1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- """
- Tests specific to `np.loadtxt` added during the move of loadtxt to be backed
- by C code.
- These tests complement those found in `test_io.py`.
- """
- import sys
- import os
- import pytest
- from tempfile import NamedTemporaryFile, mkstemp
- from io import StringIO
- import numpy as np
- from numpy.ma.testutils import assert_equal
- from numpy.testing import assert_array_equal, HAS_REFCOUNT, IS_PYPY
- def test_scientific_notation():
- """Test that both 'e' and 'E' are parsed correctly."""
- data = StringIO(
- (
- "1.0e-1,2.0E1,3.0\n"
- "4.0e-2,5.0E-1,6.0\n"
- "7.0e-3,8.0E1,9.0\n"
- "0.0e-4,1.0E-1,2.0"
- )
- )
- expected = np.array(
- [[0.1, 20., 3.0], [0.04, 0.5, 6], [0.007, 80., 9], [0, 0.1, 2]]
- )
- assert_array_equal(np.loadtxt(data, delimiter=","), expected)
- @pytest.mark.parametrize("comment", ["..", "//", "@-", "this is a comment:"])
- def test_comment_multiple_chars(comment):
- content = "# IGNORE\n1.5, 2.5# ABC\n3.0,4.0# XXX\n5.5,6.0\n"
- txt = StringIO(content.replace("#", comment))
- a = np.loadtxt(txt, delimiter=",", comments=comment)
- assert_equal(a, [[1.5, 2.5], [3.0, 4.0], [5.5, 6.0]])
- @pytest.fixture
- def mixed_types_structured():
- """
- Fixture providing hetergeneous input data with a structured dtype, along
- with the associated structured array.
- """
- data = StringIO(
- (
- "1000;2.4;alpha;-34\n"
- "2000;3.1;beta;29\n"
- "3500;9.9;gamma;120\n"
- "4090;8.1;delta;0\n"
- "5001;4.4;epsilon;-99\n"
- "6543;7.8;omega;-1\n"
- )
- )
- dtype = np.dtype(
- [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
- )
- expected = np.array(
- [
- (1000, 2.4, "alpha", -34),
- (2000, 3.1, "beta", 29),
- (3500, 9.9, "gamma", 120),
- (4090, 8.1, "delta", 0),
- (5001, 4.4, "epsilon", -99),
- (6543, 7.8, "omega", -1)
- ],
- dtype=dtype
- )
- return data, dtype, expected
- @pytest.mark.parametrize('skiprows', [0, 1, 2, 3])
- def test_structured_dtype_and_skiprows_no_empty_lines(
- skiprows, mixed_types_structured):
- data, dtype, expected = mixed_types_structured
- a = np.loadtxt(data, dtype=dtype, delimiter=";", skiprows=skiprows)
- assert_array_equal(a, expected[skiprows:])
- def test_unpack_structured(mixed_types_structured):
- data, dtype, expected = mixed_types_structured
- a, b, c, d = np.loadtxt(data, dtype=dtype, delimiter=";", unpack=True)
- assert_array_equal(a, expected["f0"])
- assert_array_equal(b, expected["f1"])
- assert_array_equal(c, expected["f2"])
- assert_array_equal(d, expected["f3"])
- def test_structured_dtype_with_shape():
- dtype = np.dtype([("a", "u1", 2), ("b", "u1", 2)])
- data = StringIO("0,1,2,3\n6,7,8,9\n")
- expected = np.array([((0, 1), (2, 3)), ((6, 7), (8, 9))], dtype=dtype)
- assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dtype), expected)
- def test_structured_dtype_with_multi_shape():
- dtype = np.dtype([("a", "u1", (2, 2))])
- data = StringIO("0 1 2 3\n")
- expected = np.array([(((0, 1), (2, 3)),)], dtype=dtype)
- assert_array_equal(np.loadtxt(data, dtype=dtype), expected)
- def test_nested_structured_subarray():
- # Test from gh-16678
- point = np.dtype([('x', float), ('y', float)])
- dt = np.dtype([('code', int), ('points', point, (2,))])
- data = StringIO("100,1,2,3,4\n200,5,6,7,8\n")
- expected = np.array(
- [
- (100, [(1., 2.), (3., 4.)]),
- (200, [(5., 6.), (7., 8.)]),
- ],
- dtype=dt
- )
- assert_array_equal(np.loadtxt(data, dtype=dt, delimiter=","), expected)
- def test_structured_dtype_offsets():
- # An aligned structured dtype will have additional padding
- dt = np.dtype("i1, i4, i1, i4, i1, i4", align=True)
- data = StringIO("1,2,3,4,5,6\n7,8,9,10,11,12\n")
- expected = np.array([(1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)], dtype=dt)
- assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dt), expected)
- @pytest.mark.parametrize("param", ("skiprows", "max_rows"))
- def test_exception_negative_row_limits(param):
- """skiprows and max_rows should raise for negative parameters."""
- with pytest.raises(ValueError, match="argument must be nonnegative"):
- np.loadtxt("foo.bar", **{param: -3})
- @pytest.mark.parametrize("param", ("skiprows", "max_rows"))
- def test_exception_noninteger_row_limits(param):
- with pytest.raises(TypeError, match="argument must be an integer"):
- np.loadtxt("foo.bar", **{param: 1.0})
- @pytest.mark.parametrize(
- "data, shape",
- [
- ("1 2 3 4 5\n", (1, 5)), # Single row
- ("1\n2\n3\n4\n5\n", (5, 1)), # Single column
- ]
- )
- def test_ndmin_single_row_or_col(data, shape):
- arr = np.array([1, 2, 3, 4, 5])
- arr2d = arr.reshape(shape)
- assert_array_equal(np.loadtxt(StringIO(data), dtype=int), arr)
- assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=0), arr)
- assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=1), arr)
- assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=2), arr2d)
- @pytest.mark.parametrize("badval", [-1, 3, None, "plate of shrimp"])
- def test_bad_ndmin(badval):
- with pytest.raises(ValueError, match="Illegal value of ndmin keyword"):
- np.loadtxt("foo.bar", ndmin=badval)
- @pytest.mark.parametrize(
- "ws",
- (
- " ", # space
- "\t", # tab
- "\u2003", # em
- "\u00A0", # non-break
- "\u3000", # ideographic space
- )
- )
- def test_blank_lines_spaces_delimit(ws):
- txt = StringIO(
- f"1 2{ws}30\n\n{ws}\n"
- f"4 5 60{ws}\n {ws} \n"
- f"7 8 {ws} 90\n # comment\n"
- f"3 2 1"
- )
- # NOTE: It is unclear that the ` # comment` should succeed. Except
- # for delimiter=None, which should use any whitespace (and maybe
- # should just be implemented closer to Python
- expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
- assert_equal(
- np.loadtxt(txt, dtype=int, delimiter=None, comments="#"), expected
- )
- def test_blank_lines_normal_delimiter():
- txt = StringIO('1,2,30\n\n4,5,60\n\n7,8,90\n# comment\n3,2,1')
- expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
- assert_equal(
- np.loadtxt(txt, dtype=int, delimiter=',', comments="#"), expected
- )
- @pytest.mark.parametrize("dtype", (float, object))
- def test_maxrows_no_blank_lines(dtype):
- txt = StringIO("1.5,2.5\n3.0,4.0\n5.5,6.0")
- res = np.loadtxt(txt, dtype=dtype, delimiter=",", max_rows=2)
- assert_equal(res.dtype, dtype)
- assert_equal(res, np.array([["1.5", "2.5"], ["3.0", "4.0"]], dtype=dtype))
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype", (np.dtype("f8"), np.dtype("i2")))
- def test_exception_message_bad_values(dtype):
- txt = StringIO("1,2\n3,XXX\n5,6")
- msg = f"could not convert string 'XXX' to {dtype} at row 1, column 2"
- with pytest.raises(ValueError, match=msg):
- np.loadtxt(txt, dtype=dtype, delimiter=",")
- def test_converters_negative_indices():
- txt = StringIO('1.5,2.5\n3.0,XXX\n5.5,6.0')
- conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
- expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]])
- res = np.loadtxt(
- txt, dtype=np.float64, delimiter=",", converters=conv, encoding=None
- )
- assert_equal(res, expected)
- def test_converters_negative_indices_with_usecols():
- txt = StringIO('1.5,2.5,3.5\n3.0,4.0,XXX\n5.5,6.0,7.5\n')
- conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
- expected = np.array([[1.5, 3.5], [3.0, np.nan], [5.5, 7.5]])
- res = np.loadtxt(
- txt,
- dtype=np.float64,
- delimiter=",",
- converters=conv,
- usecols=[0, -1],
- encoding=None,
- )
- assert_equal(res, expected)
- # Second test with variable number of rows:
- res = np.loadtxt(StringIO('''0,1,2\n0,1,2,3,4'''), delimiter=",",
- usecols=[0, -1], converters={-1: (lambda x: -1)})
- assert_array_equal(res, [[0, -1], [0, -1]])
- def test_ragged_usecols():
- # usecols, and negative ones, work even with varying number of columns.
- txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
- expected = np.array([[0, 0], [0, 0], [0, 0]])
- res = np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])
- assert_equal(res, expected)
- txt = StringIO("0,0,XXX\n0\n0,XXX,XXX,0,XXX\n")
- with pytest.raises(ValueError,
- match="invalid column index -2 at row 2 with 1 columns"):
- # There is no -2 column in the second row:
- np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])
- def test_empty_usecols():
- txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
- res = np.loadtxt(txt, dtype=np.dtype([]), delimiter=",", usecols=[])
- assert res.shape == (3,)
- assert res.dtype == np.dtype([])
- @pytest.mark.parametrize("c1", ["a", "の", "🫕"])
- @pytest.mark.parametrize("c2", ["a", "の", "🫕"])
- def test_large_unicode_characters(c1, c2):
- # c1 and c2 span ascii, 16bit and 32bit range.
- txt = StringIO(f"a,{c1},c,1.0\ne,{c2},2.0,g")
- res = np.loadtxt(txt, dtype=np.dtype('U12'), delimiter=",")
- expected = np.array(
- [f"a,{c1},c,1.0".split(","), f"e,{c2},2.0,g".split(",")],
- dtype=np.dtype('U12')
- )
- assert_equal(res, expected)
- def test_unicode_with_converter():
- txt = StringIO("cat,dog\nαβγ,δεζ\nabc,def\n")
- conv = {0: lambda s: s.upper()}
- res = np.loadtxt(
- txt,
- dtype=np.dtype("U12"),
- converters=conv,
- delimiter=",",
- encoding=None
- )
- expected = np.array([['CAT', 'dog'], ['ΑΒΓ', 'δεζ'], ['ABC', 'def']])
- assert_equal(res, expected)
- def test_converter_with_structured_dtype():
- txt = StringIO('1.5,2.5,Abc\n3.0,4.0,dEf\n5.5,6.0,ghI\n')
- dt = np.dtype([('m', np.int32), ('r', np.float32), ('code', 'U8')])
- conv = {0: lambda s: int(10*float(s)), -1: lambda s: s.upper()}
- res = np.loadtxt(txt, dtype=dt, delimiter=",", converters=conv)
- expected = np.array(
- [(15, 2.5, 'ABC'), (30, 4.0, 'DEF'), (55, 6.0, 'GHI')], dtype=dt
- )
- assert_equal(res, expected)
- def test_converter_with_unicode_dtype():
- """
- With the default 'bytes' encoding, tokens are encoded prior to being
- passed to the converter. This means that the output of the converter may
- be bytes instead of unicode as expected by `read_rows`.
- This test checks that outputs from the above scenario are properly decoded
- prior to parsing by `read_rows`.
- """
- txt = StringIO('abc,def\nrst,xyz')
- conv = bytes.upper
- res = np.loadtxt(
- txt, dtype=np.dtype("U3"), converters=conv, delimiter=",")
- expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']])
- assert_equal(res, expected)
- def test_read_huge_row():
- row = "1.5, 2.5," * 50000
- row = row[:-1] + "\n"
- txt = StringIO(row * 2)
- res = np.loadtxt(txt, delimiter=",", dtype=float)
- assert_equal(res, np.tile([1.5, 2.5], (2, 50000)))
- @pytest.mark.parametrize("dtype", "edfgFDG")
- def test_huge_float(dtype):
- # Covers a non-optimized path that is rarely taken:
- field = "0" * 1000 + ".123456789"
- dtype = np.dtype(dtype)
- value = np.loadtxt([field], dtype=dtype)[()]
- assert value == dtype.type("0.123456789")
- @pytest.mark.parametrize(
- ("given_dtype", "expected_dtype"),
- [
- ("S", np.dtype("S5")),
- ("U", np.dtype("U5")),
- ],
- )
- def test_string_no_length_given(given_dtype, expected_dtype):
- """
- The given dtype is just 'S' or 'U' with no length. In these cases, the
- length of the resulting dtype is determined by the longest string found
- in the file.
- """
- txt = StringIO("AAA,5-1\nBBBBB,0-3\nC,4-9\n")
- res = np.loadtxt(txt, dtype=given_dtype, delimiter=",")
- expected = np.array(
- [['AAA', '5-1'], ['BBBBB', '0-3'], ['C', '4-9']], dtype=expected_dtype
- )
- assert_equal(res, expected)
- assert_equal(res.dtype, expected_dtype)
- def test_float_conversion():
- """
- Some tests that the conversion to float64 works as accurately as the
- Python built-in `float` function. In a naive version of the float parser,
- these strings resulted in values that were off by an ULP or two.
- """
- strings = [
- '0.9999999999999999',
- '9876543210.123456',
- '5.43215432154321e+300',
- '0.901',
- '0.333',
- ]
- txt = StringIO('\n'.join(strings))
- res = np.loadtxt(txt)
- expected = np.array([float(s) for s in strings])
- assert_equal(res, expected)
- def test_bool():
- # Simple test for bool via integer
- txt = StringIO("1, 0\n10, -1")
- res = np.loadtxt(txt, dtype=bool, delimiter=",")
- assert res.dtype == bool
- assert_array_equal(res, [[True, False], [True, True]])
- # Make sure we use only 1 and 0 on the byte level:
- assert_array_equal(res.view(np.uint8), [[1, 0], [1, 1]])
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- @pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
- def test_integer_signs(dtype):
- dtype = np.dtype(dtype)
- assert np.loadtxt(["+2"], dtype=dtype) == 2
- if dtype.kind == "u":
- with pytest.raises(ValueError):
- np.loadtxt(["-1\n"], dtype=dtype)
- else:
- assert np.loadtxt(["-2\n"], dtype=dtype) == -2
- for sign in ["++", "+-", "--", "-+"]:
- with pytest.raises(ValueError):
- np.loadtxt([f"{sign}2\n"], dtype=dtype)
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- @pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
- def test_implicit_cast_float_to_int_fails(dtype):
- txt = StringIO("1.0, 2.1, 3.7\n4, 5, 6")
- with pytest.raises(ValueError):
- np.loadtxt(txt, dtype=dtype, delimiter=",")
- @pytest.mark.parametrize("dtype", (np.complex64, np.complex128))
- @pytest.mark.parametrize("with_parens", (False, True))
- def test_complex_parsing(dtype, with_parens):
- s = "(1.0-2.5j),3.75,(7+-5.0j)\n(4),(-19e2j),(0)"
- if not with_parens:
- s = s.replace("(", "").replace(")", "")
- res = np.loadtxt(StringIO(s), dtype=dtype, delimiter=",")
- expected = np.array(
- [[1.0-2.5j, 3.75, 7-5j], [4.0, -1900j, 0]], dtype=dtype
- )
- assert_equal(res, expected)
- def test_read_from_generator():
- def gen():
- for i in range(4):
- yield f"{i},{2*i},{i**2}"
- res = np.loadtxt(gen(), dtype=int, delimiter=",")
- expected = np.array([[0, 0, 0], [1, 2, 1], [2, 4, 4], [3, 6, 9]])
- assert_equal(res, expected)
- def test_read_from_generator_multitype():
- def gen():
- for i in range(3):
- yield f"{i} {i / 4}"
- res = np.loadtxt(gen(), dtype="i, d", delimiter=" ")
- expected = np.array([(0, 0.0), (1, 0.25), (2, 0.5)], dtype="i, d")
- assert_equal(res, expected)
- def test_read_from_bad_generator():
- def gen():
- for entry in ["1,2", b"3, 5", 12738]:
- yield entry
- with pytest.raises(
- TypeError, match=r"non-string returned while reading data"):
- np.loadtxt(gen(), dtype="i, i", delimiter=",")
- @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
- def test_object_cleanup_on_read_error():
- sentinel = object()
- already_read = 0
- def conv(x):
- nonlocal already_read
- if already_read > 4999:
- raise ValueError("failed half-way through!")
- already_read += 1
- return sentinel
- txt = StringIO("x\n" * 10000)
- with pytest.raises(ValueError, match="at row 5000, column 1"):
- np.loadtxt(txt, dtype=object, converters={0: conv})
- assert sys.getrefcount(sentinel) == 2
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- def test_character_not_bytes_compatible():
- """Test exception when a character cannot be encoded as 'S'."""
- data = StringIO("–") # == \u2013
- with pytest.raises(ValueError):
- np.loadtxt(data, dtype="S5")
- @pytest.mark.parametrize("conv", (0, [float], ""))
- def test_invalid_converter(conv):
- msg = (
- "converters must be a dictionary mapping columns to converter "
- "functions or a single callable."
- )
- with pytest.raises(TypeError, match=msg):
- np.loadtxt(StringIO("1 2\n3 4"), converters=conv)
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- def test_converters_dict_raises_non_integer_key():
- with pytest.raises(TypeError, match="keys of the converters dict"):
- np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int})
- with pytest.raises(TypeError, match="keys of the converters dict"):
- np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}, usecols=0)
- @pytest.mark.parametrize("bad_col_ind", (3, -3))
- def test_converters_dict_raises_non_col_key(bad_col_ind):
- data = StringIO("1 2\n3 4")
- with pytest.raises(ValueError, match="converter specified for column"):
- np.loadtxt(data, converters={bad_col_ind: int})
- def test_converters_dict_raises_val_not_callable():
- with pytest.raises(TypeError,
- match="values of the converters dictionary must be callable"):
- np.loadtxt(StringIO("1 2\n3 4"), converters={0: 1})
- @pytest.mark.parametrize("q", ('"', "'", "`"))
- def test_quoted_field(q):
- txt = StringIO(
- f"{q}alpha, x{q}, 2.5\n{q}beta, y{q}, 4.5\n{q}gamma, z{q}, 5.0\n"
- )
- dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
- expected = np.array(
- [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
- )
- res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar=q)
- assert_array_equal(res, expected)
- @pytest.mark.parametrize("q", ('"', "'", "`"))
- def test_quoted_field_with_whitepace_delimiter(q):
- txt = StringIO(
- f"{q}alpha, x{q} 2.5\n{q}beta, y{q} 4.5\n{q}gamma, z{q} 5.0\n"
- )
- dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
- expected = np.array(
- [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
- )
- res = np.loadtxt(txt, dtype=dtype, delimiter=None, quotechar=q)
- assert_array_equal(res, expected)
- def test_quote_support_default():
- """Support for quoted fields is disabled by default."""
- txt = StringIO('"lat,long", 45, 30\n')
- dtype = np.dtype([('f0', 'U24'), ('f1', np.float64), ('f2', np.float64)])
- with pytest.raises(ValueError, match="the number of columns changed"):
- np.loadtxt(txt, dtype=dtype, delimiter=",")
- # Enable quoting support with non-None value for quotechar param
- txt.seek(0)
- expected = np.array([("lat,long", 45., 30.)], dtype=dtype)
- res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
- assert_array_equal(res, expected)
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- def test_quotechar_multichar_error():
- txt = StringIO("1,2\n3,4")
- msg = r".*must be a single unicode character or None"
- with pytest.raises(TypeError, match=msg):
- np.loadtxt(txt, delimiter=",", quotechar="''")
- def test_comment_multichar_error_with_quote():
- txt = StringIO("1,2\n3,4")
- msg = (
- "when multiple comments or a multi-character comment is given, "
- "quotes are not supported."
- )
- with pytest.raises(ValueError, match=msg):
- np.loadtxt(txt, delimiter=",", comments="123", quotechar='"')
- with pytest.raises(ValueError, match=msg):
- np.loadtxt(txt, delimiter=",", comments=["#", "%"], quotechar='"')
- # A single character string in a tuple is unpacked though:
- res = np.loadtxt(txt, delimiter=",", comments=("#",), quotechar="'")
- assert_equal(res, [[1, 2], [3, 4]])
- def test_structured_dtype_with_quotes():
- data = StringIO(
- (
- "1000;2.4;'alpha';-34\n"
- "2000;3.1;'beta';29\n"
- "3500;9.9;'gamma';120\n"
- "4090;8.1;'delta';0\n"
- "5001;4.4;'epsilon';-99\n"
- "6543;7.8;'omega';-1\n"
- )
- )
- dtype = np.dtype(
- [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
- )
- expected = np.array(
- [
- (1000, 2.4, "alpha", -34),
- (2000, 3.1, "beta", 29),
- (3500, 9.9, "gamma", 120),
- (4090, 8.1, "delta", 0),
- (5001, 4.4, "epsilon", -99),
- (6543, 7.8, "omega", -1)
- ],
- dtype=dtype
- )
- res = np.loadtxt(data, dtype=dtype, delimiter=";", quotechar="'")
- assert_array_equal(res, expected)
- def test_quoted_field_is_not_empty():
- txt = StringIO('1\n\n"4"\n""')
- expected = np.array(["1", "4", ""], dtype="U1")
- res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
- assert_equal(res, expected)
- def test_quoted_field_is_not_empty_nonstrict():
- # Same as test_quoted_field_is_not_empty but check that we are not strict
- # about missing closing quote (this is the `csv.reader` default also)
- txt = StringIO('1\n\n"4"\n"')
- expected = np.array(["1", "4", ""], dtype="U1")
- res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
- assert_equal(res, expected)
- def test_consecutive_quotechar_escaped():
- txt = StringIO('"Hello, my name is ""Monty""!"')
- expected = np.array('Hello, my name is "Monty"!', dtype="U40")
- res = np.loadtxt(txt, dtype="U40", delimiter=",", quotechar='"')
- assert_equal(res, expected)
- @pytest.mark.parametrize("data", ("", "\n\n\n", "# 1 2 3\n# 4 5 6\n"))
- @pytest.mark.parametrize("ndmin", (0, 1, 2))
- @pytest.mark.parametrize("usecols", [None, (1, 2, 3)])
- def test_warn_on_no_data(data, ndmin, usecols):
- """Check that a UserWarning is emitted when no data is read from input."""
- if usecols is not None:
- expected_shape = (0, 3)
- elif ndmin == 2:
- expected_shape = (0, 1) # guess a single column?!
- else:
- expected_shape = (0,)
- txt = StringIO(data)
- with pytest.warns(UserWarning, match="input contained no data"):
- res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
- assert res.shape == expected_shape
- with NamedTemporaryFile(mode="w") as fh:
- fh.write(data)
- fh.seek(0)
- with pytest.warns(UserWarning, match="input contained no data"):
- res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
- assert res.shape == expected_shape
- @pytest.mark.parametrize("skiprows", (2, 3))
- def test_warn_on_skipped_data(skiprows):
- data = "1 2 3\n4 5 6"
- txt = StringIO(data)
- with pytest.warns(UserWarning, match="input contained no data"):
- np.loadtxt(txt, skiprows=skiprows)
- @pytest.mark.parametrize(["dtype", "value"], [
- ("i2", 0x0001), ("u2", 0x0001),
- ("i4", 0x00010203), ("u4", 0x00010203),
- ("i8", 0x0001020304050607), ("u8", 0x0001020304050607),
- # The following values are constructed to lead to unique bytes:
- ("float16", 3.07e-05),
- ("float32", 9.2557e-41), ("complex64", 9.2557e-41+2.8622554e-29j),
- ("float64", -1.758571353180402e-24),
- # Here and below, the repr side-steps a small loss of precision in
- # complex `str` in PyPy (which is probably fine, as repr works):
- ("complex128", repr(5.406409232372729e-29-1.758571353180402e-24j)),
- # Use integer values that fit into double. Everything else leads to
- # problems due to longdoubles going via double and decimal strings
- # causing rounding errors.
- ("longdouble", 0x01020304050607),
- ("clongdouble", repr(0x01020304050607 + (0x00121314151617 * 1j))),
- ("U2", "\U00010203\U000a0b0c")])
- @pytest.mark.parametrize("swap", [True, False])
- def test_byteswapping_and_unaligned(dtype, value, swap):
- # Try to create "interesting" values within the valid unicode range:
- dtype = np.dtype(dtype)
- data = [f"x,{value}\n"] # repr as PyPy `str` truncates some
- if swap:
- dtype = dtype.newbyteorder()
- full_dt = np.dtype([("a", "S1"), ("b", dtype)], align=False)
- # The above ensures that the interesting "b" field is unaligned:
- assert full_dt.fields["b"][1] == 1
- res = np.loadtxt(data, dtype=full_dt, delimiter=",", encoding=None,
- max_rows=1) # max-rows prevents over-allocation
- assert res["b"] == dtype.type(value)
- @pytest.mark.parametrize("dtype",
- np.typecodes["AllInteger"] + "efdFD" + "?")
- def test_unicode_whitespace_stripping(dtype):
- # Test that all numeric types (and bool) strip whitespace correctly
- # \u202F is a narrow no-break space, `\n` is just a whitespace if quoted.
- # Currently, skip float128 as it did not always support this and has no
- # "custom" parsing:
- txt = StringIO(' 3 ,"\u202F2\n"')
- res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
- assert_array_equal(res, np.array([3, 2]).astype(dtype))
- @pytest.mark.parametrize("dtype", "FD")
- def test_unicode_whitespace_stripping_complex(dtype):
- # Complex has a few extra cases since it has two components and
- # parentheses
- line = " 1 , 2+3j , ( 4+5j ), ( 6+-7j ) , 8j , ( 9j ) \n"
- data = [line, line.replace(" ", "\u202F")]
- res = np.loadtxt(data, dtype=dtype, delimiter=',')
- assert_array_equal(res, np.array([[1, 2+3j, 4+5j, 6-7j, 8j, 9j]] * 2))
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype", "FD")
- @pytest.mark.parametrize("field",
- ["1 +2j", "1+ 2j", "1+2 j", "1+-+3", "(1j", "(1", "(1+2j", "1+2j)"])
- def test_bad_complex(dtype, field):
- with pytest.raises(ValueError):
- np.loadtxt([field + "\n"], dtype=dtype, delimiter=",")
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype",
- np.typecodes["AllInteger"] + "efgdFDG" + "?")
- def test_nul_character_error(dtype):
- # Test that a \0 character is correctly recognized as an error even if
- # what comes before is valid (not everything gets parsed internally).
- if dtype.lower() == "g":
- pytest.xfail("longdouble/clongdouble assignment may misbehave.")
- with pytest.raises(ValueError):
- np.loadtxt(["1\000"], dtype=dtype, delimiter=",", quotechar='"')
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- @pytest.mark.parametrize("dtype",
- np.typecodes["AllInteger"] + "efgdFDG" + "?")
- def test_no_thousands_support(dtype):
- # Mainly to document behaviour, Python supports thousands like 1_1.
- # (e and G may end up using different conversion and support it, this is
- # a bug but happens...)
- if dtype == "e":
- pytest.skip("half assignment currently uses Python float converter")
- if dtype in "eG":
- pytest.xfail("clongdouble assignment is buggy (uses `complex`?).")
- assert int("1_1") == float("1_1") == complex("1_1") == 11
- with pytest.raises(ValueError):
- np.loadtxt(["1_1\n"], dtype=dtype)
- @pytest.mark.parametrize("data", [
- ["1,2\n", "2\n,3\n"],
- ["1,2\n", "2\r,3\n"]])
- def test_bad_newline_in_iterator(data):
- # In NumPy <=1.22 this was accepted, because newlines were completely
- # ignored when the input was an iterable. This could be changed, but right
- # now, we raise an error.
- msg = "Found an unquoted embedded newline within a single line"
- with pytest.raises(ValueError, match=msg):
- np.loadtxt(data, delimiter=",")
- @pytest.mark.parametrize("data", [
- ["1,2\n", "2,3\r\n"], # a universal newline
- ["1,2\n", "'2\n',3\n"], # a quoted newline
- ["1,2\n", "'2\r',3\n"],
- ["1,2\n", "'2\r\n',3\n"],
- ])
- def test_good_newline_in_iterator(data):
- # The quoted newlines will be untransformed here, but are just whitespace.
- res = np.loadtxt(data, delimiter=",", quotechar="'")
- assert_array_equal(res, [[1., 2.], [2., 3.]])
- @pytest.mark.parametrize("newline", ["\n", "\r", "\r\n"])
- def test_universal_newlines_quoted(newline):
- # Check that universal newline support within the tokenizer is not applied
- # to quoted fields. (note that lines must end in newline or quoted
- # fields will not include a newline at all)
- data = ['1,"2\n"\n', '3,"4\n', '1"\n']
- data = [row.replace("\n", newline) for row in data]
- res = np.loadtxt(data, dtype=object, delimiter=",", quotechar='"')
- assert_array_equal(res, [['1', f'2{newline}'], ['3', f'4{newline}1']])
- def test_null_character():
- # Basic tests to check that the NUL character is not special:
- res = np.loadtxt(["1\0002\0003\n", "4\0005\0006"], delimiter="\000")
- assert_array_equal(res, [[1, 2, 3], [4, 5, 6]])
- # Also not as part of a field (avoid unicode/arrays as unicode strips \0)
- res = np.loadtxt(["1\000,2\000,3\n", "4\000,5\000,6"],
- delimiter=",", dtype=object)
- assert res.tolist() == [["1\000", "2\000", "3"], ["4\000", "5\000", "6"]]
- def test_iterator_fails_getting_next_line():
- class BadSequence:
- def __len__(self):
- return 100
- def __getitem__(self, item):
- if item == 50:
- raise RuntimeError("Bad things happened!")
- return f"{item}, {item+1}"
- with pytest.raises(RuntimeError, match="Bad things happened!"):
- np.loadtxt(BadSequence(), dtype=int, delimiter=",")
- class TestCReaderUnitTests:
- # These are internal tests for path that should not be possible to hit
- # unless things go very very wrong somewhere.
- def test_not_an_filelike(self):
- with pytest.raises(AttributeError, match=".*read"):
- np.core._multiarray_umath._load_from_filelike(
- object(), dtype=np.dtype("i"), filelike=True)
- def test_filelike_read_fails(self):
- # Can only be reached if loadtxt opens the file, so it is hard to do
- # via the public interface (although maybe not impossible considering
- # the current "DataClass" backing).
- class BadFileLike:
- counter = 0
- def read(self, size):
- self.counter += 1
- if self.counter > 20:
- raise RuntimeError("Bad bad bad!")
- return "1,2,3\n"
- with pytest.raises(RuntimeError, match="Bad bad bad!"):
- np.core._multiarray_umath._load_from_filelike(
- BadFileLike(), dtype=np.dtype("i"), filelike=True)
- def test_filelike_bad_read(self):
- # Can only be reached if loadtxt opens the file, so it is hard to do
- # via the public interface (although maybe not impossible considering
- # the current "DataClass" backing).
- class BadFileLike:
- counter = 0
- def read(self, size):
- return 1234 # not a string!
- with pytest.raises(TypeError,
- match="non-string returned while reading data"):
- np.core._multiarray_umath._load_from_filelike(
- BadFileLike(), dtype=np.dtype("i"), filelike=True)
- def test_not_an_iter(self):
- with pytest.raises(TypeError,
- match="error reading from object, expected an iterable"):
- np.core._multiarray_umath._load_from_filelike(
- object(), dtype=np.dtype("i"), filelike=False)
- def test_bad_type(self):
- with pytest.raises(TypeError, match="internal error: dtype must"):
- np.core._multiarray_umath._load_from_filelike(
- object(), dtype="i", filelike=False)
- def test_bad_encoding(self):
- with pytest.raises(TypeError, match="encoding must be a unicode"):
- np.core._multiarray_umath._load_from_filelike(
- object(), dtype=np.dtype("i"), filelike=False, encoding=123)
- @pytest.mark.parametrize("newline", ["\r", "\n", "\r\n"])
- def test_manual_universal_newlines(self, newline):
- # This is currently not available to users, because we should always
- # open files with universal newlines enabled `newlines=None`.
- # (And reading from an iterator uses slightly different code paths.)
- # We have no real support for `newline="\r"` or `newline="\n" as the
- # user cannot specify those options.
- data = StringIO('0\n1\n"2\n"\n3\n4 #\n'.replace("\n", newline),
- newline="")
- res = np.core._multiarray_umath._load_from_filelike(
- data, dtype=np.dtype("U10"), filelike=True,
- quote='"', comment="#", skiplines=1)
- assert_array_equal(res[:, 0], ["1", f"2{newline}", "3", "4 "])
- def test_delimiter_comment_collision_raises():
- with pytest.raises(TypeError, match=".*control characters.*incompatible"):
- np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=",")
- def test_delimiter_quotechar_collision_raises():
- with pytest.raises(TypeError, match=".*control characters.*incompatible"):
- np.loadtxt(StringIO("1, 2, 3"), delimiter=",", quotechar=",")
- def test_comment_quotechar_collision_raises():
- with pytest.raises(TypeError, match=".*control characters.*incompatible"):
- np.loadtxt(StringIO("1 2 3"), comments="#", quotechar="#")
- def test_delimiter_and_multiple_comments_collision_raises():
- with pytest.raises(
- TypeError, match="Comment characters.*cannot include the delimiter"
- ):
- np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=["#", ","])
- @pytest.mark.parametrize(
- "ws",
- (
- " ", # space
- "\t", # tab
- "\u2003", # em
- "\u00A0", # non-break
- "\u3000", # ideographic space
- )
- )
- def test_collision_with_default_delimiter_raises(ws):
- with pytest.raises(TypeError, match=".*control characters.*incompatible"):
- np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), comments=ws)
- with pytest.raises(TypeError, match=".*control characters.*incompatible"):
- np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), quotechar=ws)
- @pytest.mark.parametrize("nl", ("\n", "\r"))
- def test_control_character_newline_raises(nl):
- txt = StringIO(f"1{nl}2{nl}3{nl}{nl}4{nl}5{nl}6{nl}{nl}")
- msg = "control character.*cannot be a newline"
- with pytest.raises(TypeError, match=msg):
- np.loadtxt(txt, delimiter=nl)
- with pytest.raises(TypeError, match=msg):
- np.loadtxt(txt, comments=nl)
- with pytest.raises(TypeError, match=msg):
- np.loadtxt(txt, quotechar=nl)
- @pytest.mark.parametrize(
- ("generic_data", "long_datum", "unitless_dtype", "expected_dtype"),
- [
- ("2012-03", "2013-01-15", "M8", "M8[D]"), # Datetimes
- ("spam-a-lot", "tis_but_a_scratch", "U", "U17"), # str
- ],
- )
- @pytest.mark.parametrize("nrows", (10, 50000, 60000)) # lt, eq, gt chunksize
- def test_parametric_unit_discovery(
- generic_data, long_datum, unitless_dtype, expected_dtype, nrows
- ):
- """Check that the correct unit (e.g. month, day, second) is discovered from
- the data when a user specifies a unitless datetime."""
- # Unit should be "D" (days) due to last entry
- data = [generic_data] * 50000 + [long_datum]
- expected = np.array(data, dtype=expected_dtype)
- # file-like path
- txt = StringIO("\n".join(data))
- a = np.loadtxt(txt, dtype=unitless_dtype)
- assert a.dtype == expected.dtype
- assert_equal(a, expected)
- # file-obj path
- fd, fname = mkstemp()
- os.close(fd)
- with open(fname, "w") as fh:
- fh.write("\n".join(data))
- a = np.loadtxt(fname, dtype=unitless_dtype)
- os.remove(fname)
- assert a.dtype == expected.dtype
- assert_equal(a, expected)
- def test_str_dtype_unit_discovery_with_converter():
- data = ["spam-a-lot"] * 60000 + ["XXXtis_but_a_scratch"]
- expected = np.array(
- ["spam-a-lot"] * 60000 + ["tis_but_a_scratch"], dtype="U17"
- )
- conv = lambda s: s.strip("XXX")
- # file-like path
- txt = StringIO("\n".join(data))
- a = np.loadtxt(txt, dtype="U", converters=conv, encoding=None)
- assert a.dtype == expected.dtype
- assert_equal(a, expected)
- # file-obj path
- fd, fname = mkstemp()
- os.close(fd)
- with open(fname, "w") as fh:
- fh.write("\n".join(data))
- a = np.loadtxt(fname, dtype="U", converters=conv, encoding=None)
- os.remove(fname)
- assert a.dtype == expected.dtype
- assert_equal(a, expected)
- @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
- reason="PyPy bug in error formatting")
- def test_control_character_empty():
- with pytest.raises(TypeError, match="Text reading control character must"):
- np.loadtxt(StringIO("1 2 3"), delimiter="")
- with pytest.raises(TypeError, match="Text reading control character must"):
- np.loadtxt(StringIO("1 2 3"), quotechar="")
- with pytest.raises(ValueError, match="comments cannot be an empty string"):
- np.loadtxt(StringIO("1 2 3"), comments="")
- with pytest.raises(ValueError, match="comments cannot be an empty string"):
- np.loadtxt(StringIO("1 2 3"), comments=["#", ""])
- def test_control_characters_as_bytes():
- """Byte control characters (comments, delimiter) are supported."""
- a = np.loadtxt(StringIO("#header\n1,2,3"), comments=b"#", delimiter=b",")
- assert_equal(a, [1, 2, 3])
- @pytest.mark.filterwarnings('ignore::UserWarning')
- def test_field_growing_cases():
- # Test empty field appending/growing (each field still takes 1 character)
- # to see if the final field appending does not create issues.
- res = np.loadtxt([""], delimiter=",", dtype=bytes)
- assert len(res) == 0
- for i in range(1, 1024):
- res = np.loadtxt(["," * i], delimiter=",", dtype=bytes)
- assert len(res) == i+1
|