parametrize("arr, expected", [
- # array of floats with some nans
- (np.array([np.nan, 5.0, np.nan, np.inf]),
- np.array([False, True, False, True])),
- # int64 array that can't possibly have nans
- (np.array([1, 5, 7, 9], dtype=np.int64),
- True),
- # bool array that can't possibly have nans
- (np.array([False, True, False, True]),
- True),
- # 2-D complex array with nans
- (np.array([[np.nan, 5.0],
- [np.nan, np.inf]], dtype=np.complex64),
- np.array([[False, True],
- [False, True]])),
- ])
- def test__nan_mask(arr, expected):
- for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
- actual = _nan_mask(arr, out=out)
- assert_equal(actual, expected)
- # the above won't distinguish between True proper
- # and an array of True values; we want True proper
- # for types that can't possibly contain NaN
- if type(expected) is not np.ndarray:
- assert actual is True
- def test__replace_nan():
- """ Test that _replace_nan returns the original array if there are no
- NaNs, not a copy.
- """
- for dtype in [np.bool_, np.int32, np.int64]:
- arr = np.array([0, 1], dtype=dtype)
- result, mask = _replace_nan(arr, 0)
- assert mask is None
- # do not make a copy if there are no nans
- assert result is arr
- for dtype in [np.float32, np.float64]:
- arr = np.array([0, 1], dtype=dtype)
- result, mask = _replace_nan(arr, 2)
- assert (mask == False).all()
- # mask is not None, so we make a copy
- assert result is not arr
- assert_equal(result, arr)
- arr_nan = np.array([0, 1, np.nan], dtype=dtype)
- result_nan, mask_nan = _replace_nan(arr_nan, 2)
- assert_equal(mask_nan, np.array([False, False, True]))
- assert result_nan is not arr_nan
- assert_equal(result_nan, np.array([0, 1, 2]))
- assert np.isnan(arr_nan[-1])
|