123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808 |
- import numpy as np
- from numpy.lib.histograms import histogram, histogramdd, histogram_bin_edges
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises, assert_allclose,
- assert_array_max_ulp, assert_raises_regex, suppress_warnings,
- )
- from numpy.testing._private.utils import requires_memory
- import pytest
- class TestHistogram:
- def setup_method(self):
- pass
- def teardown_method(self):
- pass
- def test_simple(self):
- n = 100
- v = np.random.rand(n)
- (a, b) = histogram(v)
- # check if the sum of the bins equals the number of samples
- assert_equal(np.sum(a, axis=0), n)
- # check that the bin counts are evenly spaced when the data is from
- # a linear function
- (a, b) = histogram(np.linspace(0, 10, 100))
- assert_array_equal(a, 10)
- def test_one_bin(self):
- # Ticket 632
- hist, edges = histogram([1, 2, 3, 4], [1, 2])
- assert_array_equal(hist, [2, ])
- assert_array_equal(edges, [1, 2])
- assert_raises(ValueError, histogram, [1, 2], bins=0)
- h, e = histogram([1, 2], bins=1)
- assert_equal(h, np.array([2]))
- assert_allclose(e, np.array([1., 2.]))
- def test_density(self):
- # Check that the integral of the density equals 1.
- n = 100
- v = np.random.rand(n)
- a, b = histogram(v, density=True)
- area = np.sum(a * np.diff(b))
- assert_almost_equal(area, 1)
- # Check with non-constant bin widths
- v = np.arange(10)
- bins = [0, 1, 3, 6, 10]
- a, b = histogram(v, bins, density=True)
- assert_array_equal(a, .1)
- assert_equal(np.sum(a * np.diff(b)), 1)
- # Test that passing False works too
- a, b = histogram(v, bins, density=False)
- assert_array_equal(a, [1, 2, 3, 4])
- # Variable bin widths are especially useful to deal with
- # infinities.
- v = np.arange(10)
- bins = [0, 1, 3, 6, np.inf]
- a, b = histogram(v, bins, density=True)
- assert_array_equal(a, [.1, .1, .1, 0.])
- # Taken from a bug report from N. Becker on the numpy-discussion
- # mailing list Aug. 6, 2010.
- counts, dmy = np.histogram(
- [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
- assert_equal(counts, [.25, 0])
- def test_outliers(self):
- # Check that outliers are not tallied
- a = np.arange(10) + .5
- # Lower outliers
- h, b = histogram(a, range=[0, 9])
- assert_equal(h.sum(), 9)
- # Upper outliers
- h, b = histogram(a, range=[1, 10])
- assert_equal(h.sum(), 9)
- # Normalization
- h, b = histogram(a, range=[1, 9], density=True)
- assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)
- # Weights
- w = np.arange(10) + .5
- h, b = histogram(a, range=[1, 9], weights=w, density=True)
- assert_equal((h * np.diff(b)).sum(), 1)
- h, b = histogram(a, bins=8, range=[1, 9], weights=w)
- assert_equal(h, w[1:-1])
- def test_arr_weights_mismatch(self):
- a = np.arange(10) + .5
- w = np.arange(11) + .5
- with assert_raises_regex(ValueError, "same shape as"):
- h, b = histogram(a, range=[1, 9], weights=w, density=True)
- def test_type(self):
- # Check the type of the returned histogram
- a = np.arange(10) + .5
- h, b = histogram(a)
- assert_(np.issubdtype(h.dtype, np.integer))
- h, b = histogram(a, density=True)
- assert_(np.issubdtype(h.dtype, np.floating))
- h, b = histogram(a, weights=np.ones(10, int))
- assert_(np.issubdtype(h.dtype, np.integer))
- h, b = histogram(a, weights=np.ones(10, float))
- assert_(np.issubdtype(h.dtype, np.floating))
- def test_f32_rounding(self):
- # gh-4799, check that the rounding of the edges works with float32
- x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
- y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
- counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
- assert_equal(counts_hist.sum(), 3.)
- def test_bool_conversion(self):
- # gh-12107
- # Reference integer histogram
- a = np.array([1, 1, 0], dtype=np.uint8)
- int_hist, int_edges = np.histogram(a)
- # Should raise an warning on booleans
- # Ensure that the histograms are equivalent, need to suppress
- # the warnings to get the actual outputs
- with suppress_warnings() as sup:
- rec = sup.record(RuntimeWarning, 'Converting input from .*')
- hist, edges = np.histogram([True, True, False])
- # A warning should be issued
- assert_equal(len(rec), 1)
- assert_array_equal(hist, int_hist)
- assert_array_equal(edges, int_edges)
- def test_weights(self):
- v = np.random.rand(100)
- w = np.ones(100) * 5
- a, b = histogram(v)
- na, nb = histogram(v, density=True)
- wa, wb = histogram(v, weights=w)
- nwa, nwb = histogram(v, weights=w, density=True)
- assert_array_almost_equal(a * 5, wa)
- assert_array_almost_equal(na, nwa)
- # Check weights are properly applied.
- v = np.linspace(0, 10, 10)
- w = np.concatenate((np.zeros(5), np.ones(5)))
- wa, wb = histogram(v, bins=np.arange(11), weights=w)
- assert_array_almost_equal(wa, w)
- # Check with integer weights
- wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
- assert_array_equal(wa, [4, 5, 0, 1])
- wa, wb = histogram(
- [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], density=True)
- assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
- # Check weights with non-uniform bin widths
- a, b = histogram(
- np.arange(9), [0, 1, 3, 6, 10],
- weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
- assert_almost_equal(a, [.2, .1, .1, .075])
- def test_exotic_weights(self):
- # Test the use of weights that are not integer or floats, but e.g.
- # complex numbers or object types.
- # Complex weights
- values = np.array([1.3, 2.5, 2.3])
- weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
- # Check with custom bins
- wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
- # Check with even bins
- wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
- # Decimal weights
- from decimal import Decimal
- values = np.array([1.3, 2.5, 2.3])
- weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
- # Check with custom bins
- wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
- assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
- # Check with even bins
- wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
- assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
- def test_no_side_effects(self):
- # This is a regression test that ensures that values passed to
- # ``histogram`` are unchanged.
- values = np.array([1.3, 2.5, 2.3])
- np.histogram(values, range=[-10, 10], bins=100)
- assert_array_almost_equal(values, [1.3, 2.5, 2.3])
- def test_empty(self):
- a, b = histogram([], bins=([0, 1]))
- assert_array_equal(a, np.array([0]))
- assert_array_equal(b, np.array([0, 1]))
- def test_error_binnum_type (self):
- # Tests if right Error is raised if bins argument is float
- vals = np.linspace(0.0, 1.0, num=100)
- histogram(vals, 5)
- assert_raises(TypeError, histogram, vals, 2.4)
- def test_finite_range(self):
- # Normal ranges should be fine
- vals = np.linspace(0.0, 1.0, num=100)
- histogram(vals, range=[0.25,0.75])
- assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
- assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])
- def test_invalid_range(self):
- # start of range must be < end of range
- vals = np.linspace(0.0, 1.0, num=100)
- with assert_raises_regex(ValueError, "max must be larger than"):
- np.histogram(vals, range=[0.1, 0.01])
- def test_bin_edge_cases(self):
- # Ensure that floating-point computations correctly place edge cases.
- arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
- hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
- mask = hist > 0
- left_edges = edges[:-1][mask]
- right_edges = edges[1:][mask]
- for x, left, right in zip(arr, left_edges, right_edges):
- assert_(x >= left)
- assert_(x < right)
- def test_last_bin_inclusive_range(self):
- arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
- hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
- assert_equal(hist[-1], 1)
- def test_bin_array_dims(self):
- # gracefully handle bins object > 1 dimension
- vals = np.linspace(0.0, 1.0, num=100)
- bins = np.array([[0, 0.5], [0.6, 1.0]])
- with assert_raises_regex(ValueError, "must be 1d"):
- np.histogram(vals, bins=bins)
- def test_unsigned_monotonicity_check(self):
- # Ensures ValueError is raised if bins not increasing monotonically
- # when bins contain unsigned values (see #9222)
- arr = np.array([2])
- bins = np.array([1, 3, 1], dtype='uint64')
- with assert_raises(ValueError):
- hist, edges = np.histogram(arr, bins=bins)
- def test_object_array_of_0d(self):
- # gh-7864
- assert_raises(ValueError,
- histogram, [np.array(0.4) for i in range(10)] + [-np.inf])
- assert_raises(ValueError,
- histogram, [np.array(0.4) for i in range(10)] + [np.inf])
- # these should not crash
- np.histogram([np.array(0.5) for i in range(10)] + [.500000000000001])
- np.histogram([np.array(0.5) for i in range(10)] + [.5])
- def test_some_nan_values(self):
- # gh-7503
- one_nan = np.array([0, 1, np.nan])
- all_nan = np.array([np.nan, np.nan])
- # the internal comparisons with NaN give warnings
- sup = suppress_warnings()
- sup.filter(RuntimeWarning)
- with sup:
- # can't infer range with nan
- assert_raises(ValueError, histogram, one_nan, bins='auto')
- assert_raises(ValueError, histogram, all_nan, bins='auto')
- # explicit range solves the problem
- h, b = histogram(one_nan, bins='auto', range=(0, 1))
- assert_equal(h.sum(), 2) # nan is not counted
- h, b = histogram(all_nan, bins='auto', range=(0, 1))
- assert_equal(h.sum(), 0) # nan is not counted
- # as does an explicit set of bins
- h, b = histogram(one_nan, bins=[0, 1])
- assert_equal(h.sum(), 2) # nan is not counted
- h, b = histogram(all_nan, bins=[0, 1])
- assert_equal(h.sum(), 0) # nan is not counted
- def test_datetime(self):
- begin = np.datetime64('2000-01-01', 'D')
- offsets = np.array([0, 0, 1, 1, 2, 3, 5, 10, 20])
- bins = np.array([0, 2, 7, 20])
- dates = begin + offsets
- date_bins = begin + bins
- td = np.dtype('timedelta64[D]')
- # Results should be the same for integer offsets or datetime values.
- # For now, only explicit bins are supported, since linspace does not
- # work on datetimes or timedeltas
- d_count, d_edge = histogram(dates, bins=date_bins)
- t_count, t_edge = histogram(offsets.astype(td), bins=bins.astype(td))
- i_count, i_edge = histogram(offsets, bins=bins)
- assert_equal(d_count, i_count)
- assert_equal(t_count, i_count)
- assert_equal((d_edge - begin).astype(int), i_edge)
- assert_equal(t_edge.astype(int), i_edge)
- assert_equal(d_edge.dtype, dates.dtype)
- assert_equal(t_edge.dtype, td)
- def do_signed_overflow_bounds(self, dtype):
- exponent = 8 * np.dtype(dtype).itemsize - 1
- arr = np.array([-2**exponent + 4, 2**exponent - 4], dtype=dtype)
- hist, e = histogram(arr, bins=2)
- assert_equal(e, [-2**exponent + 4, 0, 2**exponent - 4])
- assert_equal(hist, [1, 1])
- def test_signed_overflow_bounds(self):
- self.do_signed_overflow_bounds(np.byte)
- self.do_signed_overflow_bounds(np.short)
- self.do_signed_overflow_bounds(np.intc)
- self.do_signed_overflow_bounds(np.int_)
- self.do_signed_overflow_bounds(np.longlong)
- def do_precision_lower_bound(self, float_small, float_large):
- eps = np.finfo(float_large).eps
- arr = np.array([1.0], float_small)
- range = np.array([1.0 + eps, 2.0], float_large)
- # test is looking for behavior when the bounds change between dtypes
- if range.astype(float_small)[0] != 1:
- return
- # previously crashed
- count, x_loc = np.histogram(arr, bins=1, range=range)
- assert_equal(count, [1])
- # gh-10322 means that the type comes from arr - this may change
- assert_equal(x_loc.dtype, float_small)
- def do_precision_upper_bound(self, float_small, float_large):
- eps = np.finfo(float_large).eps
- arr = np.array([1.0], float_small)
- range = np.array([0.0, 1.0 - eps], float_large)
- # test is looking for behavior when the bounds change between dtypes
- if range.astype(float_small)[-1] != 1:
- return
- # previously crashed
- count, x_loc = np.histogram(arr, bins=1, range=range)
- assert_equal(count, [1])
- # gh-10322 means that the type comes from arr - this may change
- assert_equal(x_loc.dtype, float_small)
- def do_precision(self, float_small, float_large):
- self.do_precision_lower_bound(float_small, float_large)
- self.do_precision_upper_bound(float_small, float_large)
- def test_precision(self):
- # not looping results in a useful stack trace upon failure
- self.do_precision(np.half, np.single)
- self.do_precision(np.half, np.double)
- self.do_precision(np.half, np.longdouble)
- self.do_precision(np.single, np.double)
- self.do_precision(np.single, np.longdouble)
- self.do_precision(np.double, np.longdouble)
- def test_histogram_bin_edges(self):
- hist, e = histogram([1, 2, 3, 4], [1, 2])
- edges = histogram_bin_edges([1, 2, 3, 4], [1, 2])
- assert_array_equal(edges, e)
- arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
- hist, e = histogram(arr, bins=30, range=(-0.5, 5))
- edges = histogram_bin_edges(arr, bins=30, range=(-0.5, 5))
- assert_array_equal(edges, e)
- hist, e = histogram(arr, bins='auto', range=(0, 1))
- edges = histogram_bin_edges(arr, bins='auto', range=(0, 1))
- assert_array_equal(edges, e)
- @requires_memory(free_bytes=1e10)
- @pytest.mark.slow
- def test_big_arrays(self):
- sample = np.zeros([100000000, 3])
- xbins = 400
- ybins = 400
- zbins = np.arange(16000)
- hist = np.histogramdd(sample=sample, bins=(xbins, ybins, zbins))
- assert_equal(type(hist), type((1, 2)))
- class TestHistogramOptimBinNums:
- """
- Provide test coverage when using provided estimators for optimal number of
- bins
- """
- def test_empty(self):
- estimator_list = ['fd', 'scott', 'rice', 'sturges',
- 'doane', 'sqrt', 'auto', 'stone']
- # check it can deal with empty data
- for estimator in estimator_list:
- a, b = histogram([], bins=estimator)
- assert_array_equal(a, np.array([0]))
- assert_array_equal(b, np.array([0, 1]))
- def test_simple(self):
- """
- Straightforward testing with a mixture of linspace data (for
- consistency). All test values have been precomputed and the values
- shouldn't change
- """
- # Some basic sanity checking, with some fixed data.
- # Checking for the correct number of bins
- basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
- 'doane': 8, 'sqrt': 8, 'auto': 7, 'stone': 2},
- 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
- 'doane': 12, 'sqrt': 23, 'auto': 10, 'stone': 9},
- 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
- 'doane': 17, 'sqrt': 71, 'auto': 17, 'stone': 20}}
- for testlen, expectedResults in basic_test.items():
- # Create some sort of non uniform data to test with
- # (2 peak uniform mixture)
- x1 = np.linspace(-10, -1, testlen // 5 * 2)
- x2 = np.linspace(1, 10, testlen // 5 * 3)
- x = np.concatenate((x1, x2))
- for estimator, numbins in expectedResults.items():
- a, b = np.histogram(x, estimator)
- assert_equal(len(a), numbins, err_msg="For the {0} estimator "
- "with datasize of {1}".format(estimator, testlen))
- def test_small(self):
- """
- Smaller datasets have the potential to cause issues with the data
- adaptive methods, especially the FD method. All bin numbers have been
- precalculated.
- """
- small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1, 'stone': 1},
- 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
- 'doane': 1, 'sqrt': 2, 'stone': 1},
- 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
- 'doane': 3, 'sqrt': 2, 'stone': 1}}
- for testlen, expectedResults in small_dat.items():
- testdat = np.arange(testlen)
- for estimator, expbins in expectedResults.items():
- a, b = np.histogram(testdat, estimator)
- assert_equal(len(a), expbins, err_msg="For the {0} estimator "
- "with datasize of {1}".format(estimator, testlen))
- def test_incorrect_methods(self):
- """
- Check a Value Error is thrown when an unknown string is passed in
- """
- check_list = ['mad', 'freeman', 'histograms', 'IQR']
- for estimator in check_list:
- assert_raises(ValueError, histogram, [1, 2, 3], estimator)
- def test_novariance(self):
- """
- Check that methods handle no variance in data
- Primarily for Scott and FD as the SD and IQR are both 0 in this case
- """
- novar_dataset = np.ones(100)
- novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
- 'doane': 1, 'sqrt': 1, 'auto': 1, 'stone': 1}
- for estimator, numbins in novar_resultdict.items():
- a, b = np.histogram(novar_dataset, estimator)
- assert_equal(len(a), numbins, err_msg="{0} estimator, "
- "No Variance test".format(estimator))
- def test_limited_variance(self):
- """
- Check when IQR is 0, but variance exists, we return the sturges value
- and not the fd value.
- """
- lim_var_data = np.ones(1000)
- lim_var_data[:3] = 0
- lim_var_data[-4:] = 100
- edges_auto = histogram_bin_edges(lim_var_data, 'auto')
- assert_equal(edges_auto, np.linspace(0, 100, 12))
- edges_fd = histogram_bin_edges(lim_var_data, 'fd')
- assert_equal(edges_fd, np.array([0, 100]))
- edges_sturges = histogram_bin_edges(lim_var_data, 'sturges')
- assert_equal(edges_sturges, np.linspace(0, 100, 12))
- def test_outlier(self):
- """
- Check the FD, Scott and Doane with outliers.
- The FD estimates a smaller binwidth since it's less affected by
- outliers. Since the range is so (artificially) large, this means more
- bins, most of which will be empty, but the data of interest usually is
- unaffected. The Scott estimator is more affected and returns fewer bins,
- despite most of the variance being in one area of the data. The Doane
- estimator lies somewhere between the other two.
- """
- xcenter = np.linspace(-10, 10, 50)
- outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
- outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11, 'stone': 6}
- for estimator, numbins in outlier_resultdict.items():
- a, b = np.histogram(outlier_dataset, estimator)
- assert_equal(len(a), numbins)
- def test_scott_vs_stone(self):
- """Verify that Scott's rule and Stone's rule converges for normally distributed data"""
- def nbins_ratio(seed, size):
- rng = np.random.RandomState(seed)
- x = rng.normal(loc=0, scale=2, size=size)
- a, b = len(np.histogram(x, 'stone')[0]), len(np.histogram(x, 'scott')[0])
- return a / (a + b)
- ll = [[nbins_ratio(seed, size) for size in np.geomspace(start=10, stop=100, num=4).round().astype(int)]
- for seed in range(10)]
- # the average difference between the two methods decreases as the dataset size increases.
- avg = abs(np.mean(ll, axis=0) - 0.5)
- assert_almost_equal(avg, [0.15, 0.09, 0.08, 0.03], decimal=2)
- def test_simple_range(self):
- """
- Straightforward testing with a mixture of linspace data (for
- consistency). Adding in a 3rd mixture that will then be
- completely ignored. All test values have been precomputed and
- the shouldn't change.
- """
- # some basic sanity checking, with some fixed data.
- # Checking for the correct number of bins
- basic_test = {
- 50: {'fd': 8, 'scott': 8, 'rice': 15,
- 'sturges': 14, 'auto': 14, 'stone': 8},
- 500: {'fd': 15, 'scott': 16, 'rice': 32,
- 'sturges': 20, 'auto': 20, 'stone': 80},
- 5000: {'fd': 33, 'scott': 33, 'rice': 69,
- 'sturges': 27, 'auto': 33, 'stone': 80}
- }
- for testlen, expectedResults in basic_test.items():
- # create some sort of non uniform data to test with
- # (3 peak uniform mixture)
- x1 = np.linspace(-10, -1, testlen // 5 * 2)
- x2 = np.linspace(1, 10, testlen // 5 * 3)
- x3 = np.linspace(-100, -50, testlen)
- x = np.hstack((x1, x2, x3))
- for estimator, numbins in expectedResults.items():
- a, b = np.histogram(x, estimator, range = (-20, 20))
- msg = "For the {0} estimator".format(estimator)
- msg += " with datasize of {0}".format(testlen)
- assert_equal(len(a), numbins, err_msg=msg)
- @pytest.mark.parametrize("bins", ['auto', 'fd', 'doane', 'scott',
- 'stone', 'rice', 'sturges'])
- def test_signed_integer_data(self, bins):
- # Regression test for gh-14379.
- a = np.array([-2, 0, 127], dtype=np.int8)
- hist, edges = np.histogram(a, bins=bins)
- hist32, edges32 = np.histogram(a.astype(np.int32), bins=bins)
- assert_array_equal(hist, hist32)
- assert_array_equal(edges, edges32)
- def test_simple_weighted(self):
- """
- Check that weighted data raises a TypeError
- """
- estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
- for estimator in estimator_list:
- assert_raises(TypeError, histogram, [1, 2, 3],
- estimator, weights=[1, 2, 3])
- class TestHistogramdd:
- def test_simple(self):
- x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
- [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
- H, edges = histogramdd(x, (2, 3, 3),
- range=[[-1, 1], [0, 3], [0, 3]])
- answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
- [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
- assert_array_equal(H, answer)
- # Check normalization
- ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
- H, edges = histogramdd(x, bins=ed, density=True)
- assert_(np.all(H == answer / 12.))
- # Check that H has the correct shape.
- H, edges = histogramdd(x, (2, 3, 4),
- range=[[-1, 1], [0, 3], [0, 4]],
- density=True)
- answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
- [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
- assert_array_almost_equal(H, answer / 6., 4)
- # Check that a sequence of arrays is accepted and H has the correct
- # shape.
- z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
- H, edges = histogramdd(
- z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
- answer = np.array([[[0, 0], [0, 0], [0, 0]],
- [[0, 1], [0, 0], [1, 0]],
- [[0, 1], [0, 0], [0, 0]],
- [[0, 0], [0, 0], [0, 0]]])
- assert_array_equal(H, answer)
- Z = np.zeros((5, 5, 5))
- Z[list(range(5)), list(range(5)), list(range(5))] = 1.
- H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
- assert_array_equal(H, Z)
- def test_shape_3d(self):
- # All possible permutations for bins of different lengths in 3D.
- bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
- (4, 5, 6))
- r = np.random.rand(10, 3)
- for b in bins:
- H, edges = histogramdd(r, b)
- assert_(H.shape == b)
- def test_shape_4d(self):
- # All possible permutations for bins of different lengths in 4D.
- bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
- (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
- (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
- (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
- (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
- (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
- r = np.random.rand(10, 4)
- for b in bins:
- H, edges = histogramdd(r, b)
- assert_(H.shape == b)
- def test_weights(self):
- v = np.random.rand(100, 2)
- hist, edges = histogramdd(v)
- n_hist, edges = histogramdd(v, density=True)
- w_hist, edges = histogramdd(v, weights=np.ones(100))
- assert_array_equal(w_hist, hist)
- w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True)
- assert_array_equal(w_hist, n_hist)
- w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
- assert_array_equal(w_hist, 2 * hist)
- def test_identical_samples(self):
- x = np.zeros((10, 2), int)
- hist, edges = histogramdd(x, bins=2)
- assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
- def test_empty(self):
- a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
- assert_array_max_ulp(a, np.array([[0.]]))
- a, b = np.histogramdd([[], [], []], bins=2)
- assert_array_max_ulp(a, np.zeros((2, 2, 2)))
- def test_bins_errors(self):
- # There are two ways to specify bins. Check for the right errors
- # when mixing those.
- x = np.arange(8).reshape(2, 4)
- assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
- assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
- assert_raises(
- ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
- assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
- def test_inf_edges(self):
- # Test using +/-inf bin edges works. See #1788.
- with np.errstate(invalid='ignore'):
- x = np.arange(6).reshape(3, 2)
- expected = np.array([[1, 0], [0, 1], [0, 1]])
- h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
- assert_allclose(h, expected)
- h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
- assert_allclose(h, expected)
- h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
- assert_allclose(h, expected)
- def test_rightmost_binedge(self):
- # Test event very close to rightmost binedge. See Github issue #4266
- x = [0.9999999995]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 1.)
- x = [1.0]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 1.)
- x = [1.0000000001]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 0.0)
- x = [1.0001]
- bins = [[0., 0.5, 1.0]]
- hist, _ = histogramdd(x, bins=bins)
- assert_(hist[0] == 0.0)
- assert_(hist[1] == 0.0)
- def test_finite_range(self):
- vals = np.random.random((100, 3))
- histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
- assert_raises(ValueError, histogramdd, vals,
- range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
- assert_raises(ValueError, histogramdd, vals,
- range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
- def test_equal_edges(self):
- """ Test that adjacent entries in an edge array can be equal """
- x = np.array([0, 1, 2])
- y = np.array([0, 1, 2])
- x_edges = np.array([0, 2, 2])
- y_edges = 1
- hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
- hist_expected = np.array([
- [2.],
- [1.], # x == 2 falls in the final bin
- ])
- assert_equal(hist, hist_expected)
- def test_edge_dtype(self):
- """ Test that if an edge array is input, its type is preserved """
- x = np.array([0, 10, 20])
- y = x / 10
- x_edges = np.array([0, 5, 15, 20])
- y_edges = x_edges / 10
- hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
- assert_equal(edges[0].dtype, x_edges.dtype)
- assert_equal(edges[1].dtype, y_edges.dtype)
- def test_large_integers(self):
- big = 2**60 # Too large to represent with a full precision float
- x = np.array([0], np.int64)
- x_edges = np.array([-1, +1], np.int64)
- y = big + x
- y_edges = big + x_edges
- hist, edges = histogramdd((x, y), bins=(x_edges, y_edges))
- assert_equal(hist[0, 0], 1)
- def test_density_non_uniform_2d(self):
- # Defines the following grid:
- #
- # 0 2 8
- # 0+-+-----+
- # + | +
- # + | +
- # 6+-+-----+
- # 8+-+-----+
- x_edges = np.array([0, 2, 8])
- y_edges = np.array([0, 6, 8])
- relative_areas = np.array([
- [3, 9],
- [1, 3]])
- # ensure the number of points in each region is proportional to its area
- x = np.array([1] + [1]*3 + [7]*3 + [7]*9)
- y = np.array([7] + [1]*3 + [7]*3 + [1]*9)
- # sanity check that the above worked as intended
- hist, edges = histogramdd((y, x), bins=(y_edges, x_edges))
- assert_equal(hist, relative_areas)
- # resulting histogram should be uniform, since counts and areas are proportional
- hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
- assert_equal(hist, 1 / (8*8))
- def test_density_non_uniform_1d(self):
- # compare to histogram to show the results are the same
- v = np.arange(10)
- bins = np.array([0, 1, 3, 6, 10])
- hist, edges = histogram(v, bins, density=True)
- hist_dd, edges_dd = histogramdd((v,), (bins,), density=True)
- assert_equal(hist, hist_dd)
- assert_equal(edges, edges_dd[0])
|