123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551 |
- import pytest
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises, assert_raises_regex,
- )
- from numpy.lib.index_tricks import (
- mgrid, ogrid, ndenumerate, fill_diagonal, diag_indices, diag_indices_from,
- index_exp, ndindex, r_, s_, ix_
- )
- class TestRavelUnravelIndex:
- def test_basic(self):
- assert_equal(np.unravel_index(2, (2, 2)), (1, 0))
- # test that new shape argument works properly
- assert_equal(np.unravel_index(indices=2,
- shape=(2, 2)),
- (1, 0))
- # test that an invalid second keyword argument
- # is properly handled, including the old name `dims`.
- with assert_raises(TypeError):
- np.unravel_index(indices=2, hape=(2, 2))
- with assert_raises(TypeError):
- np.unravel_index(2, hape=(2, 2))
- with assert_raises(TypeError):
- np.unravel_index(254, ims=(17, 94))
- with assert_raises(TypeError):
- np.unravel_index(254, dims=(17, 94))
- assert_equal(np.ravel_multi_index((1, 0), (2, 2)), 2)
- assert_equal(np.unravel_index(254, (17, 94)), (2, 66))
- assert_equal(np.ravel_multi_index((2, 66), (17, 94)), 254)
- assert_raises(ValueError, np.unravel_index, -1, (2, 2))
- assert_raises(TypeError, np.unravel_index, 0.5, (2, 2))
- assert_raises(ValueError, np.unravel_index, 4, (2, 2))
- assert_raises(ValueError, np.ravel_multi_index, (-3, 1), (2, 2))
- assert_raises(ValueError, np.ravel_multi_index, (2, 1), (2, 2))
- assert_raises(ValueError, np.ravel_multi_index, (0, -3), (2, 2))
- assert_raises(ValueError, np.ravel_multi_index, (0, 2), (2, 2))
- assert_raises(TypeError, np.ravel_multi_index, (0.1, 0.), (2, 2))
- assert_equal(np.unravel_index((2*3 + 1)*6 + 4, (4, 3, 6)), [2, 1, 4])
- assert_equal(
- np.ravel_multi_index([2, 1, 4], (4, 3, 6)), (2*3 + 1)*6 + 4)
- arr = np.array([[3, 6, 6], [4, 5, 1]])
- assert_equal(np.ravel_multi_index(arr, (7, 6)), [22, 41, 37])
- assert_equal(
- np.ravel_multi_index(arr, (7, 6), order='F'), [31, 41, 13])
- assert_equal(
- np.ravel_multi_index(arr, (4, 6), mode='clip'), [22, 23, 19])
- assert_equal(np.ravel_multi_index(arr, (4, 4), mode=('clip', 'wrap')),
- [12, 13, 13])
- assert_equal(np.ravel_multi_index((3, 1, 4, 1), (6, 7, 8, 9)), 1621)
- assert_equal(np.unravel_index(np.array([22, 41, 37]), (7, 6)),
- [[3, 6, 6], [4, 5, 1]])
- assert_equal(
- np.unravel_index(np.array([31, 41, 13]), (7, 6), order='F'),
- [[3, 6, 6], [4, 5, 1]])
- assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
- def test_empty_indices(self):
- msg1 = 'indices must be integral: the provided empty sequence was'
- msg2 = 'only int indices permitted'
- assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5))
- assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5))
- assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]),
- (10, 3, 5))
- assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)),
- [[], [], []])
- assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []),
- (10, 3))
- assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']),
- (10, 3))
- assert_raises_regex(TypeError, msg2, np.ravel_multi_index,
- (np.array([]), np.array([])), (5, 3))
- assert_equal(np.ravel_multi_index(
- (np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), [])
- assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int),
- (5, 3)), [])
- def test_big_indices(self):
- # ravel_multi_index for big indices (issue #7546)
- if np.intp == np.int64:
- arr = ([1, 29], [3, 5], [3, 117], [19, 2],
- [2379, 1284], [2, 2], [0, 1])
- assert_equal(
- np.ravel_multi_index(arr, (41, 7, 120, 36, 2706, 8, 6)),
- [5627771580, 117259570957])
- # test unravel_index for big indices (issue #9538)
- assert_raises(ValueError, np.unravel_index, 1, (2**32-1, 2**31+1))
- # test overflow checking for too big array (issue #7546)
- dummy_arr = ([0],[0])
- half_max = np.iinfo(np.intp).max // 2
- assert_equal(
- np.ravel_multi_index(dummy_arr, (half_max, 2)), [0])
- assert_raises(ValueError,
- np.ravel_multi_index, dummy_arr, (half_max+1, 2))
- assert_equal(
- np.ravel_multi_index(dummy_arr, (half_max, 2), order='F'), [0])
- assert_raises(ValueError,
- np.ravel_multi_index, dummy_arr, (half_max+1, 2), order='F')
- def test_dtypes(self):
- # Test with different data types
- for dtype in [np.int16, np.uint16, np.int32,
- np.uint32, np.int64, np.uint64]:
- coords = np.array(
- [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0]], dtype=dtype)
- shape = (5, 8)
- uncoords = 8*coords[0]+coords[1]
- assert_equal(np.ravel_multi_index(coords, shape), uncoords)
- assert_equal(coords, np.unravel_index(uncoords, shape))
- uncoords = coords[0]+5*coords[1]
- assert_equal(
- np.ravel_multi_index(coords, shape, order='F'), uncoords)
- assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
- coords = np.array(
- [[1, 0, 1, 2, 3, 4], [1, 6, 1, 3, 2, 0], [1, 3, 1, 0, 9, 5]],
- dtype=dtype)
- shape = (5, 8, 10)
- uncoords = 10*(8*coords[0]+coords[1])+coords[2]
- assert_equal(np.ravel_multi_index(coords, shape), uncoords)
- assert_equal(coords, np.unravel_index(uncoords, shape))
- uncoords = coords[0]+5*(coords[1]+8*coords[2])
- assert_equal(
- np.ravel_multi_index(coords, shape, order='F'), uncoords)
- assert_equal(coords, np.unravel_index(uncoords, shape, order='F'))
- def test_clipmodes(self):
- # Test clipmodes
- assert_equal(
- np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12), mode='wrap'),
- np.ravel_multi_index([1, 1, 6, 2], (4, 3, 7, 12)))
- assert_equal(np.ravel_multi_index([5, 1, -1, 2], (4, 3, 7, 12),
- mode=(
- 'wrap', 'raise', 'clip', 'raise')),
- np.ravel_multi_index([1, 1, 0, 2], (4, 3, 7, 12)))
- assert_raises(
- ValueError, np.ravel_multi_index, [5, 1, -1, 2], (4, 3, 7, 12))
- def test_writeability(self):
- # See gh-7269
- x, y = np.unravel_index([1, 2, 3], (4, 5))
- assert_(x.flags.writeable)
- assert_(y.flags.writeable)
- def test_0d(self):
- # gh-580
- x = np.unravel_index(0, ())
- assert_equal(x, ())
- assert_raises_regex(ValueError, "0d array", np.unravel_index, [0], ())
- assert_raises_regex(
- ValueError, "out of bounds", np.unravel_index, [1], ())
- @pytest.mark.parametrize("mode", ["clip", "wrap", "raise"])
- def test_empty_array_ravel(self, mode):
- res = np.ravel_multi_index(
- np.zeros((3, 0), dtype=np.intp), (2, 1, 0), mode=mode)
- assert(res.shape == (0,))
- with assert_raises(ValueError):
- np.ravel_multi_index(
- np.zeros((3, 1), dtype=np.intp), (2, 1, 0), mode=mode)
- def test_empty_array_unravel(self):
- res = np.unravel_index(np.zeros(0, dtype=np.intp), (2, 1, 0))
- # res is a tuple of three empty arrays
- assert(len(res) == 3)
- assert(all(a.shape == (0,) for a in res))
- with assert_raises(ValueError):
- np.unravel_index([1], (2, 1, 0))
- class TestGrid:
- def test_basic(self):
- a = mgrid[-1:1:10j]
- b = mgrid[-1:1:0.1]
- assert_(a.shape == (10,))
- assert_(b.shape == (20,))
- assert_(a[0] == -1)
- assert_almost_equal(a[-1], 1)
- assert_(b[0] == -1)
- assert_almost_equal(b[1]-b[0], 0.1, 11)
- assert_almost_equal(b[-1], b[0]+19*0.1, 11)
- assert_almost_equal(a[1]-a[0], 2.0/9.0, 11)
- def test_linspace_equivalence(self):
- y, st = np.linspace(2, 10, retstep=True)
- assert_almost_equal(st, 8/49.0)
- assert_array_almost_equal(y, mgrid[2:10:50j], 13)
- def test_nd(self):
- c = mgrid[-1:1:10j, -2:2:10j]
- d = mgrid[-1:1:0.1, -2:2:0.2]
- assert_(c.shape == (2, 10, 10))
- assert_(d.shape == (2, 20, 20))
- assert_array_equal(c[0][0, :], -np.ones(10, 'd'))
- assert_array_equal(c[1][:, 0], -2*np.ones(10, 'd'))
- assert_array_almost_equal(c[0][-1, :], np.ones(10, 'd'), 11)
- assert_array_almost_equal(c[1][:, -1], 2*np.ones(10, 'd'), 11)
- assert_array_almost_equal(d[0, 1, :] - d[0, 0, :],
- 0.1*np.ones(20, 'd'), 11)
- assert_array_almost_equal(d[1, :, 1] - d[1, :, 0],
- 0.2*np.ones(20, 'd'), 11)
- def test_sparse(self):
- grid_full = mgrid[-1:1:10j, -2:2:10j]
- grid_sparse = ogrid[-1:1:10j, -2:2:10j]
- # sparse grids can be made dense by broadcasting
- grid_broadcast = np.broadcast_arrays(*grid_sparse)
- for f, b in zip(grid_full, grid_broadcast):
- assert_equal(f, b)
- @pytest.mark.parametrize("start, stop, step, expected", [
- (None, 10, 10j, (200, 10)),
- (-10, 20, None, (1800, 30)),
- ])
- def test_mgrid_size_none_handling(self, start, stop, step, expected):
- # regression test None value handling for
- # start and step values used by mgrid;
- # internally, this aims to cover previously
- # unexplored code paths in nd_grid()
- grid = mgrid[start:stop:step, start:stop:step]
- # need a smaller grid to explore one of the
- # untested code paths
- grid_small = mgrid[start:stop:step]
- assert_equal(grid.size, expected[0])
- assert_equal(grid_small.size, expected[1])
- def test_accepts_npfloating(self):
- # regression test for #16466
- grid64 = mgrid[0.1:0.33:0.1, ]
- grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1), ]
- assert_(grid32.dtype == np.float64)
- assert_array_almost_equal(grid64, grid32)
- # different code path for single slice
- grid64 = mgrid[0.1:0.33:0.1]
- grid32 = mgrid[np.float32(0.1):np.float32(0.33):np.float32(0.1)]
- assert_(grid32.dtype == np.float64)
- assert_array_almost_equal(grid64, grid32)
- def test_accepts_longdouble(self):
- # regression tests for #16945
- grid64 = mgrid[0.1:0.33:0.1, ]
- grid128 = mgrid[
- np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1),
- ]
- assert_(grid128.dtype == np.longdouble)
- assert_array_almost_equal(grid64, grid128)
- grid128c_a = mgrid[0:np.longdouble(1):3.4j]
- grid128c_b = mgrid[0:np.longdouble(1):3.4j, ]
- assert_(grid128c_a.dtype == grid128c_b.dtype == np.longdouble)
- assert_array_equal(grid128c_a, grid128c_b[0])
- # different code path for single slice
- grid64 = mgrid[0.1:0.33:0.1]
- grid128 = mgrid[
- np.longdouble(0.1):np.longdouble(0.33):np.longdouble(0.1)
- ]
- assert_(grid128.dtype == np.longdouble)
- assert_array_almost_equal(grid64, grid128)
- def test_accepts_npcomplexfloating(self):
- # Related to #16466
- assert_array_almost_equal(
- mgrid[0.1:0.3:3j, ], mgrid[0.1:0.3:np.complex64(3j), ]
- )
- # different code path for single slice
- assert_array_almost_equal(
- mgrid[0.1:0.3:3j], mgrid[0.1:0.3:np.complex64(3j)]
- )
- # Related to #16945
- grid64_a = mgrid[0.1:0.3:3.3j]
- grid64_b = mgrid[0.1:0.3:3.3j, ][0]
- assert_(grid64_a.dtype == grid64_b.dtype == np.float64)
- assert_array_equal(grid64_a, grid64_b)
- grid128_a = mgrid[0.1:0.3:np.clongdouble(3.3j)]
- grid128_b = mgrid[0.1:0.3:np.clongdouble(3.3j), ][0]
- assert_(grid128_a.dtype == grid128_b.dtype == np.longdouble)
- assert_array_equal(grid64_a, grid64_b)
- class TestConcatenator:
- def test_1d(self):
- assert_array_equal(r_[1, 2, 3, 4, 5, 6], np.array([1, 2, 3, 4, 5, 6]))
- b = np.ones(5)
- c = r_[b, 0, 0, b]
- assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
- def test_mixed_type(self):
- g = r_[10.1, 1:10]
- assert_(g.dtype == 'f8')
- def test_more_mixed_type(self):
- g = r_[-10.1, np.array([1]), np.array([2, 3, 4]), 10.0]
- assert_(g.dtype == 'f8')
- def test_complex_step(self):
- # Regression test for #12262
- g = r_[0:36:100j]
- assert_(g.shape == (100,))
- # Related to #16466
- g = r_[0:36:np.complex64(100j)]
- assert_(g.shape == (100,))
- def test_2d(self):
- b = np.random.rand(5, 5)
- c = np.random.rand(5, 5)
- d = r_['1', b, c] # append columns
- assert_(d.shape == (5, 10))
- assert_array_equal(d[:, :5], b)
- assert_array_equal(d[:, 5:], c)
- d = r_[b, c]
- assert_(d.shape == (10, 5))
- assert_array_equal(d[:5, :], b)
- assert_array_equal(d[5:, :], c)
- def test_0d(self):
- assert_equal(r_[0, np.array(1), 2], [0, 1, 2])
- assert_equal(r_[[0, 1, 2], np.array(3)], [0, 1, 2, 3])
- assert_equal(r_[np.array(0), [1, 2, 3]], [0, 1, 2, 3])
- class TestNdenumerate:
- def test_basic(self):
- a = np.array([[1, 2], [3, 4]])
- assert_equal(list(ndenumerate(a)),
- [((0, 0), 1), ((0, 1), 2), ((1, 0), 3), ((1, 1), 4)])
- class TestIndexExpression:
- def test_regression_1(self):
- # ticket #1196
- a = np.arange(2)
- assert_equal(a[:-1], a[s_[:-1]])
- assert_equal(a[:-1], a[index_exp[:-1]])
- def test_simple_1(self):
- a = np.random.rand(4, 5, 6)
- assert_equal(a[:, :3, [1, 2]], a[index_exp[:, :3, [1, 2]]])
- assert_equal(a[:, :3, [1, 2]], a[s_[:, :3, [1, 2]]])
- class TestIx_:
- def test_regression_1(self):
- # Test empty untyped inputs create outputs of indexing type, gh-5804
- a, = np.ix_(range(0))
- assert_equal(a.dtype, np.intp)
- a, = np.ix_([])
- assert_equal(a.dtype, np.intp)
- # but if the type is specified, don't change it
- a, = np.ix_(np.array([], dtype=np.float32))
- assert_equal(a.dtype, np.float32)
- def test_shape_and_dtype(self):
- sizes = (4, 5, 3, 2)
- # Test both lists and arrays
- for func in (range, np.arange):
- arrays = np.ix_(*[func(sz) for sz in sizes])
- for k, (a, sz) in enumerate(zip(arrays, sizes)):
- assert_equal(a.shape[k], sz)
- assert_(all(sh == 1 for j, sh in enumerate(a.shape) if j != k))
- assert_(np.issubdtype(a.dtype, np.integer))
- def test_bool(self):
- bool_a = [True, False, True, True]
- int_a, = np.nonzero(bool_a)
- assert_equal(np.ix_(bool_a)[0], int_a)
- def test_1d_only(self):
- idx2d = [[1, 2, 3], [4, 5, 6]]
- assert_raises(ValueError, np.ix_, idx2d)
- def test_repeated_input(self):
- length_of_vector = 5
- x = np.arange(length_of_vector)
- out = ix_(x, x)
- assert_equal(out[0].shape, (length_of_vector, 1))
- assert_equal(out[1].shape, (1, length_of_vector))
- # check that input shape is not modified
- assert_equal(x.shape, (length_of_vector,))
- def test_c_():
- a = np.c_[np.array([[1, 2, 3]]), 0, 0, np.array([[4, 5, 6]])]
- assert_equal(a, [[1, 2, 3, 0, 0, 4, 5, 6]])
- class TestFillDiagonal:
- def test_basic(self):
- a = np.zeros((3, 3), int)
- fill_diagonal(a, 5)
- assert_array_equal(
- a, np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5]])
- )
- def test_tall_matrix(self):
- a = np.zeros((10, 3), int)
- fill_diagonal(a, 5)
- assert_array_equal(
- a, np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0],
- [0, 0, 0]])
- )
- def test_tall_matrix_wrap(self):
- a = np.zeros((10, 3), int)
- fill_diagonal(a, 5, True)
- assert_array_equal(
- a, np.array([[5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [5, 0, 0],
- [0, 5, 0],
- [0, 0, 5],
- [0, 0, 0],
- [5, 0, 0],
- [0, 5, 0]])
- )
- def test_wide_matrix(self):
- a = np.zeros((3, 10), int)
- fill_diagonal(a, 5)
- assert_array_equal(
- a, np.array([[5, 0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 5, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 5, 0, 0, 0, 0, 0, 0, 0]])
- )
- def test_operate_4d_array(self):
- a = np.zeros((3, 3, 3, 3), int)
- fill_diagonal(a, 4)
- i = np.array([0, 1, 2])
- assert_equal(np.where(a != 0), (i, i, i, i))
- def test_low_dim_handling(self):
- # raise error with low dimensionality
- a = np.zeros(3, int)
- with assert_raises_regex(ValueError, "at least 2-d"):
- fill_diagonal(a, 5)
- def test_hetero_shape_handling(self):
- # raise error with high dimensionality and
- # shape mismatch
- a = np.zeros((3,3,7,3), int)
- with assert_raises_regex(ValueError, "equal length"):
- fill_diagonal(a, 2)
- def test_diag_indices():
- di = diag_indices(4)
- a = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [13, 14, 15, 16]])
- a[di] = 100
- assert_array_equal(
- a, np.array([[100, 2, 3, 4],
- [5, 100, 7, 8],
- [9, 10, 100, 12],
- [13, 14, 15, 100]])
- )
- # Now, we create indices to manipulate a 3-d array:
- d3 = diag_indices(2, 3)
- # And use it to set the diagonal of a zeros array to 1:
- a = np.zeros((2, 2, 2), int)
- a[d3] = 1
- assert_array_equal(
- a, np.array([[[1, 0],
- [0, 0]],
- [[0, 0],
- [0, 1]]])
- )
- class TestDiagIndicesFrom:
- def test_diag_indices_from(self):
- x = np.random.random((4, 4))
- r, c = diag_indices_from(x)
- assert_array_equal(r, np.arange(4))
- assert_array_equal(c, np.arange(4))
- def test_error_small_input(self):
- x = np.ones(7)
- with assert_raises_regex(ValueError, "at least 2-d"):
- diag_indices_from(x)
- def test_error_shape_mismatch(self):
- x = np.zeros((3, 3, 2, 3), int)
- with assert_raises_regex(ValueError, "equal length"):
- diag_indices_from(x)
- def test_ndindex():
- x = list(ndindex(1, 2, 3))
- expected = [ix for ix, e in ndenumerate(np.zeros((1, 2, 3)))]
- assert_array_equal(x, expected)
- x = list(ndindex((1, 2, 3)))
- assert_array_equal(x, expected)
- # Test use of scalars and tuples
- x = list(ndindex((3,)))
- assert_array_equal(x, list(ndindex(3)))
- # Make sure size argument is optional
- x = list(ndindex())
- assert_equal(x, [()])
- x = list(ndindex(()))
- assert_equal(x, [()])
- # Make sure 0-sized ndindex works correctly
- x = list(ndindex(*[0]))
- assert_equal(x, [])
|