12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980 |
- import operator
- import warnings
- import sys
- import decimal
- from fractions import Fraction
- import math
- import pytest
- import hypothesis
- from hypothesis.extra.numpy import arrays
- import hypothesis.strategies as st
- import numpy as np
- from numpy import ma
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY,
- assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT, IS_WASM
- )
- import numpy.lib.function_base as nfb
- from numpy.random import rand
- from numpy.lib import (
- add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov,
- delete, diff, digitize, extract, flipud, gradient, hamming, hanning,
- i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90,
- select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize
- )
- from numpy.core.numeric import normalize_axis_tuple
- def get_mat(n):
- data = np.arange(n)
- data = np.add.outer(data, data)
- return data
- def _make_complex(real, imag):
- """
- Like real + 1j * imag, but behaves as expected when imag contains non-finite
- values
- """
- ret = np.zeros(np.broadcast(real, imag).shape, np.complex_)
- ret.real = real
- ret.imag = imag
- return ret
- class TestRot90:
- def test_basic(self):
- assert_raises(ValueError, rot90, np.ones(4))
- assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2))
- assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2))
- assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1))
- assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1))
- a = [[0, 1, 2],
- [3, 4, 5]]
- b1 = [[2, 5],
- [1, 4],
- [0, 3]]
- b2 = [[5, 4, 3],
- [2, 1, 0]]
- b3 = [[3, 0],
- [4, 1],
- [5, 2]]
- b4 = [[0, 1, 2],
- [3, 4, 5]]
- for k in range(-3, 13, 4):
- assert_equal(rot90(a, k=k), b1)
- for k in range(-2, 13, 4):
- assert_equal(rot90(a, k=k), b2)
- for k in range(-1, 13, 4):
- assert_equal(rot90(a, k=k), b3)
- for k in range(0, 13, 4):
- assert_equal(rot90(a, k=k), b4)
- assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a)
- assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1)))
- def test_axes(self):
- a = np.ones((50, 40, 3))
- assert_equal(rot90(a).shape, (40, 50, 3))
- assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1)))
- assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1)))
- def test_rotation_axes(self):
- a = np.arange(8).reshape((2,2,2))
- a_rot90_01 = [[[2, 3],
- [6, 7]],
- [[0, 1],
- [4, 5]]]
- a_rot90_12 = [[[1, 3],
- [0, 2]],
- [[5, 7],
- [4, 6]]]
- a_rot90_20 = [[[4, 0],
- [6, 2]],
- [[5, 1],
- [7, 3]]]
- a_rot90_10 = [[[4, 5],
- [0, 1]],
- [[6, 7],
- [2, 3]]]
- assert_equal(rot90(a, axes=(0, 1)), a_rot90_01)
- assert_equal(rot90(a, axes=(1, 0)), a_rot90_10)
- assert_equal(rot90(a, axes=(1, 2)), a_rot90_12)
- for k in range(1,5):
- assert_equal(rot90(a, k=k, axes=(2, 0)),
- rot90(a_rot90_20, k=k-1, axes=(2, 0)))
- class TestFlip:
- def test_axes(self):
- assert_raises(np.AxisError, np.flip, np.ones(4), axis=1)
- assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2)
- assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3)
- assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3))
- def test_basic_lr(self):
- a = get_mat(4)
- b = a[:, ::-1]
- assert_equal(np.flip(a, 1), b)
- a = [[0, 1, 2],
- [3, 4, 5]]
- b = [[2, 1, 0],
- [5, 4, 3]]
- assert_equal(np.flip(a, 1), b)
- def test_basic_ud(self):
- a = get_mat(4)
- b = a[::-1, :]
- assert_equal(np.flip(a, 0), b)
- a = [[0, 1, 2],
- [3, 4, 5]]
- b = [[3, 4, 5],
- [0, 1, 2]]
- assert_equal(np.flip(a, 0), b)
- def test_3d_swap_axis0(self):
- a = np.array([[[0, 1],
- [2, 3]],
- [[4, 5],
- [6, 7]]])
- b = np.array([[[4, 5],
- [6, 7]],
- [[0, 1],
- [2, 3]]])
- assert_equal(np.flip(a, 0), b)
- def test_3d_swap_axis1(self):
- a = np.array([[[0, 1],
- [2, 3]],
- [[4, 5],
- [6, 7]]])
- b = np.array([[[2, 3],
- [0, 1]],
- [[6, 7],
- [4, 5]]])
- assert_equal(np.flip(a, 1), b)
- def test_3d_swap_axis2(self):
- a = np.array([[[0, 1],
- [2, 3]],
- [[4, 5],
- [6, 7]]])
- b = np.array([[[1, 0],
- [3, 2]],
- [[5, 4],
- [7, 6]]])
- assert_equal(np.flip(a, 2), b)
- def test_4d(self):
- a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5)
- for i in range(a.ndim):
- assert_equal(np.flip(a, i),
- np.flipud(a.swapaxes(0, i)).swapaxes(i, 0))
- def test_default_axis(self):
- a = np.array([[1, 2, 3],
- [4, 5, 6]])
- b = np.array([[6, 5, 4],
- [3, 2, 1]])
- assert_equal(np.flip(a), b)
- def test_multiple_axes(self):
- a = np.array([[[0, 1],
- [2, 3]],
- [[4, 5],
- [6, 7]]])
- assert_equal(np.flip(a, axis=()), a)
- b = np.array([[[5, 4],
- [7, 6]],
- [[1, 0],
- [3, 2]]])
- assert_equal(np.flip(a, axis=(0, 2)), b)
- c = np.array([[[3, 2],
- [1, 0]],
- [[7, 6],
- [5, 4]]])
- assert_equal(np.flip(a, axis=(1, 2)), c)
- class TestAny:
- def test_basic(self):
- y1 = [0, 0, 1, 0]
- y2 = [0, 0, 0, 0]
- y3 = [1, 0, 1, 0]
- assert_(np.any(y1))
- assert_(np.any(y3))
- assert_(not np.any(y2))
- def test_nd(self):
- y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]]
- assert_(np.any(y1))
- assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0])
- assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1])
- class TestAll:
- def test_basic(self):
- y1 = [0, 1, 1, 0]
- y2 = [0, 0, 0, 0]
- y3 = [1, 1, 1, 1]
- assert_(not np.all(y1))
- assert_(np.all(y3))
- assert_(not np.all(y2))
- assert_(np.all(~np.array(y2)))
- def test_nd(self):
- y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]]
- assert_(not np.all(y1))
- assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1])
- assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1])
- class TestCopy:
- def test_basic(self):
- a = np.array([[1, 2], [3, 4]])
- a_copy = np.copy(a)
- assert_array_equal(a, a_copy)
- a_copy[0, 0] = 10
- assert_equal(a[0, 0], 1)
- assert_equal(a_copy[0, 0], 10)
- def test_order(self):
- # It turns out that people rely on np.copy() preserving order by
- # default; changing this broke scikit-learn:
- # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 # noqa
- a = np.array([[1, 2], [3, 4]])
- assert_(a.flags.c_contiguous)
- assert_(not a.flags.f_contiguous)
- a_fort = np.array([[1, 2], [3, 4]], order="F")
- assert_(not a_fort.flags.c_contiguous)
- assert_(a_fort.flags.f_contiguous)
- a_copy = np.copy(a)
- assert_(a_copy.flags.c_contiguous)
- assert_(not a_copy.flags.f_contiguous)
- a_fort_copy = np.copy(a_fort)
- assert_(not a_fort_copy.flags.c_contiguous)
- assert_(a_fort_copy.flags.f_contiguous)
- def test_subok(self):
- mx = ma.ones(5)
- assert_(not ma.isMaskedArray(np.copy(mx, subok=False)))
- assert_(ma.isMaskedArray(np.copy(mx, subok=True)))
- # Default behavior
- assert_(not ma.isMaskedArray(np.copy(mx)))
- class TestAverage:
- def test_basic(self):
- y1 = np.array([1, 2, 3])
- assert_(average(y1, axis=0) == 2.)
- y2 = np.array([1., 2., 3.])
- assert_(average(y2, axis=0) == 2.)
- y3 = [0., 0., 0.]
- assert_(average(y3, axis=0) == 0.)
- y4 = np.ones((4, 4))
- y4[0, 1] = 0
- y4[1, 0] = 2
- assert_almost_equal(y4.mean(0), average(y4, 0))
- assert_almost_equal(y4.mean(1), average(y4, 1))
- y5 = rand(5, 5)
- assert_almost_equal(y5.mean(0), average(y5, 0))
- assert_almost_equal(y5.mean(1), average(y5, 1))
- @pytest.mark.parametrize(
- 'x, axis, expected_avg, weights, expected_wavg, expected_wsum',
- [([1, 2, 3], None, [2.0], [3, 4, 1], [1.75], [8.0]),
- ([[1, 2, 5], [1, 6, 11]], 0, [[1.0, 4.0, 8.0]],
- [1, 3], [[1.0, 5.0, 9.5]], [[4, 4, 4]])],
- )
- def test_basic_keepdims(self, x, axis, expected_avg,
- weights, expected_wavg, expected_wsum):
- avg = np.average(x, axis=axis, keepdims=True)
- assert avg.shape == np.shape(expected_avg)
- assert_array_equal(avg, expected_avg)
- wavg = np.average(x, axis=axis, weights=weights, keepdims=True)
- assert wavg.shape == np.shape(expected_wavg)
- assert_array_equal(wavg, expected_wavg)
- wavg, wsum = np.average(x, axis=axis, weights=weights, returned=True,
- keepdims=True)
- assert wavg.shape == np.shape(expected_wavg)
- assert_array_equal(wavg, expected_wavg)
- assert wsum.shape == np.shape(expected_wsum)
- assert_array_equal(wsum, expected_wsum)
- def test_weights(self):
- y = np.arange(10)
- w = np.arange(10)
- actual = average(y, weights=w)
- desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum()
- assert_almost_equal(actual, desired)
- y1 = np.array([[1, 2, 3], [4, 5, 6]])
- w0 = [1, 2]
- actual = average(y1, weights=w0, axis=0)
- desired = np.array([3., 4., 5.])
- assert_almost_equal(actual, desired)
- w1 = [0, 0, 1]
- actual = average(y1, weights=w1, axis=1)
- desired = np.array([3., 6.])
- assert_almost_equal(actual, desired)
- # This should raise an error. Can we test for that ?
- # assert_equal(average(y1, weights=w1), 9./2.)
- # 2D Case
- w2 = [[0, 0, 1], [0, 0, 2]]
- desired = np.array([3., 6.])
- assert_array_equal(average(y1, weights=w2, axis=1), desired)
- assert_equal(average(y1, weights=w2), 5.)
- y3 = rand(5).astype(np.float32)
- w3 = rand(5).astype(np.float64)
- assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3))
- # test weights with `keepdims=False` and `keepdims=True`
- x = np.array([2, 3, 4]).reshape(3, 1)
- w = np.array([4, 5, 6]).reshape(3, 1)
- actual = np.average(x, weights=w, axis=1, keepdims=False)
- desired = np.array([2., 3., 4.])
- assert_array_equal(actual, desired)
- actual = np.average(x, weights=w, axis=1, keepdims=True)
- desired = np.array([[2.], [3.], [4.]])
- assert_array_equal(actual, desired)
- def test_returned(self):
- y = np.array([[1, 2, 3], [4, 5, 6]])
- # No weights
- avg, scl = average(y, returned=True)
- assert_equal(scl, 6.)
- avg, scl = average(y, 0, returned=True)
- assert_array_equal(scl, np.array([2., 2., 2.]))
- avg, scl = average(y, 1, returned=True)
- assert_array_equal(scl, np.array([3., 3.]))
- # With weights
- w0 = [1, 2]
- avg, scl = average(y, weights=w0, axis=0, returned=True)
- assert_array_equal(scl, np.array([3., 3., 3.]))
- w1 = [1, 2, 3]
- avg, scl = average(y, weights=w1, axis=1, returned=True)
- assert_array_equal(scl, np.array([6., 6.]))
- w2 = [[0, 0, 1], [1, 2, 3]]
- avg, scl = average(y, weights=w2, axis=1, returned=True)
- assert_array_equal(scl, np.array([1., 6.]))
- def test_subclasses(self):
- class subclass(np.ndarray):
- pass
- a = np.array([[1,2],[3,4]]).view(subclass)
- w = np.array([[1,2],[3,4]]).view(subclass)
- assert_equal(type(np.average(a)), subclass)
- assert_equal(type(np.average(a, weights=w)), subclass)
- def test_upcasting(self):
- typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
- ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')]
- for at, wt, rt in typs:
- a = np.array([[1,2],[3,4]], dtype=at)
- w = np.array([[1,2],[3,4]], dtype=wt)
- assert_equal(np.average(a, weights=w).dtype, np.dtype(rt))
- def test_object_dtype(self):
- a = np.array([decimal.Decimal(x) for x in range(10)])
- w = np.array([decimal.Decimal(1) for _ in range(10)])
- w /= w.sum()
- assert_almost_equal(a.mean(0), average(a, weights=w))
- def test_average_class_without_dtype(self):
- # see gh-21988
- a = np.array([Fraction(1, 5), Fraction(3, 5)])
- assert_equal(np.average(a), Fraction(2, 5))
- class TestSelect:
- choices = [np.array([1, 2, 3]),
- np.array([4, 5, 6]),
- np.array([7, 8, 9])]
- conditions = [np.array([False, False, False]),
- np.array([False, True, False]),
- np.array([False, False, True])]
- def _select(self, cond, values, default=0):
- output = []
- for m in range(len(cond)):
- output += [V[m] for V, C in zip(values, cond) if C[m]] or [default]
- return output
- def test_basic(self):
- choices = self.choices
- conditions = self.conditions
- assert_array_equal(select(conditions, choices, default=15),
- self._select(conditions, choices, default=15))
- assert_equal(len(choices), 3)
- assert_equal(len(conditions), 3)
- def test_broadcasting(self):
- conditions = [np.array(True), np.array([False, True, False])]
- choices = [1, np.arange(12).reshape(4, 3)]
- assert_array_equal(select(conditions, choices), np.ones((4, 3)))
- # default can broadcast too:
- assert_equal(select([True], [0], default=[0]).shape, (1,))
- def test_return_dtype(self):
- assert_equal(select(self.conditions, self.choices, 1j).dtype,
- np.complex_)
- # But the conditions need to be stronger then the scalar default
- # if it is scalar.
- choices = [choice.astype(np.int8) for choice in self.choices]
- assert_equal(select(self.conditions, choices).dtype, np.int8)
- d = np.array([1, 2, 3, np.nan, 5, 7])
- m = np.isnan(d)
- assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0])
- def test_deprecated_empty(self):
- assert_raises(ValueError, select, [], [], 3j)
- assert_raises(ValueError, select, [], [])
- def test_non_bool_deprecation(self):
- choices = self.choices
- conditions = self.conditions[:]
- conditions[0] = conditions[0].astype(np.int_)
- assert_raises(TypeError, select, conditions, choices)
- conditions[0] = conditions[0].astype(np.uint8)
- assert_raises(TypeError, select, conditions, choices)
- assert_raises(TypeError, select, conditions, choices)
- def test_many_arguments(self):
- # This used to be limited by NPY_MAXARGS == 32
- conditions = [np.array([False])] * 100
- choices = [np.array([1])] * 100
- select(conditions, choices)
- class TestInsert:
- def test_basic(self):
- a = [1, 2, 3]
- assert_equal(insert(a, 0, 1), [1, 1, 2, 3])
- assert_equal(insert(a, 3, 1), [1, 2, 3, 1])
- assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3])
- assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3])
- assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9])
- assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3])
- assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9])
- b = np.array([0, 1], dtype=np.float64)
- assert_equal(insert(b, 0, b[0]), [0., 0., 1.])
- assert_equal(insert(b, [], []), b)
- # Bools will be treated differently in the future:
- # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9])
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', FutureWarning)
- assert_equal(
- insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3])
- assert_(w[0].category is FutureWarning)
- def test_multidim(self):
- a = [[1, 1, 1]]
- r = [[2, 2, 2],
- [1, 1, 1]]
- assert_equal(insert(a, 0, [1]), [1, 1, 1, 1])
- assert_equal(insert(a, 0, [2, 2, 2], axis=0), r)
- assert_equal(insert(a, 0, 2, axis=0), r)
- assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]])
- a = np.array([[1, 1], [2, 2], [3, 3]])
- b = np.arange(1, 4).repeat(3).reshape(3, 3)
- c = np.concatenate(
- (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T,
- a[:, 1:2]), axis=1)
- assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b)
- assert_equal(insert(a, [1], [1, 2, 3], axis=1), c)
- # scalars behave differently, in this case exactly opposite:
- assert_equal(insert(a, 1, [1, 2, 3], axis=1), b)
- assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c)
- a = np.arange(4).reshape(2, 2)
- assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a)
- assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a)
- # negative axis value
- a = np.arange(24).reshape((2, 3, 4))
- assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
- insert(a, 1, a[:,:, 3], axis=2))
- assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
- insert(a, 1, a[:, 2,:], axis=1))
- # invalid axis value
- assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=3)
- assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=-4)
- # negative axis value
- a = np.arange(24).reshape((2, 3, 4))
- assert_equal(insert(a, 1, a[:, :, 3], axis=-1),
- insert(a, 1, a[:, :, 3], axis=2))
- assert_equal(insert(a, 1, a[:, 2, :], axis=-2),
- insert(a, 1, a[:, 2, :], axis=1))
- def test_0d(self):
- a = np.array(1)
- with pytest.raises(np.AxisError):
- insert(a, [], 2, axis=0)
- with pytest.raises(TypeError):
- insert(a, [], 2, axis="nonsense")
- def test_subclass(self):
- class SubClass(np.ndarray):
- pass
- a = np.arange(10).view(SubClass)
- assert_(isinstance(np.insert(a, 0, [0]), SubClass))
- assert_(isinstance(np.insert(a, [], []), SubClass))
- assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass))
- assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass))
- assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass))
- # This is an error in the future:
- a = np.array(1).view(SubClass)
- assert_(isinstance(np.insert(a, 0, [0]), SubClass))
- def test_index_array_copied(self):
- x = np.array([1, 1, 1])
- np.insert([0, 1, 2], x, [3, 4, 5])
- assert_equal(x, np.array([1, 1, 1]))
- def test_structured_array(self):
- a = np.array([(1, 'a'), (2, 'b'), (3, 'c')],
- dtype=[('foo', 'i'), ('bar', 'a1')])
- val = (4, 'd')
- b = np.insert(a, 0, val)
- assert_array_equal(b[0], np.array(val, dtype=b.dtype))
- val = [(4, 'd')] * 2
- b = np.insert(a, [0, 2], val)
- assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype))
- def test_index_floats(self):
- with pytest.raises(IndexError):
- np.insert([0, 1, 2], np.array([1.0, 2.0]), [10, 20])
- with pytest.raises(IndexError):
- np.insert([0, 1, 2], np.array([], dtype=float), [])
- @pytest.mark.parametrize('idx', [4, -4])
- def test_index_out_of_bounds(self, idx):
- with pytest.raises(IndexError, match='out of bounds'):
- np.insert([0, 1, 2], [idx], [3, 4])
- class TestAmax:
- def test_basic(self):
- a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(np.amax(a), 10.0)
- b = [[3, 6.0, 9.0],
- [4, 10.0, 5.0],
- [8, 3.0, 2.0]]
- assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0])
- assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0])
- class TestAmin:
- def test_basic(self):
- a = [3, 4, 5, 10, -3, -5, 6.0]
- assert_equal(np.amin(a), -5.0)
- b = [[3, 6.0, 9.0],
- [4, 10.0, 5.0],
- [8, 3.0, 2.0]]
- assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0])
- assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0])
- class TestPtp:
- def test_basic(self):
- a = np.array([3, 4, 5, 10, -3, -5, 6.0])
- assert_equal(a.ptp(axis=0), 15.0)
- b = np.array([[3, 6.0, 9.0],
- [4, 10.0, 5.0],
- [8, 3.0, 2.0]])
- assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0])
- assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0])
- assert_equal(b.ptp(axis=0, keepdims=True), [[5.0, 7.0, 7.0]])
- assert_equal(b.ptp(axis=(0,1), keepdims=True), [[8.0]])
- class TestCumsum:
- def test_basic(self):
- ba = [1, 2, 10, 11, 6, 5, 4]
- ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
- np.uint32, np.float32, np.float64, np.complex64,
- np.complex128]:
- a = np.array(ba, ctype)
- a2 = np.array(ba2, ctype)
- tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
- assert_array_equal(np.cumsum(a, axis=0), tgt)
- tgt = np.array(
- [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
- assert_array_equal(np.cumsum(a2, axis=0), tgt)
- tgt = np.array(
- [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
- assert_array_equal(np.cumsum(a2, axis=1), tgt)
- class TestProd:
- def test_basic(self):
- ba = [1, 2, 10, 11, 6, 5, 4]
- ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [np.int16, np.uint16, np.int32, np.uint32,
- np.float32, np.float64, np.complex64, np.complex128]:
- a = np.array(ba, ctype)
- a2 = np.array(ba2, ctype)
- if ctype in ['1', 'b']:
- assert_raises(ArithmeticError, np.prod, a)
- assert_raises(ArithmeticError, np.prod, a2, 1)
- else:
- assert_equal(a.prod(axis=0), 26400)
- assert_array_equal(a2.prod(axis=0),
- np.array([50, 36, 84, 180], ctype))
- assert_array_equal(a2.prod(axis=-1),
- np.array([24, 1890, 600], ctype))
- class TestCumprod:
- def test_basic(self):
- ba = [1, 2, 10, 11, 6, 5, 4]
- ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
- for ctype in [np.int16, np.uint16, np.int32, np.uint32,
- np.float32, np.float64, np.complex64, np.complex128]:
- a = np.array(ba, ctype)
- a2 = np.array(ba2, ctype)
- if ctype in ['1', 'b']:
- assert_raises(ArithmeticError, np.cumprod, a)
- assert_raises(ArithmeticError, np.cumprod, a2, 1)
- assert_raises(ArithmeticError, np.cumprod, a)
- else:
- assert_array_equal(np.cumprod(a, axis=-1),
- np.array([1, 2, 20, 220,
- 1320, 6600, 26400], ctype))
- assert_array_equal(np.cumprod(a2, axis=0),
- np.array([[1, 2, 3, 4],
- [5, 12, 21, 36],
- [50, 36, 84, 180]], ctype))
- assert_array_equal(np.cumprod(a2, axis=-1),
- np.array([[1, 2, 6, 24],
- [5, 30, 210, 1890],
- [10, 30, 120, 600]], ctype))
- class TestDiff:
- def test_basic(self):
- x = [1, 4, 6, 7, 12]
- out = np.array([3, 2, 1, 5])
- out2 = np.array([-1, -1, 4])
- out3 = np.array([0, 5])
- assert_array_equal(diff(x), out)
- assert_array_equal(diff(x, n=2), out2)
- assert_array_equal(diff(x, n=3), out3)
- x = [1.1, 2.2, 3.0, -0.2, -0.1]
- out = np.array([1.1, 0.8, -3.2, 0.1])
- assert_almost_equal(diff(x), out)
- x = [True, True, False, False]
- out = np.array([False, True, False])
- out2 = np.array([True, True])
- assert_array_equal(diff(x), out)
- assert_array_equal(diff(x, n=2), out2)
- def test_axis(self):
- x = np.zeros((10, 20, 30))
- x[:, 1::2, :] = 1
- exp = np.ones((10, 19, 30))
- exp[:, 1::2, :] = -1
- assert_array_equal(diff(x), np.zeros((10, 20, 29)))
- assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29)))
- assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30)))
- assert_array_equal(diff(x, axis=1), exp)
- assert_array_equal(diff(x, axis=-2), exp)
- assert_raises(np.AxisError, diff, x, axis=3)
- assert_raises(np.AxisError, diff, x, axis=-4)
- x = np.array(1.11111111111, np.float64)
- assert_raises(ValueError, diff, x)
- def test_nd(self):
- x = 20 * rand(10, 20, 30)
- out1 = x[:, :, 1:] - x[:, :, :-1]
- out2 = out1[:, :, 1:] - out1[:, :, :-1]
- out3 = x[1:, :, :] - x[:-1, :, :]
- out4 = out3[1:, :, :] - out3[:-1, :, :]
- assert_array_equal(diff(x), out1)
- assert_array_equal(diff(x, n=2), out2)
- assert_array_equal(diff(x, axis=0), out3)
- assert_array_equal(diff(x, n=2, axis=0), out4)
- def test_n(self):
- x = list(range(3))
- assert_raises(ValueError, diff, x, n=-1)
- output = [diff(x, n=n) for n in range(1, 5)]
- expected = [[1, 1], [0], [], []]
- assert_(diff(x, n=0) is x)
- for n, (expected, out) in enumerate(zip(expected, output), start=1):
- assert_(type(out) is np.ndarray)
- assert_array_equal(out, expected)
- assert_equal(out.dtype, np.int_)
- assert_equal(len(out), max(0, len(x) - n))
- def test_times(self):
- x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)
- expected = [
- np.array([1, 1], dtype='timedelta64[D]'),
- np.array([0], dtype='timedelta64[D]'),
- ]
- expected.extend([np.array([], dtype='timedelta64[D]')] * 3)
- for n, exp in enumerate(expected, start=1):
- out = diff(x, n=n)
- assert_array_equal(out, exp)
- assert_equal(out.dtype, exp.dtype)
- def test_subclass(self):
- x = ma.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]],
- mask=[[False, False], [True, False],
- [False, True], [True, True], [False, False]])
- out = diff(x)
- assert_array_equal(out.data, [[1], [1], [1], [1], [1]])
- assert_array_equal(out.mask, [[False], [True],
- [True], [True], [False]])
- assert_(type(out) is type(x))
- out3 = diff(x, n=3)
- assert_array_equal(out3.data, [[], [], [], [], []])
- assert_array_equal(out3.mask, [[], [], [], [], []])
- assert_(type(out3) is type(x))
- def test_prepend(self):
- x = np.arange(5) + 1
- assert_array_equal(diff(x, prepend=0), np.ones(5))
- assert_array_equal(diff(x, prepend=[0]), np.ones(5))
- assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x)
- assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6))
- x = np.arange(4).reshape(2, 2)
- result = np.diff(x, axis=1, prepend=0)
- expected = [[0, 1], [2, 1]]
- assert_array_equal(result, expected)
- result = np.diff(x, axis=1, prepend=[[0], [0]])
- assert_array_equal(result, expected)
- result = np.diff(x, axis=0, prepend=0)
- expected = [[0, 1], [2, 2]]
- assert_array_equal(result, expected)
- result = np.diff(x, axis=0, prepend=[[0, 0]])
- assert_array_equal(result, expected)
- assert_raises(ValueError, np.diff, x, prepend=np.zeros((3,3)))
- assert_raises(np.AxisError, diff, x, prepend=0, axis=3)
- def test_append(self):
- x = np.arange(5)
- result = diff(x, append=0)
- expected = [1, 1, 1, 1, -4]
- assert_array_equal(result, expected)
- result = diff(x, append=[0])
- assert_array_equal(result, expected)
- result = diff(x, append=[0, 2])
- expected = expected + [2]
- assert_array_equal(result, expected)
- x = np.arange(4).reshape(2, 2)
- result = np.diff(x, axis=1, append=0)
- expected = [[1, -1], [1, -3]]
- assert_array_equal(result, expected)
- result = np.diff(x, axis=1, append=[[0], [0]])
- assert_array_equal(result, expected)
- result = np.diff(x, axis=0, append=0)
- expected = [[2, 2], [-2, -3]]
- assert_array_equal(result, expected)
- result = np.diff(x, axis=0, append=[[0, 0]])
- assert_array_equal(result, expected)
- assert_raises(ValueError, np.diff, x, append=np.zeros((3,3)))
- assert_raises(np.AxisError, diff, x, append=0, axis=3)
- class TestDelete:
- def setup_method(self):
- self.a = np.arange(5)
- self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2)
- def _check_inverse_of_slicing(self, indices):
- a_del = delete(self.a, indices)
- nd_a_del = delete(self.nd_a, indices, axis=1)
- msg = 'Delete failed for obj: %r' % indices
- assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a,
- err_msg=msg)
- xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0])
- assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg)
- def test_slices(self):
- lims = [-6, -2, 0, 1, 2, 4, 5]
- steps = [-3, -1, 1, 3]
- for start in lims:
- for stop in lims:
- for step in steps:
- s = slice(start, stop, step)
- self._check_inverse_of_slicing(s)
- def test_fancy(self):
- self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]]))
- with pytest.raises(IndexError):
- delete(self.a, [100])
- with pytest.raises(IndexError):
- delete(self.a, [-100])
- self._check_inverse_of_slicing([0, -1, 2, 2])
- self._check_inverse_of_slicing([True, False, False, True, False])
- # not legal, indexing with these would change the dimension
- with pytest.raises(ValueError):
- delete(self.a, True)
- with pytest.raises(ValueError):
- delete(self.a, False)
- # not enough items
- with pytest.raises(ValueError):
- delete(self.a, [False]*4)
- def test_single(self):
- self._check_inverse_of_slicing(0)
- self._check_inverse_of_slicing(-4)
- def test_0d(self):
- a = np.array(1)
- with pytest.raises(np.AxisError):
- delete(a, [], axis=0)
- with pytest.raises(TypeError):
- delete(a, [], axis="nonsense")
- def test_subclass(self):
- class SubClass(np.ndarray):
- pass
- a = self.a.view(SubClass)
- assert_(isinstance(delete(a, 0), SubClass))
- assert_(isinstance(delete(a, []), SubClass))
- assert_(isinstance(delete(a, [0, 1]), SubClass))
- assert_(isinstance(delete(a, slice(1, 2)), SubClass))
- assert_(isinstance(delete(a, slice(1, -2)), SubClass))
- def test_array_order_preserve(self):
- # See gh-7113
- k = np.arange(10).reshape(2, 5, order='F')
- m = delete(k, slice(60, None), axis=1)
- # 'k' is Fortran ordered, and 'm' should have the
- # same ordering as 'k' and NOT become C ordered
- assert_equal(m.flags.c_contiguous, k.flags.c_contiguous)
- assert_equal(m.flags.f_contiguous, k.flags.f_contiguous)
- def test_index_floats(self):
- with pytest.raises(IndexError):
- np.delete([0, 1, 2], np.array([1.0, 2.0]))
- with pytest.raises(IndexError):
- np.delete([0, 1, 2], np.array([], dtype=float))
- @pytest.mark.parametrize("indexer", [np.array([1]), [1]])
- def test_single_item_array(self, indexer):
- a_del_int = delete(self.a, 1)
- a_del = delete(self.a, indexer)
- assert_equal(a_del_int, a_del)
- nd_a_del_int = delete(self.nd_a, 1, axis=1)
- nd_a_del = delete(self.nd_a, np.array([1]), axis=1)
- assert_equal(nd_a_del_int, nd_a_del)
- def test_single_item_array_non_int(self):
- # Special handling for integer arrays must not affect non-integer ones.
- # If `False` was cast to `0` it would delete the element:
- res = delete(np.ones(1), np.array([False]))
- assert_array_equal(res, np.ones(1))
- # Test the more complicated (with axis) case from gh-21840
- x = np.ones((3, 1))
- false_mask = np.array([False], dtype=bool)
- true_mask = np.array([True], dtype=bool)
- res = delete(x, false_mask, axis=-1)
- assert_array_equal(res, x)
- res = delete(x, true_mask, axis=-1)
- assert_array_equal(res, x[:, :0])
- # Object or e.g. timedeltas should *not* be allowed
- with pytest.raises(IndexError):
- delete(np.ones(2), np.array([0], dtype=object))
- with pytest.raises(IndexError):
- # timedeltas are sometimes "integral, but clearly not allowed:
- delete(np.ones(2), np.array([0], dtype="m8[ns]"))
- class TestGradient:
- def test_basic(self):
- v = [[1, 1], [3, 4]]
- x = np.array(v)
- dx = [np.array([[2., 3.], [2., 3.]]),
- np.array([[0., 0.], [1., 1.]])]
- assert_array_equal(gradient(x), dx)
- assert_array_equal(gradient(v), dx)
- def test_args(self):
- dx = np.cumsum(np.ones(5))
- dx_uneven = [1., 2., 5., 9., 11.]
- f_2d = np.arange(25).reshape(5, 5)
- # distances must be scalars or have size equal to gradient[axis]
- gradient(np.arange(5), 3.)
- gradient(np.arange(5), np.array(3.))
- gradient(np.arange(5), dx)
- # dy is set equal to dx because scalar
- gradient(f_2d, 1.5)
- gradient(f_2d, np.array(1.5))
- gradient(f_2d, dx_uneven, dx_uneven)
- # mix between even and uneven spaces and
- # mix between scalar and vector
- gradient(f_2d, dx, 2)
- # 2D but axis specified
- gradient(f_2d, dx, axis=1)
- # 2d coordinate arguments are not yet allowed
- assert_raises_regex(ValueError, '.*scalars or 1d',
- gradient, f_2d, np.stack([dx]*2, axis=-1), 1)
- def test_badargs(self):
- f_2d = np.arange(25).reshape(5, 5)
- x = np.cumsum(np.ones(5))
- # wrong sizes
- assert_raises(ValueError, gradient, f_2d, x, np.ones(2))
- assert_raises(ValueError, gradient, f_2d, 1, np.ones(2))
- assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2))
- # wrong number of arguments
- assert_raises(TypeError, gradient, f_2d, x)
- assert_raises(TypeError, gradient, f_2d, x, axis=(0,1))
- assert_raises(TypeError, gradient, f_2d, x, x, x)
- assert_raises(TypeError, gradient, f_2d, 1, 1, 1)
- assert_raises(TypeError, gradient, f_2d, x, x, axis=1)
- assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1)
- def test_datetime64(self):
- # Make sure gradient() can handle special types like datetime64
- x = np.array(
- ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12',
- '1910-10-12', '1910-12-12', '1912-12-12'],
- dtype='datetime64[D]')
- dx = np.array(
- [-5, -3, 0, 31, 61, 396, 731],
- dtype='timedelta64[D]')
- assert_array_equal(gradient(x), dx)
- assert_(dx.dtype == np.dtype('timedelta64[D]'))
- def test_masked(self):
- # Make sure that gradient supports subclasses like masked arrays
- x = np.ma.array([[1, 1], [3, 4]],
- mask=[[False, False], [False, False]])
- out = gradient(x)[0]
- assert_equal(type(out), type(x))
- # And make sure that the output and input don't have aliased mask
- # arrays
- assert_(x._mask is not out._mask)
- # Also check that edge_order=2 doesn't alter the original mask
- x2 = np.ma.arange(5)
- x2[2] = np.ma.masked
- np.gradient(x2, edge_order=2)
- assert_array_equal(x2.mask, [False, False, True, False, False])
- def test_second_order_accurate(self):
- # Testing that the relative numerical error is less that 3% for
- # this example problem. This corresponds to second order
- # accurate finite differences for all interior and boundary
- # points.
- x = np.linspace(0, 1, 10)
- dx = x[1] - x[0]
- y = 2 * x ** 3 + 4 * x ** 2 + 2 * x
- analytical = 6 * x ** 2 + 8 * x + 2
- num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1)
- assert_(np.all(num_error < 0.03) == True)
- # test with unevenly spaced
- np.random.seed(0)
- x = np.sort(np.random.random(10))
- y = 2 * x ** 3 + 4 * x ** 2 + 2 * x
- analytical = 6 * x ** 2 + 8 * x + 2
- num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1)
- assert_(np.all(num_error < 0.03) == True)
- def test_spacing(self):
- f = np.array([0, 2., 3., 4., 5., 5.])
- f = np.tile(f, (6,1)) + f.reshape(-1, 1)
- x_uneven = np.array([0., 0.5, 1., 3., 5., 7.])
- x_even = np.arange(6.)
- fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6,1))
- fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6,1))
- fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6,1))
- fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6,1))
- # evenly spaced
- for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]:
- res1 = gradient(f, 1., axis=(0,1), edge_order=edge_order)
- res2 = gradient(f, x_even, x_even,
- axis=(0,1), edge_order=edge_order)
- res3 = gradient(f, x_even, x_even,
- axis=None, edge_order=edge_order)
- assert_array_equal(res1, res2)
- assert_array_equal(res2, res3)
- assert_almost_equal(res1[0], exp_res.T)
- assert_almost_equal(res1[1], exp_res)
- res1 = gradient(f, 1., axis=0, edge_order=edge_order)
- res2 = gradient(f, x_even, axis=0, edge_order=edge_order)
- assert_(res1.shape == res2.shape)
- assert_almost_equal(res2, exp_res.T)
- res1 = gradient(f, 1., axis=1, edge_order=edge_order)
- res2 = gradient(f, x_even, axis=1, edge_order=edge_order)
- assert_(res1.shape == res2.shape)
- assert_array_equal(res2, exp_res)
- # unevenly spaced
- for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]:
- res1 = gradient(f, x_uneven, x_uneven,
- axis=(0,1), edge_order=edge_order)
- res2 = gradient(f, x_uneven, x_uneven,
- axis=None, edge_order=edge_order)
- assert_array_equal(res1, res2)
- assert_almost_equal(res1[0], exp_res.T)
- assert_almost_equal(res1[1], exp_res)
- res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order)
- assert_almost_equal(res1, exp_res.T)
- res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order)
- assert_almost_equal(res1, exp_res)
- # mixed
- res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=1)
- res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=1)
- assert_array_equal(res1[0], res2[1])
- assert_array_equal(res1[1], res2[0])
- assert_almost_equal(res1[0], fdx_even_ord1.T)
- assert_almost_equal(res1[1], fdx_uneven_ord1)
- res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=2)
- res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=2)
- assert_array_equal(res1[0], res2[1])
- assert_array_equal(res1[1], res2[0])
- assert_almost_equal(res1[0], fdx_even_ord2.T)
- assert_almost_equal(res1[1], fdx_uneven_ord2)
- def test_specific_axes(self):
- # Testing that gradient can work on a given axis only
- v = [[1, 1], [3, 4]]
- x = np.array(v)
- dx = [np.array([[2., 3.], [2., 3.]]),
- np.array([[0., 0.], [1., 1.]])]
- assert_array_equal(gradient(x, axis=0), dx[0])
- assert_array_equal(gradient(x, axis=1), dx[1])
- assert_array_equal(gradient(x, axis=-1), dx[1])
- assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]])
- # test axis=None which means all axes
- assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]])
- # and is the same as no axis keyword given
- assert_almost_equal(gradient(x, axis=None), gradient(x))
- # test vararg order
- assert_array_equal(gradient(x, 2, 3, axis=(1, 0)),
- [dx[1]/2.0, dx[0]/3.0])
- # test maximal number of varargs
- assert_raises(TypeError, gradient, x, 1, 2, axis=1)
- assert_raises(np.AxisError, gradient, x, axis=3)
- assert_raises(np.AxisError, gradient, x, axis=-3)
- # assert_raises(TypeError, gradient, x, axis=[1,])
- def test_timedelta64(self):
- # Make sure gradient() can handle special types like timedelta64
- x = np.array(
- [-5, -3, 10, 12, 61, 321, 300],
- dtype='timedelta64[D]')
- dx = np.array(
- [2, 7, 7, 25, 154, 119, -21],
- dtype='timedelta64[D]')
- assert_array_equal(gradient(x), dx)
- assert_(dx.dtype == np.dtype('timedelta64[D]'))
- def test_inexact_dtypes(self):
- for dt in [np.float16, np.float32, np.float64]:
- # dtypes should not be promoted in a different way to what diff does
- x = np.array([1, 2, 3], dtype=dt)
- assert_equal(gradient(x).dtype, np.diff(x).dtype)
- def test_values(self):
- # needs at least 2 points for edge_order ==1
- gradient(np.arange(2), edge_order=1)
- # needs at least 3 points for edge_order ==1
- gradient(np.arange(3), edge_order=2)
- assert_raises(ValueError, gradient, np.arange(0), edge_order=1)
- assert_raises(ValueError, gradient, np.arange(0), edge_order=2)
- assert_raises(ValueError, gradient, np.arange(1), edge_order=1)
- assert_raises(ValueError, gradient, np.arange(1), edge_order=2)
- assert_raises(ValueError, gradient, np.arange(2), edge_order=2)
- @pytest.mark.parametrize('f_dtype', [np.uint8, np.uint16,
- np.uint32, np.uint64])
- def test_f_decreasing_unsigned_int(self, f_dtype):
- f = np.array([5, 4, 3, 2, 1], dtype=f_dtype)
- g = gradient(f)
- assert_array_equal(g, [-1]*len(f))
- @pytest.mark.parametrize('f_dtype', [np.int8, np.int16,
- np.int32, np.int64])
- def test_f_signed_int_big_jump(self, f_dtype):
- maxint = np.iinfo(f_dtype).max
- x = np.array([1, 3])
- f = np.array([-1, maxint], dtype=f_dtype)
- dfdx = gradient(f, x)
- assert_array_equal(dfdx, [(maxint + 1) // 2]*2)
- @pytest.mark.parametrize('x_dtype', [np.uint8, np.uint16,
- np.uint32, np.uint64])
- def test_x_decreasing_unsigned(self, x_dtype):
- x = np.array([3, 2, 1], dtype=x_dtype)
- f = np.array([0, 2, 4])
- dfdx = gradient(f, x)
- assert_array_equal(dfdx, [-2]*len(x))
- @pytest.mark.parametrize('x_dtype', [np.int8, np.int16,
- np.int32, np.int64])
- def test_x_signed_int_big_jump(self, x_dtype):
- minint = np.iinfo(x_dtype).min
- maxint = np.iinfo(x_dtype).max
- x = np.array([-1, maxint], dtype=x_dtype)
- f = np.array([minint // 2, 0])
- dfdx = gradient(f, x)
- assert_array_equal(dfdx, [0.5, 0.5])
- class TestAngle:
- def test_basic(self):
- x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2,
- 1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
- y = angle(x)
- yo = [
- np.arctan(3.0 / 1.0),
- np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0,
- -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)]
- z = angle(x, deg=True)
- zo = np.array(yo) * 180 / np.pi
- assert_array_almost_equal(y, yo, 11)
- assert_array_almost_equal(z, zo, 11)
- def test_subclass(self):
- x = np.ma.array([1 + 3j, 1, np.sqrt(2)/2 * (1 + 1j)])
- x[1] = np.ma.masked
- expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)])
- expected[1] = np.ma.masked
- actual = angle(x)
- assert_equal(type(actual), type(expected))
- assert_equal(actual.mask, expected.mask)
- assert_equal(actual, expected)
- class TestTrimZeros:
- a = np.array([0, 0, 1, 0, 2, 3, 4, 0])
- b = a.astype(float)
- c = a.astype(complex)
- d = a.astype(object)
- def values(self):
- attr_names = ('a', 'b', 'c', 'd')
- return (getattr(self, name) for name in attr_names)
- def test_basic(self):
- slc = np.s_[2:-1]
- for arr in self.values():
- res = trim_zeros(arr)
- assert_array_equal(res, arr[slc])
- def test_leading_skip(self):
- slc = np.s_[:-1]
- for arr in self.values():
- res = trim_zeros(arr, trim='b')
- assert_array_equal(res, arr[slc])
- def test_trailing_skip(self):
- slc = np.s_[2:]
- for arr in self.values():
- res = trim_zeros(arr, trim='F')
- assert_array_equal(res, arr[slc])
- def test_all_zero(self):
- for _arr in self.values():
- arr = np.zeros_like(_arr, dtype=_arr.dtype)
- res1 = trim_zeros(arr, trim='B')
- assert len(res1) == 0
- res2 = trim_zeros(arr, trim='f')
- assert len(res2) == 0
- def test_size_zero(self):
- arr = np.zeros(0)
- res = trim_zeros(arr)
- assert_array_equal(arr, res)
- @pytest.mark.parametrize(
- 'arr',
- [np.array([0, 2**62, 0]),
- np.array([0, 2**63, 0]),
- np.array([0, 2**64, 0])]
- )
- def test_overflow(self, arr):
- slc = np.s_[1:2]
- res = trim_zeros(arr)
- assert_array_equal(res, arr[slc])
- def test_no_trim(self):
- arr = np.array([None, 1, None])
- res = trim_zeros(arr)
- assert_array_equal(arr, res)
- def test_list_to_list(self):
- res = trim_zeros(self.a.tolist())
- assert isinstance(res, list)
- class TestExtins:
- def test_basic(self):
- a = np.array([1, 3, 2, 1, 2, 3, 3])
- b = extract(a > 1, a)
- assert_array_equal(b, [3, 2, 2, 3, 3])
- def test_place(self):
- # Make sure that non-np.ndarray objects
- # raise an error instead of doing nothing
- assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1])
- a = np.array([1, 4, 3, 2, 5, 8, 7])
- place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6])
- assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7])
- place(a, np.zeros(7), [])
- assert_array_equal(a, np.arange(1, 8))
- place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9])
- assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9])
- assert_raises_regex(ValueError, "Cannot insert from an empty array",
- lambda: place(a, [0, 0, 0, 0, 0, 1, 0], []))
- # See Issue #6974
- a = np.array(['12', '34'])
- place(a, [0, 1], '9')
- assert_array_equal(a, ['12', '9'])
- def test_both(self):
- a = rand(10)
- mask = a > 0.5
- ac = a.copy()
- c = extract(mask, a)
- place(a, mask, 0)
- place(a, mask, c)
- assert_array_equal(a, ac)
- # _foo1 and _foo2 are used in some tests in TestVectorize.
- def _foo1(x, y=1.0):
- return y*math.floor(x)
- def _foo2(x, y=1.0, z=0.0):
- return y*math.floor(x) + z
- class TestVectorize:
- def test_simple(self):
- def addsubtract(a, b):
- if a > b:
- return a - b
- else:
- return a + b
- f = vectorize(addsubtract)
- r = f([0, 3, 6, 9], [1, 3, 5, 7])
- assert_array_equal(r, [1, 6, 1, 2])
- def test_scalar(self):
- def addsubtract(a, b):
- if a > b:
- return a - b
- else:
- return a + b
- f = vectorize(addsubtract)
- r = f([0, 3, 6, 9], 5)
- assert_array_equal(r, [5, 8, 1, 4])
- def test_large(self):
- x = np.linspace(-3, 2, 10000)
- f = vectorize(lambda x: x)
- y = f(x)
- assert_array_equal(y, x)
- def test_ufunc(self):
- f = vectorize(math.cos)
- args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi])
- r1 = f(args)
- r2 = np.cos(args)
- assert_array_almost_equal(r1, r2)
- def test_keywords(self):
- def foo(a, b=1):
- return a + b
- f = vectorize(foo)
- args = np.array([1, 2, 3])
- r1 = f(args)
- r2 = np.array([2, 3, 4])
- assert_array_equal(r1, r2)
- r1 = f(args, 2)
- r2 = np.array([3, 4, 5])
- assert_array_equal(r1, r2)
- def test_keywords_with_otypes_order1(self):
- # gh-1620: The second call of f would crash with
- # `ValueError: invalid number of arguments`.
- f = vectorize(_foo1, otypes=[float])
- # We're testing the caching of ufuncs by vectorize, so the order
- # of these function calls is an important part of the test.
- r1 = f(np.arange(3.0), 1.0)
- r2 = f(np.arange(3.0))
- assert_array_equal(r1, r2)
- def test_keywords_with_otypes_order2(self):
- # gh-1620: The second call of f would crash with
- # `ValueError: non-broadcastable output operand with shape ()
- # doesn't match the broadcast shape (3,)`.
- f = vectorize(_foo1, otypes=[float])
- # We're testing the caching of ufuncs by vectorize, so the order
- # of these function calls is an important part of the test.
- r1 = f(np.arange(3.0))
- r2 = f(np.arange(3.0), 1.0)
- assert_array_equal(r1, r2)
- def test_keywords_with_otypes_order3(self):
- # gh-1620: The third call of f would crash with
- # `ValueError: invalid number of arguments`.
- f = vectorize(_foo1, otypes=[float])
- # We're testing the caching of ufuncs by vectorize, so the order
- # of these function calls is an important part of the test.
- r1 = f(np.arange(3.0))
- r2 = f(np.arange(3.0), y=1.0)
- r3 = f(np.arange(3.0))
- assert_array_equal(r1, r2)
- assert_array_equal(r1, r3)
- def test_keywords_with_otypes_several_kwd_args1(self):
- # gh-1620 Make sure different uses of keyword arguments
- # don't break the vectorized function.
- f = vectorize(_foo2, otypes=[float])
- # We're testing the caching of ufuncs by vectorize, so the order
- # of these function calls is an important part of the test.
- r1 = f(10.4, z=100)
- r2 = f(10.4, y=-1)
- r3 = f(10.4)
- assert_equal(r1, _foo2(10.4, z=100))
- assert_equal(r2, _foo2(10.4, y=-1))
- assert_equal(r3, _foo2(10.4))
- def test_keywords_with_otypes_several_kwd_args2(self):
- # gh-1620 Make sure different uses of keyword arguments
- # don't break the vectorized function.
- f = vectorize(_foo2, otypes=[float])
- # We're testing the caching of ufuncs by vectorize, so the order
- # of these function calls is an important part of the test.
- r1 = f(z=100, x=10.4, y=-1)
- r2 = f(1, 2, 3)
- assert_equal(r1, _foo2(z=100, x=10.4, y=-1))
- assert_equal(r2, _foo2(1, 2, 3))
- def test_keywords_no_func_code(self):
- # This needs to test a function that has keywords but
- # no func_code attribute, since otherwise vectorize will
- # inspect the func_code.
- import random
- try:
- vectorize(random.randrange) # Should succeed
- except Exception:
- raise AssertionError()
- def test_keywords2_ticket_2100(self):
- # Test kwarg support: enhancement ticket 2100
- def foo(a, b=1):
- return a + b
- f = vectorize(foo)
- args = np.array([1, 2, 3])
- r1 = f(a=args)
- r2 = np.array([2, 3, 4])
- assert_array_equal(r1, r2)
- r1 = f(b=1, a=args)
- assert_array_equal(r1, r2)
- r1 = f(args, b=2)
- r2 = np.array([3, 4, 5])
- assert_array_equal(r1, r2)
- def test_keywords3_ticket_2100(self):
- # Test excluded with mixed positional and kwargs: ticket 2100
- def mypolyval(x, p):
- _p = list(p)
- res = _p.pop(0)
- while _p:
- res = res * x + _p.pop(0)
- return res
- vpolyval = np.vectorize(mypolyval, excluded=['p', 1])
- ans = [3, 6]
- assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3]))
- assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3]))
- assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3]))
- def test_keywords4_ticket_2100(self):
- # Test vectorizing function with no positional args.
- @vectorize
- def f(**kw):
- res = 1.0
- for _k in kw:
- res *= kw[_k]
- return res
- assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8])
- def test_keywords5_ticket_2100(self):
- # Test vectorizing function with no kwargs args.
- @vectorize
- def f(*v):
- return np.prod(v)
- assert_array_equal(f([1, 2], [3, 4]), [3, 8])
- def test_coverage1_ticket_2100(self):
- def foo():
- return 1
- f = vectorize(foo)
- assert_array_equal(f(), 1)
- def test_assigning_docstring(self):
- def foo(x):
- """Original documentation"""
- return x
- f = vectorize(foo)
- assert_equal(f.__doc__, foo.__doc__)
- doc = "Provided documentation"
- f = vectorize(foo, doc=doc)
- assert_equal(f.__doc__, doc)
- def test_UnboundMethod_ticket_1156(self):
- # Regression test for issue 1156
- class Foo:
- b = 2
- def bar(self, a):
- return a ** self.b
- assert_array_equal(vectorize(Foo().bar)(np.arange(9)),
- np.arange(9) ** 2)
- assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)),
- np.arange(9) ** 2)
- def test_execution_order_ticket_1487(self):
- # Regression test for dependence on execution order: issue 1487
- f1 = vectorize(lambda x: x)
- res1a = f1(np.arange(3))
- res1b = f1(np.arange(0.1, 3))
- f2 = vectorize(lambda x: x)
- res2b = f2(np.arange(0.1, 3))
- res2a = f2(np.arange(3))
- assert_equal(res1a, res2a)
- assert_equal(res1b, res2b)
- def test_string_ticket_1892(self):
- # Test vectorization over strings: issue 1892.
- f = np.vectorize(lambda x: x)
- s = '0123456789' * 10
- assert_equal(s, f(s))
- def test_cache(self):
- # Ensure that vectorized func called exactly once per argument.
- _calls = [0]
- @vectorize
- def f(x):
- _calls[0] += 1
- return x ** 2
- f.cache = True
- x = np.arange(5)
- assert_array_equal(f(x), x * x)
- assert_equal(_calls[0], len(x))
- def test_otypes(self):
- f = np.vectorize(lambda x: x)
- f.otypes = 'i'
- x = np.arange(5)
- assert_array_equal(f(x), x)
- def test_parse_gufunc_signature(self):
- assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()]))
- assert_equal(nfb._parse_gufunc_signature('(x,y)->()'),
- ([('x', 'y')], [()]))
- assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'),
- ([('x',), ('y',)], [()]))
- assert_equal(nfb._parse_gufunc_signature('(x)->(y)'),
- ([('x',)], [('y',)]))
- assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'),
- ([('x',)], [('y',), ()]))
- assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'),
- ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')]))
- # Tests to check if whitespaces are ignored
- assert_equal(nfb._parse_gufunc_signature('(x )->()'), ([('x',)], [()]))
- assert_equal(nfb._parse_gufunc_signature('( x , y )->( )'),
- ([('x', 'y')], [()]))
- assert_equal(nfb._parse_gufunc_signature('(x),( y) ->()'),
- ([('x',), ('y',)], [()]))
- assert_equal(nfb._parse_gufunc_signature('( x)-> (y ) '),
- ([('x',)], [('y',)]))
- assert_equal(nfb._parse_gufunc_signature(' (x)->( y),( )'),
- ([('x',)], [('y',), ()]))
- assert_equal(nfb._parse_gufunc_signature(
- '( ), ( a, b,c ) ,( d) -> (d , e)'),
- ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')]))
- with assert_raises(ValueError):
- nfb._parse_gufunc_signature('(x)(y)->()')
- with assert_raises(ValueError):
- nfb._parse_gufunc_signature('(x),(y)->')
- with assert_raises(ValueError):
- nfb._parse_gufunc_signature('((x))->(x)')
- def test_signature_simple(self):
- def addsubtract(a, b):
- if a > b:
- return a - b
- else:
- return a + b
- f = vectorize(addsubtract, signature='(),()->()')
- r = f([0, 3, 6, 9], [1, 3, 5, 7])
- assert_array_equal(r, [1, 6, 1, 2])
- def test_signature_mean_last(self):
- def mean(a):
- return a.mean()
- f = vectorize(mean, signature='(n)->()')
- r = f([[1, 3], [2, 4]])
- assert_array_equal(r, [2, 3])
- def test_signature_center(self):
- def center(a):
- return a - a.mean()
- f = vectorize(center, signature='(n)->(n)')
- r = f([[1, 3], [2, 4]])
- assert_array_equal(r, [[-1, 1], [-1, 1]])
- def test_signature_two_outputs(self):
- f = vectorize(lambda x: (x, x), signature='()->(),()')
- r = f([1, 2, 3])
- assert_(isinstance(r, tuple) and len(r) == 2)
- assert_array_equal(r[0], [1, 2, 3])
- assert_array_equal(r[1], [1, 2, 3])
- def test_signature_outer(self):
- f = vectorize(np.outer, signature='(a),(b)->(a,b)')
- r = f([1, 2], [1, 2, 3])
- assert_array_equal(r, [[1, 2, 3], [2, 4, 6]])
- r = f([[[1, 2]]], [1, 2, 3])
- assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]])
- r = f([[1, 0], [2, 0]], [1, 2, 3])
- assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]],
- [[2, 4, 6], [0, 0, 0]]])
- r = f([1, 2], [[1, 2, 3], [0, 0, 0]])
- assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]],
- [[0, 0, 0], [0, 0, 0]]])
- def test_signature_computed_size(self):
- f = vectorize(lambda x: x[:-1], signature='(n)->(m)')
- r = f([1, 2, 3])
- assert_array_equal(r, [1, 2])
- r = f([[1, 2, 3], [2, 3, 4]])
- assert_array_equal(r, [[1, 2], [2, 3]])
- def test_signature_excluded(self):
- def foo(a, b=1):
- return a + b
- f = vectorize(foo, signature='()->()', excluded={'b'})
- assert_array_equal(f([1, 2, 3]), [2, 3, 4])
- assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3])
- def test_signature_otypes(self):
- f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64'])
- r = f([1, 2, 3])
- assert_equal(r.dtype, np.dtype('float64'))
- assert_array_equal(r, [1, 2, 3])
- def test_signature_invalid_inputs(self):
- f = vectorize(operator.add, signature='(n),(n)->(n)')
- with assert_raises_regex(TypeError, 'wrong number of positional'):
- f([1, 2])
- with assert_raises_regex(
- ValueError, 'does not have enough dimensions'):
- f(1, 2)
- with assert_raises_regex(
- ValueError, 'inconsistent size for core dimension'):
- f([1, 2], [1, 2, 3])
- f = vectorize(operator.add, signature='()->()')
- with assert_raises_regex(TypeError, 'wrong number of positional'):
- f(1, 2)
- def test_signature_invalid_outputs(self):
- f = vectorize(lambda x: x[:-1], signature='(n)->(n)')
- with assert_raises_regex(
- ValueError, 'inconsistent size for core dimension'):
- f([1, 2, 3])
- f = vectorize(lambda x: x, signature='()->(),()')
- with assert_raises_regex(ValueError, 'wrong number of outputs'):
- f(1)
- f = vectorize(lambda x: (x, x), signature='()->()')
- with assert_raises_regex(ValueError, 'wrong number of outputs'):
- f([1, 2])
- def test_size_zero_output(self):
- # see issue 5868
- f = np.vectorize(lambda x: x)
- x = np.zeros([0, 5], dtype=int)
- with assert_raises_regex(ValueError, 'otypes'):
- f(x)
- f.otypes = 'i'
- assert_array_equal(f(x), x)
- f = np.vectorize(lambda x: x, signature='()->()')
- with assert_raises_regex(ValueError, 'otypes'):
- f(x)
- f = np.vectorize(lambda x: x, signature='()->()', otypes='i')
- assert_array_equal(f(x), x)
- f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i')
- assert_array_equal(f(x), x)
- f = np.vectorize(lambda x: x, signature='(n)->(n)')
- assert_array_equal(f(x.T), x.T)
- f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i')
- with assert_raises_regex(ValueError, 'new output dimensions'):
- f(x)
- def test_subclasses(self):
- class subclass(np.ndarray):
- pass
- m = np.array([[1., 0., 0.],
- [0., 0., 1.],
- [0., 1., 0.]]).view(subclass)
- v = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]).view(subclass)
- # generalized (gufunc)
- matvec = np.vectorize(np.matmul, signature='(m,m),(m)->(m)')
- r = matvec(m, v)
- assert_equal(type(r), subclass)
- assert_equal(r, [[1., 3., 2.], [4., 6., 5.], [7., 9., 8.]])
- # element-wise (ufunc)
- mult = np.vectorize(lambda x, y: x*y)
- r = mult(m, v)
- assert_equal(type(r), subclass)
- assert_equal(r, m * v)
- class TestLeaks:
- class A:
- iters = 20
- def bound(self, *args):
- return 0
- @staticmethod
- def unbound(*args):
- return 0
- @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
- @pytest.mark.parametrize('name, incr', [
- ('bound', A.iters),
- ('unbound', 0),
- ])
- def test_frompyfunc_leaks(self, name, incr):
- # exposed in gh-11867 as np.vectorized, but the problem stems from
- # frompyfunc.
- # class.attribute = np.frompyfunc(<method>) creates a
- # reference cycle if <method> is a bound class method. It requires a
- # gc collection cycle to break the cycle (on CPython 3)
- import gc
- A_func = getattr(self.A, name)
- gc.disable()
- try:
- refcount = sys.getrefcount(A_func)
- for i in range(self.A.iters):
- a = self.A()
- a.f = np.frompyfunc(getattr(a, name), 1, 1)
- out = a.f(np.arange(10))
- a = None
- # A.func is part of a reference cycle if incr is non-zero
- assert_equal(sys.getrefcount(A_func), refcount + incr)
- for i in range(5):
- gc.collect()
- assert_equal(sys.getrefcount(A_func), refcount)
- finally:
- gc.enable()
- class TestDigitize:
- def test_forward(self):
- x = np.arange(-6, 5)
- bins = np.arange(-5, 5)
- assert_array_equal(digitize(x, bins), np.arange(11))
- def test_reverse(self):
- x = np.arange(5, -6, -1)
- bins = np.arange(5, -5, -1)
- assert_array_equal(digitize(x, bins), np.arange(11))
- def test_random(self):
- x = rand(10)
- bin = np.linspace(x.min(), x.max(), 10)
- assert_(np.all(digitize(x, bin) != 0))
- def test_right_basic(self):
- x = [1, 5, 4, 10, 8, 11, 0]
- bins = [1, 5, 10]
- default_answer = [1, 2, 1, 3, 2, 3, 0]
- assert_array_equal(digitize(x, bins), default_answer)
- right_answer = [0, 1, 1, 2, 2, 3, 0]
- assert_array_equal(digitize(x, bins, True), right_answer)
- def test_right_open(self):
- x = np.arange(-6, 5)
- bins = np.arange(-6, 4)
- assert_array_equal(digitize(x, bins, True), np.arange(11))
- def test_right_open_reverse(self):
- x = np.arange(5, -6, -1)
- bins = np.arange(4, -6, -1)
- assert_array_equal(digitize(x, bins, True), np.arange(11))
- def test_right_open_random(self):
- x = rand(10)
- bins = np.linspace(x.min(), x.max(), 10)
- assert_(np.all(digitize(x, bins, True) != 10))
- def test_monotonic(self):
- x = [-1, 0, 1, 2]
- bins = [0, 0, 1]
- assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3])
- assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3])
- bins = [1, 1, 0]
- assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0])
- assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0])
- bins = [1, 1, 1, 1]
- assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4])
- assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4])
- bins = [0, 0, 1, 0]
- assert_raises(ValueError, digitize, x, bins)
- bins = [1, 1, 0, 1]
- assert_raises(ValueError, digitize, x, bins)
- def test_casting_error(self):
- x = [1, 2, 3 + 1.j]
- bins = [1, 2, 3]
- assert_raises(TypeError, digitize, x, bins)
- x, bins = bins, x
- assert_raises(TypeError, digitize, x, bins)
- def test_return_type(self):
- # Functions returning indices should always return base ndarrays
- class A(np.ndarray):
- pass
- a = np.arange(5).view(A)
- b = np.arange(1, 3).view(A)
- assert_(not isinstance(digitize(b, a, False), A))
- assert_(not isinstance(digitize(b, a, True), A))
- def test_large_integers_increasing(self):
- # gh-11022
- x = 2**54 # loses precision in a float
- assert_equal(np.digitize(x, [x - 1, x + 1]), 1)
- @pytest.mark.xfail(
- reason="gh-11022: np.core.multiarray._monoticity loses precision")
- def test_large_integers_decreasing(self):
- # gh-11022
- x = 2**54 # loses precision in a float
- assert_equal(np.digitize(x, [x + 1, x - 1]), 1)
- class TestUnwrap:
- def test_simple(self):
- # check that unwrap removes jumps greater that 2*pi
- assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1])
- # check that unwrap maintains continuity
- assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi))
- def test_period(self):
- # check that unwrap removes jumps greater that 255
- assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2])
- # check that unwrap maintains continuity
- assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255))
- # check simple case
- simple_seq = np.array([0, 75, 150, 225, 300])
- wrap_seq = np.mod(simple_seq, 255)
- assert_array_equal(unwrap(wrap_seq, period=255), simple_seq)
- # check custom discont value
- uneven_seq = np.array([0, 75, 150, 225, 300, 430])
- wrap_uneven = np.mod(uneven_seq, 250)
- no_discont = unwrap(wrap_uneven, period=250)
- assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180])
- sm_discont = unwrap(wrap_uneven, period=250, discont=140)
- assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430])
- assert sm_discont.dtype == wrap_uneven.dtype
- @pytest.mark.parametrize(
- "dtype", "O" + np.typecodes["AllInteger"] + np.typecodes["Float"]
- )
- @pytest.mark.parametrize("M", [0, 1, 10])
- class TestFilterwindows:
- def test_hanning(self, dtype: str, M: int) -> None:
- scalar = np.array(M, dtype=dtype)[()]
- w = hanning(scalar)
- if dtype == "O":
- ref_dtype = np.float64
- else:
- ref_dtype = np.result_type(scalar.dtype, np.float64)
- assert w.dtype == ref_dtype
- # check symmetry
- assert_equal(w, flipud(w))
- # check known value
- if scalar < 1:
- assert_array_equal(w, np.array([]))
- elif scalar == 1:
- assert_array_equal(w, np.ones(1))
- else:
- assert_almost_equal(np.sum(w, axis=0), 4.500, 4)
- def test_hamming(self, dtype: str, M: int) -> None:
- scalar = np.array(M, dtype=dtype)[()]
- w = hamming(scalar)
- if dtype == "O":
- ref_dtype = np.float64
- else:
- ref_dtype = np.result_type(scalar.dtype, np.float64)
- assert w.dtype == ref_dtype
- # check symmetry
- assert_equal(w, flipud(w))
- # check known value
- if scalar < 1:
- assert_array_equal(w, np.array([]))
- elif scalar == 1:
- assert_array_equal(w, np.ones(1))
- else:
- assert_almost_equal(np.sum(w, axis=0), 4.9400, 4)
- def test_bartlett(self, dtype: str, M: int) -> None:
- scalar = np.array(M, dtype=dtype)[()]
- w = bartlett(scalar)
- if dtype == "O":
- ref_dtype = np.float64
- else:
- ref_dtype = np.result_type(scalar.dtype, np.float64)
- assert w.dtype == ref_dtype
- # check symmetry
- assert_equal(w, flipud(w))
- # check known value
- if scalar < 1:
- assert_array_equal(w, np.array([]))
- elif scalar == 1:
- assert_array_equal(w, np.ones(1))
- else:
- assert_almost_equal(np.sum(w, axis=0), 4.4444, 4)
- def test_blackman(self, dtype: str, M: int) -> None:
- scalar = np.array(M, dtype=dtype)[()]
- w = blackman(scalar)
- if dtype == "O":
- ref_dtype = np.float64
- else:
- ref_dtype = np.result_type(scalar.dtype, np.float64)
- assert w.dtype == ref_dtype
- # check symmetry
- assert_equal(w, flipud(w))
- # check known value
- if scalar < 1:
- assert_array_equal(w, np.array([]))
- elif scalar == 1:
- assert_array_equal(w, np.ones(1))
- else:
- assert_almost_equal(np.sum(w, axis=0), 3.7800, 4)
- def test_kaiser(self, dtype: str, M: int) -> None:
- scalar = np.array(M, dtype=dtype)[()]
- w = kaiser(scalar, 0)
- if dtype == "O":
- ref_dtype = np.float64
- else:
- ref_dtype = np.result_type(scalar.dtype, np.float64)
- assert w.dtype == ref_dtype
- # check symmetry
- assert_equal(w, flipud(w))
- # check known value
- if scalar < 1:
- assert_array_equal(w, np.array([]))
- elif scalar == 1:
- assert_array_equal(w, np.ones(1))
- else:
- assert_almost_equal(np.sum(w, axis=0), 10, 15)
- class TestTrapz:
- def test_simple(self):
- x = np.arange(-10, 10, .1)
- r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1)
- # check integral of normal equals 1
- assert_almost_equal(r, 1, 7)
- def test_ndim(self):
- x = np.linspace(0, 1, 3)
- y = np.linspace(0, 2, 8)
- z = np.linspace(0, 3, 13)
- wx = np.ones_like(x) * (x[1] - x[0])
- wx[0] /= 2
- wx[-1] /= 2
- wy = np.ones_like(y) * (y[1] - y[0])
- wy[0] /= 2
- wy[-1] /= 2
- wz = np.ones_like(z) * (z[1] - z[0])
- wz[0] /= 2
- wz[-1] /= 2
- q = x[:, None, None] + y[None,:, None] + z[None, None,:]
- qx = (q * wx[:, None, None]).sum(axis=0)
- qy = (q * wy[None, :, None]).sum(axis=1)
- qz = (q * wz[None, None, :]).sum(axis=2)
- # n-d `x`
- r = trapz(q, x=x[:, None, None], axis=0)
- assert_almost_equal(r, qx)
- r = trapz(q, x=y[None,:, None], axis=1)
- assert_almost_equal(r, qy)
- r = trapz(q, x=z[None, None,:], axis=2)
- assert_almost_equal(r, qz)
- # 1-d `x`
- r = trapz(q, x=x, axis=0)
- assert_almost_equal(r, qx)
- r = trapz(q, x=y, axis=1)
- assert_almost_equal(r, qy)
- r = trapz(q, x=z, axis=2)
- assert_almost_equal(r, qz)
- def test_masked(self):
- # Testing that masked arrays behave as if the function is 0 where
- # masked
- x = np.arange(5)
- y = x * x
- mask = x == 2
- ym = np.ma.array(y, mask=mask)
- r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16))
- assert_almost_equal(trapz(ym, x), r)
- xm = np.ma.array(x, mask=mask)
- assert_almost_equal(trapz(ym, xm), r)
- xm = np.ma.array(x, mask=mask)
- assert_almost_equal(trapz(y, xm), r)
- class TestSinc:
- def test_simple(self):
- assert_(sinc(0) == 1)
- w = sinc(np.linspace(-1, 1, 100))
- # check symmetry
- assert_array_almost_equal(w, flipud(w), 7)
- def test_array_like(self):
- x = [0, 0.5]
- y1 = sinc(np.array(x))
- y2 = sinc(list(x))
- y3 = sinc(tuple(x))
- assert_array_equal(y1, y2)
- assert_array_equal(y1, y3)
- class TestUnique:
- def test_simple(self):
- x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0])
- assert_(np.all(unique(x) == [0, 1, 2, 3, 4]))
- assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1]))
- x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
- assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget']))
- x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j])
- assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10]))
- class TestCheckFinite:
- def test_simple(self):
- a = [1, 2, 3]
- b = [1, 2, np.inf]
- c = [1, 2, np.nan]
- np.lib.asarray_chkfinite(a)
- assert_raises(ValueError, np.lib.asarray_chkfinite, b)
- assert_raises(ValueError, np.lib.asarray_chkfinite, c)
- def test_dtype_order(self):
- # Regression test for missing dtype and order arguments
- a = [1, 2, 3]
- a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64)
- assert_(a.dtype == np.float64)
- class TestCorrCoef:
- A = np.array(
- [[0.15391142, 0.18045767, 0.14197213],
- [0.70461506, 0.96474128, 0.27906989],
- [0.9297531, 0.32296769, 0.19267156]])
- B = np.array(
- [[0.10377691, 0.5417086, 0.49807457],
- [0.82872117, 0.77801674, 0.39226705],
- [0.9314666, 0.66800209, 0.03538394]])
- res1 = np.array(
- [[1., 0.9379533, -0.04931983],
- [0.9379533, 1., 0.30007991],
- [-0.04931983, 0.30007991, 1.]])
- res2 = np.array(
- [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523],
- [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386],
- [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601],
- [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113],
- [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823],
- [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]])
- def test_non_array(self):
- assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]),
- [[1., -1.], [-1., 1.]])
- def test_simple(self):
- tgt1 = corrcoef(self.A)
- assert_almost_equal(tgt1, self.res1)
- assert_(np.all(np.abs(tgt1) <= 1.0))
- tgt2 = corrcoef(self.A, self.B)
- assert_almost_equal(tgt2, self.res2)
- assert_(np.all(np.abs(tgt2) <= 1.0))
- def test_ddof(self):
- # ddof raises DeprecationWarning
- with suppress_warnings() as sup:
- warnings.simplefilter("always")
- assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1)
- sup.filter(DeprecationWarning)
- # ddof has no or negligible effect on the function
- assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1)
- assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2)
- assert_almost_equal(corrcoef(self.A, ddof=3), self.res1)
- assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2)
- def test_bias(self):
- # bias raises DeprecationWarning
- with suppress_warnings() as sup:
- warnings.simplefilter("always")
- assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0)
- assert_warns(DeprecationWarning, corrcoef, self.A, bias=0)
- sup.filter(DeprecationWarning)
- # bias has no or negligible effect on the function
- assert_almost_equal(corrcoef(self.A, bias=1), self.res1)
- def test_complex(self):
- x = np.array([[1, 2, 3], [1j, 2j, 3j]])
- res = corrcoef(x)
- tgt = np.array([[1., -1.j], [1.j, 1.]])
- assert_allclose(res, tgt)
- assert_(np.all(np.abs(res) <= 1.0))
- def test_xy(self):
- x = np.array([[1, 2, 3]])
- y = np.array([[1j, 2j, 3j]])
- assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]]))
- def test_empty(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('always', RuntimeWarning)
- assert_array_equal(corrcoef(np.array([])), np.nan)
- assert_array_equal(corrcoef(np.array([]).reshape(0, 2)),
- np.array([]).reshape(0, 0))
- assert_array_equal(corrcoef(np.array([]).reshape(2, 0)),
- np.array([[np.nan, np.nan], [np.nan, np.nan]]))
- def test_extreme(self):
- x = [[1e-100, 1e100], [1e100, 1e-100]]
- with np.errstate(all='raise'):
- c = corrcoef(x)
- assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]]))
- assert_(np.all(np.abs(c) <= 1.0))
- @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble])
- def test_corrcoef_dtype(self, test_type):
- cast_A = self.A.astype(test_type)
- res = corrcoef(cast_A, dtype=test_type)
- assert test_type == res.dtype
- class TestCov:
- x1 = np.array([[0, 2], [1, 1], [2, 0]]).T
- res1 = np.array([[1., -1.], [-1., 1.]])
- x2 = np.array([0.0, 1.0, 2.0], ndmin=2)
- frequencies = np.array([1, 4, 1])
- x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T
- res2 = np.array([[0.4, -0.4], [-0.4, 0.4]])
- unit_frequencies = np.ones(3, dtype=np.int_)
- weights = np.array([1.0, 4.0, 1.0])
- res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]])
- unit_weights = np.ones(3)
- x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964])
- def test_basic(self):
- assert_allclose(cov(self.x1), self.res1)
- def test_complex(self):
- x = np.array([[1, 2, 3], [1j, 2j, 3j]])
- res = np.array([[1., -1.j], [1.j, 1.]])
- assert_allclose(cov(x), res)
- assert_allclose(cov(x, aweights=np.ones(3)), res)
- def test_xy(self):
- x = np.array([[1, 2, 3]])
- y = np.array([[1j, 2j, 3j]])
- assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]]))
- def test_empty(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('always', RuntimeWarning)
- assert_array_equal(cov(np.array([])), np.nan)
- assert_array_equal(cov(np.array([]).reshape(0, 2)),
- np.array([]).reshape(0, 0))
- assert_array_equal(cov(np.array([]).reshape(2, 0)),
- np.array([[np.nan, np.nan], [np.nan, np.nan]]))
- def test_wrong_ddof(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('always', RuntimeWarning)
- assert_array_equal(cov(self.x1, ddof=5),
- np.array([[np.inf, -np.inf],
- [-np.inf, np.inf]]))
- def test_1D_rowvar(self):
- assert_allclose(cov(self.x3), cov(self.x3, rowvar=False))
- y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501])
- assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False))
- def test_1D_variance(self):
- assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1))
- def test_fweights(self):
- assert_allclose(cov(self.x2, fweights=self.frequencies),
- cov(self.x2_repeats))
- assert_allclose(cov(self.x1, fweights=self.frequencies),
- self.res2)
- assert_allclose(cov(self.x1, fweights=self.unit_frequencies),
- self.res1)
- nonint = self.frequencies + 0.5
- assert_raises(TypeError, cov, self.x1, fweights=nonint)
- f = np.ones((2, 3), dtype=np.int_)
- assert_raises(RuntimeError, cov, self.x1, fweights=f)
- f = np.ones(2, dtype=np.int_)
- assert_raises(RuntimeError, cov, self.x1, fweights=f)
- f = -1 * np.ones(3, dtype=np.int_)
- assert_raises(ValueError, cov, self.x1, fweights=f)
- def test_aweights(self):
- assert_allclose(cov(self.x1, aweights=self.weights), self.res3)
- assert_allclose(cov(self.x1, aweights=3.0 * self.weights),
- cov(self.x1, aweights=self.weights))
- assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1)
- w = np.ones((2, 3))
- assert_raises(RuntimeError, cov, self.x1, aweights=w)
- w = np.ones(2)
- assert_raises(RuntimeError, cov, self.x1, aweights=w)
- w = -1.0 * np.ones(3)
- assert_raises(ValueError, cov, self.x1, aweights=w)
- def test_unit_fweights_and_aweights(self):
- assert_allclose(cov(self.x2, fweights=self.frequencies,
- aweights=self.unit_weights),
- cov(self.x2_repeats))
- assert_allclose(cov(self.x1, fweights=self.frequencies,
- aweights=self.unit_weights),
- self.res2)
- assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
- aweights=self.unit_weights),
- self.res1)
- assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
- aweights=self.weights),
- self.res3)
- assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
- aweights=3.0 * self.weights),
- cov(self.x1, aweights=self.weights))
- assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
- aweights=self.unit_weights),
- self.res1)
- @pytest.mark.parametrize("test_type", [np.half, np.single, np.double, np.longdouble])
- def test_cov_dtype(self, test_type):
- cast_x1 = self.x1.astype(test_type)
- res = cov(cast_x1, dtype=test_type)
- assert test_type == res.dtype
- class Test_I0:
- def test_simple(self):
- assert_almost_equal(
- i0(0.5),
- np.array(1.0634833707413234))
- # need at least one test above 8, as the implementation is piecewise
- A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549, 10.0])
- expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049, 2815.71662847])
- assert_almost_equal(i0(A), expected)
- assert_almost_equal(i0(-A), expected)
- B = np.array([[0.827002, 0.99959078],
- [0.89694769, 0.39298162],
- [0.37954418, 0.05206293],
- [0.36465447, 0.72446427],
- [0.48164949, 0.50324519]])
- assert_almost_equal(
- i0(B),
- np.array([[1.17843223, 1.26583466],
- [1.21147086, 1.03898290],
- [1.03633899, 1.00067775],
- [1.03352052, 1.13557954],
- [1.05884290, 1.06432317]]))
- # Regression test for gh-11205
- i0_0 = np.i0([0.])
- assert_equal(i0_0.shape, (1,))
- assert_array_equal(np.i0([0.]), np.array([1.]))
- def test_non_array(self):
- a = np.arange(4)
- class array_like:
- __array_interface__ = a.__array_interface__
- def __array_wrap__(self, arr):
- return self
- # E.g. pandas series survive ufunc calls through array-wrap:
- assert isinstance(np.abs(array_like()), array_like)
- exp = np.i0(a)
- res = np.i0(array_like())
- assert_array_equal(exp, res)
- def test_complex(self):
- a = np.array([0, 1 + 2j])
- with pytest.raises(TypeError, match="i0 not supported for complex values"):
- res = i0(a)
- class TestKaiser:
- def test_simple(self):
- assert_(np.isfinite(kaiser(1, 1.0)))
- assert_almost_equal(kaiser(0, 1.0),
- np.array([]))
- assert_almost_equal(kaiser(2, 1.0),
- np.array([0.78984831, 0.78984831]))
- assert_almost_equal(kaiser(5, 1.0),
- np.array([0.78984831, 0.94503323, 1.,
- 0.94503323, 0.78984831]))
- assert_almost_equal(kaiser(5, 1.56789),
- np.array([0.58285404, 0.88409679, 1.,
- 0.88409679, 0.58285404]))
- def test_int_beta(self):
- kaiser(3, 4)
- class TestMsort:
- def test_simple(self):
- A = np.array([[0.44567325, 0.79115165, 0.54900530],
- [0.36844147, 0.37325583, 0.96098397],
- [0.64864341, 0.52929049, 0.39172155]])
- with pytest.warns(DeprecationWarning, match="msort is deprecated"):
- assert_almost_equal(
- msort(A),
- np.array([[0.36844147, 0.37325583, 0.39172155],
- [0.44567325, 0.52929049, 0.54900530],
- [0.64864341, 0.79115165, 0.96098397]]))
- class TestMeshgrid:
- def test_simple(self):
- [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7])
- assert_array_equal(X, np.array([[1, 2, 3],
- [1, 2, 3],
- [1, 2, 3],
- [1, 2, 3]]))
- assert_array_equal(Y, np.array([[4, 4, 4],
- [5, 5, 5],
- [6, 6, 6],
- [7, 7, 7]]))
- def test_single_input(self):
- [X] = meshgrid([1, 2, 3, 4])
- assert_array_equal(X, np.array([1, 2, 3, 4]))
- def test_no_input(self):
- args = []
- assert_array_equal([], meshgrid(*args))
- assert_array_equal([], meshgrid(*args, copy=False))
- def test_indexing(self):
- x = [1, 2, 3]
- y = [4, 5, 6, 7]
- [X, Y] = meshgrid(x, y, indexing='ij')
- assert_array_equal(X, np.array([[1, 1, 1, 1],
- [2, 2, 2, 2],
- [3, 3, 3, 3]]))
- assert_array_equal(Y, np.array([[4, 5, 6, 7],
- [4, 5, 6, 7],
- [4, 5, 6, 7]]))
- # Test expected shapes:
- z = [8, 9]
- assert_(meshgrid(x, y)[0].shape == (4, 3))
- assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4))
- assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2))
- assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2))
- assert_raises(ValueError, meshgrid, x, y, indexing='notvalid')
- def test_sparse(self):
- [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True)
- assert_array_equal(X, np.array([[1, 2, 3]]))
- assert_array_equal(Y, np.array([[4], [5], [6], [7]]))
- def test_invalid_arguments(self):
- # Test that meshgrid complains about invalid arguments
- # Regression test for issue #4755:
- # https://github.com/numpy/numpy/issues/4755
- assert_raises(TypeError, meshgrid,
- [1, 2, 3], [4, 5, 6, 7], indices='ij')
- def test_return_type(self):
- # Test for appropriate dtype in returned arrays.
- # Regression test for issue #5297
- # https://github.com/numpy/numpy/issues/5297
- x = np.arange(0, 10, dtype=np.float32)
- y = np.arange(10, 20, dtype=np.float64)
- X, Y = np.meshgrid(x,y)
- assert_(X.dtype == x.dtype)
- assert_(Y.dtype == y.dtype)
- # copy
- X, Y = np.meshgrid(x,y, copy=True)
- assert_(X.dtype == x.dtype)
- assert_(Y.dtype == y.dtype)
- # sparse
- X, Y = np.meshgrid(x,y, sparse=True)
- assert_(X.dtype == x.dtype)
- assert_(Y.dtype == y.dtype)
- def test_writeback(self):
- # Issue 8561
- X = np.array([1.1, 2.2])
- Y = np.array([3.3, 4.4])
- x, y = np.meshgrid(X, Y, sparse=False, copy=True)
- x[0, :] = 0
- assert_equal(x[0, :], 0)
- assert_equal(x[1, :], X)
- def test_nd_shape(self):
- a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6)))
- expected_shape = (2, 1, 3, 4, 5)
- assert_equal(a.shape, expected_shape)
- assert_equal(b.shape, expected_shape)
- assert_equal(c.shape, expected_shape)
- assert_equal(d.shape, expected_shape)
- assert_equal(e.shape, expected_shape)
- def test_nd_values(self):
- a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5])
- assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]])
- assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]])
- assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]])
- def test_nd_indexing(self):
- a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing='ij')
- assert_equal(a, [[[0, 0, 0], [0, 0, 0]]])
- assert_equal(b, [[[1, 1, 1], [2, 2, 2]]])
- assert_equal(c, [[[3, 4, 5], [3, 4, 5]]])
- class TestPiecewise:
- def test_simple(self):
- # Condition is single bool list
- x = piecewise([0, 0], [True, False], [1])
- assert_array_equal(x, [1, 0])
- # List of conditions: single bool list
- x = piecewise([0, 0], [[True, False]], [1])
- assert_array_equal(x, [1, 0])
- # Conditions is single bool array
- x = piecewise([0, 0], np.array([True, False]), [1])
- assert_array_equal(x, [1, 0])
- # Condition is single int array
- x = piecewise([0, 0], np.array([1, 0]), [1])
- assert_array_equal(x, [1, 0])
- # List of conditions: int array
- x = piecewise([0, 0], [np.array([1, 0])], [1])
- assert_array_equal(x, [1, 0])
- x = piecewise([0, 0], [[False, True]], [lambda x:-1])
- assert_array_equal(x, [0, -1])
- assert_raises_regex(ValueError, '1 or 2 functions are expected',
- piecewise, [0, 0], [[False, True]], [])
- assert_raises_regex(ValueError, '1 or 2 functions are expected',
- piecewise, [0, 0], [[False, True]], [1, 2, 3])
- def test_two_conditions(self):
- x = piecewise([1, 2], [[True, False], [False, True]], [3, 4])
- assert_array_equal(x, [3, 4])
- def test_scalar_domains_three_conditions(self):
- x = piecewise(3, [True, False, False], [4, 2, 0])
- assert_equal(x, 4)
- def test_default(self):
- # No value specified for x[1], should be 0
- x = piecewise([1, 2], [True, False], [2])
- assert_array_equal(x, [2, 0])
- # Should set x[1] to 3
- x = piecewise([1, 2], [True, False], [2, 3])
- assert_array_equal(x, [2, 3])
- def test_0d(self):
- x = np.array(3)
- y = piecewise(x, x > 3, [4, 0])
- assert_(y.ndim == 0)
- assert_(y == 0)
- x = 5
- y = piecewise(x, [True, False], [1, 0])
- assert_(y.ndim == 0)
- assert_(y == 1)
- # With 3 ranges (It was failing, before)
- y = piecewise(x, [False, False, True], [1, 2, 3])
- assert_array_equal(y, 3)
- def test_0d_comparison(self):
- x = 3
- y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed.
- assert_equal(y, 4)
- # With 3 ranges (It was failing, before)
- x = 4
- y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3])
- assert_array_equal(y, 2)
- assert_raises_regex(ValueError, '2 or 3 functions are expected',
- piecewise, x, [x <= 3, x > 3], [1])
- assert_raises_regex(ValueError, '2 or 3 functions are expected',
- piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1])
- def test_0d_0d_condition(self):
- x = np.array(3)
- c = np.array(x > 3)
- y = piecewise(x, [c], [1, 2])
- assert_equal(y, 2)
- def test_multidimensional_extrafunc(self):
- x = np.array([[-2.5, -1.5, -0.5],
- [0.5, 1.5, 2.5]])
- y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3])
- assert_array_equal(y, np.array([[-1., -1., -1.],
- [3., 3., 1.]]))
- def test_subclasses(self):
- class subclass(np.ndarray):
- pass
- x = np.arange(5.).view(subclass)
- r = piecewise(x, [x<2., x>=4], [-1., 1., 0.])
- assert_equal(type(r), subclass)
- assert_equal(r, [-1., -1., 0., 0., 1.])
- class TestBincount:
- def test_simple(self):
- y = np.bincount(np.arange(4))
- assert_array_equal(y, np.ones(4))
- def test_simple2(self):
- y = np.bincount(np.array([1, 5, 2, 4, 1]))
- assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1]))
- def test_simple_weight(self):
- x = np.arange(4)
- w = np.array([0.2, 0.3, 0.5, 0.1])
- y = np.bincount(x, w)
- assert_array_equal(y, w)
- def test_simple_weight2(self):
- x = np.array([1, 2, 4, 5, 2])
- w = np.array([0.2, 0.3, 0.5, 0.1, 0.2])
- y = np.bincount(x, w)
- assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1]))
- def test_with_minlength(self):
- x = np.array([0, 1, 0, 1, 1])
- y = np.bincount(x, minlength=3)
- assert_array_equal(y, np.array([2, 3, 0]))
- x = []
- y = np.bincount(x, minlength=0)
- assert_array_equal(y, np.array([]))
- def test_with_minlength_smaller_than_maxvalue(self):
- x = np.array([0, 1, 1, 2, 2, 3, 3])
- y = np.bincount(x, minlength=2)
- assert_array_equal(y, np.array([1, 2, 2, 2]))
- y = np.bincount(x, minlength=0)
- assert_array_equal(y, np.array([1, 2, 2, 2]))
- def test_with_minlength_and_weights(self):
- x = np.array([1, 2, 4, 5, 2])
- w = np.array([0.2, 0.3, 0.5, 0.1, 0.2])
- y = np.bincount(x, w, 8)
- assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0]))
- def test_empty(self):
- x = np.array([], dtype=int)
- y = np.bincount(x)
- assert_array_equal(x, y)
- def test_empty_with_minlength(self):
- x = np.array([], dtype=int)
- y = np.bincount(x, minlength=5)
- assert_array_equal(y, np.zeros(5, dtype=int))
- def test_with_incorrect_minlength(self):
- x = np.array([], dtype=int)
- assert_raises_regex(TypeError,
- "'str' object cannot be interpreted",
- lambda: np.bincount(x, minlength="foobar"))
- assert_raises_regex(ValueError,
- "must not be negative",
- lambda: np.bincount(x, minlength=-1))
- x = np.arange(5)
- assert_raises_regex(TypeError,
- "'str' object cannot be interpreted",
- lambda: np.bincount(x, minlength="foobar"))
- assert_raises_regex(ValueError,
- "must not be negative",
- lambda: np.bincount(x, minlength=-1))
- @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
- def test_dtype_reference_leaks(self):
- # gh-6805
- intp_refcount = sys.getrefcount(np.dtype(np.intp))
- double_refcount = sys.getrefcount(np.dtype(np.double))
- for j in range(10):
- np.bincount([1, 2, 3])
- assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount)
- assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount)
- for j in range(10):
- np.bincount([1, 2, 3], [4, 5, 6])
- assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount)
- assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount)
- @pytest.mark.parametrize("vals", [[[2, 2]], 2])
- def test_error_not_1d(self, vals):
- # Test that values has to be 1-D (both as array and nested list)
- vals_arr = np.asarray(vals)
- with assert_raises(ValueError):
- np.bincount(vals_arr)
- with assert_raises(ValueError):
- np.bincount(vals)
- class TestInterp:
- def test_exceptions(self):
- assert_raises(ValueError, interp, 0, [], [])
- assert_raises(ValueError, interp, 0, [0], [1, 2])
- assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0)
- assert_raises(ValueError, interp, 0, [], [], period=360)
- assert_raises(ValueError, interp, 0, [0], [1, 2], period=360)
- def test_basic(self):
- x = np.linspace(0, 1, 5)
- y = np.linspace(0, 1, 5)
- x0 = np.linspace(0, 1, 50)
- assert_almost_equal(np.interp(x0, x, y), x0)
- def test_right_left_behavior(self):
- # Needs range of sizes to test different code paths.
- # size ==1 is special cased, 1 < size < 5 is linear search, and
- # size >= 5 goes through local search and possibly binary search.
- for size in range(1, 10):
- xp = np.arange(size, dtype=np.double)
- yp = np.ones(size, dtype=np.double)
- incpts = np.array([-1, 0, size - 1, size], dtype=np.double)
- decpts = incpts[::-1]
- incres = interp(incpts, xp, yp)
- decres = interp(decpts, xp, yp)
- inctgt = np.array([1, 1, 1, 1], dtype=float)
- dectgt = inctgt[::-1]
- assert_equal(incres, inctgt)
- assert_equal(decres, dectgt)
- incres = interp(incpts, xp, yp, left=0)
- decres = interp(decpts, xp, yp, left=0)
- inctgt = np.array([0, 1, 1, 1], dtype=float)
- dectgt = inctgt[::-1]
- assert_equal(incres, inctgt)
- assert_equal(decres, dectgt)
- incres = interp(incpts, xp, yp, right=2)
- decres = interp(decpts, xp, yp, right=2)
- inctgt = np.array([1, 1, 1, 2], dtype=float)
- dectgt = inctgt[::-1]
- assert_equal(incres, inctgt)
- assert_equal(decres, dectgt)
- incres = interp(incpts, xp, yp, left=0, right=2)
- decres = interp(decpts, xp, yp, left=0, right=2)
- inctgt = np.array([0, 1, 1, 2], dtype=float)
- dectgt = inctgt[::-1]
- assert_equal(incres, inctgt)
- assert_equal(decres, dectgt)
- def test_scalar_interpolation_point(self):
- x = np.linspace(0, 1, 5)
- y = np.linspace(0, 1, 5)
- x0 = 0
- assert_almost_equal(np.interp(x0, x, y), x0)
- x0 = .3
- assert_almost_equal(np.interp(x0, x, y), x0)
- x0 = np.float32(.3)
- assert_almost_equal(np.interp(x0, x, y), x0)
- x0 = np.float64(.3)
- assert_almost_equal(np.interp(x0, x, y), x0)
- x0 = np.nan
- assert_almost_equal(np.interp(x0, x, y), x0)
- def test_non_finite_behavior_exact_x(self):
- x = [1, 2, 2.5, 3, 4]
- xp = [1, 2, 3, 4]
- fp = [1, 2, np.inf, 4]
- assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4])
- fp = [1, 2, np.nan, 4]
- assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4])
- @pytest.fixture(params=[
- lambda x: np.float_(x),
- lambda x: _make_complex(x, 0),
- lambda x: _make_complex(0, x),
- lambda x: _make_complex(x, np.multiply(x, -2))
- ], ids=[
- 'real',
- 'complex-real',
- 'complex-imag',
- 'complex-both'
- ])
- def sc(self, request):
- """ scale function used by the below tests """
- return request.param
- def test_non_finite_any_nan(self, sc):
- """ test that nans are propagated """
- assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan))
- def test_non_finite_inf(self, sc):
- """ Test that interp between opposite infs gives nan """
- assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan))
- # unless the y values are equal
- assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10))
- def test_non_finite_half_inf_xf(self, sc):
- """ Test that interp where both axes have a bound at inf gives nan """
- assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan))
- assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan))
- assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan))
- def test_non_finite_half_inf_x(self, sc):
- """ Test interp where the x axis has a bound at inf """
- assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10))
- assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10))
- assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0))
- assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0))
- def test_non_finite_half_inf_f(self, sc):
- """ Test interp where the f axis has a bound at inf """
- assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf))
- assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf))
- assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf))
- assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf))
- assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf))
- assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf))
- def test_complex_interp(self):
- # test complex interpolation
- x = np.linspace(0, 1, 5)
- y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j
- x0 = 0.3
- y0 = x0 + (1+x0)*1.0j
- assert_almost_equal(np.interp(x0, x, y), y0)
- # test complex left and right
- x0 = -1
- left = 2 + 3.0j
- assert_almost_equal(np.interp(x0, x, y, left=left), left)
- x0 = 2.0
- right = 2 + 3.0j
- assert_almost_equal(np.interp(x0, x, y, right=right), right)
- # test complex non finite
- x = [1, 2, 2.5, 3, 4]
- xp = [1, 2, 3, 4]
- fp = [1, 2+1j, np.inf, 4]
- y = [1, 2+1j, np.inf+0.5j, np.inf, 4]
- assert_almost_equal(np.interp(x, xp, fp), y)
- # test complex periodic
- x = [-180, -170, -185, 185, -10, -5, 0, 365]
- xp = [190, -190, 350, -350]
- fp = [5+1.0j, 10+2j, 3+3j, 4+4j]
- y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j,
- 3.5+3.5j, 3.75+3.75j]
- assert_almost_equal(np.interp(x, xp, fp, period=360), y)
- def test_zero_dimensional_interpolation_point(self):
- x = np.linspace(0, 1, 5)
- y = np.linspace(0, 1, 5)
- x0 = np.array(.3)
- assert_almost_equal(np.interp(x0, x, y), x0)
- xp = np.array([0, 2, 4])
- fp = np.array([1, -1, 1])
- actual = np.interp(np.array(1), xp, fp)
- assert_equal(actual, 0)
- assert_(isinstance(actual, np.float64))
- actual = np.interp(np.array(4.5), xp, fp, period=4)
- assert_equal(actual, 0.5)
- assert_(isinstance(actual, np.float64))
- def test_if_len_x_is_small(self):
- xp = np.arange(0, 10, 0.0001)
- fp = np.sin(xp)
- assert_almost_equal(np.interp(np.pi, xp, fp), 0.0)
- def test_period(self):
- x = [-180, -170, -185, 185, -10, -5, 0, 365]
- xp = [190, -190, 350, -350]
- fp = [5, 10, 3, 4]
- y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]
- assert_almost_equal(np.interp(x, xp, fp, period=360), y)
- x = np.array(x, order='F').reshape(2, -1)
- y = np.array(y, order='C').reshape(2, -1)
- assert_almost_equal(np.interp(x, xp, fp, period=360), y)
- class TestPercentile:
- def test_basic(self):
- x = np.arange(8) * 0.5
- assert_equal(np.percentile(x, 0), 0.)
- assert_equal(np.percentile(x, 100), 3.5)
- assert_equal(np.percentile(x, 50), 1.75)
- x[1] = np.nan
- assert_equal(np.percentile(x, 0), np.nan)
- assert_equal(np.percentile(x, 0, method='nearest'), np.nan)
- def test_fraction(self):
- x = [Fraction(i, 2) for i in range(8)]
- p = np.percentile(x, Fraction(0))
- assert_equal(p, Fraction(0))
- assert_equal(type(p), Fraction)
- p = np.percentile(x, Fraction(100))
- assert_equal(p, Fraction(7, 2))
- assert_equal(type(p), Fraction)
- p = np.percentile(x, Fraction(50))
- assert_equal(p, Fraction(7, 4))
- assert_equal(type(p), Fraction)
- p = np.percentile(x, [Fraction(50)])
- assert_equal(p, np.array([Fraction(7, 4)]))
- assert_equal(type(p), np.ndarray)
- def test_api(self):
- d = np.ones(5)
- np.percentile(d, 5, None, None, False)
- np.percentile(d, 5, None, None, False, 'linear')
- o = np.ones((1,))
- np.percentile(d, 5, None, o, False, 'linear')
- def test_2D(self):
- x = np.array([[1, 1, 1],
- [1, 1, 1],
- [4, 4, 3],
- [1, 1, 1],
- [1, 1, 1]])
- assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1])
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_linear_nan_1D(self, dtype):
- # METHOD 1 of H&F
- arr = np.asarray([15.0, np.NAN, 35.0, 40.0, 50.0], dtype=dtype)
- res = np.percentile(
- arr,
- 40.0,
- method="linear")
- np.testing.assert_equal(res, np.NAN)
- np.testing.assert_equal(res.dtype, arr.dtype)
- H_F_TYPE_CODES = [(int_type, np.float64)
- for int_type in np.typecodes["AllInteger"]
- ] + [(np.float16, np.float16),
- (np.float32, np.float32),
- (np.float64, np.float64),
- (np.longdouble, np.longdouble),
- (np.complex64, np.complex64),
- (np.complex128, np.complex128),
- (np.clongdouble, np.clongdouble),
- (np.dtype("O"), np.float64)]
- @pytest.mark.parametrize(["input_dtype", "expected_dtype"], H_F_TYPE_CODES)
- @pytest.mark.parametrize(["method", "expected"],
- [("inverted_cdf", 20),
- ("averaged_inverted_cdf", 27.5),
- ("closest_observation", 20),
- ("interpolated_inverted_cdf", 20),
- ("hazen", 27.5),
- ("weibull", 26),
- ("linear", 29),
- ("median_unbiased", 27),
- ("normal_unbiased", 27.125),
- ])
- def test_linear_interpolation(self,
- method,
- expected,
- input_dtype,
- expected_dtype):
- expected_dtype = np.dtype(expected_dtype)
- if np._get_promotion_state() == "legacy":
- expected_dtype = np.promote_types(expected_dtype, np.float64)
- arr = np.asarray([15.0, 20.0, 35.0, 40.0, 50.0], dtype=input_dtype)
- actual = np.percentile(arr, 40.0, method=method)
- np.testing.assert_almost_equal(
- actual, expected_dtype.type(expected), 14)
- if method in ["inverted_cdf", "closest_observation"]:
- if input_dtype == "O":
- np.testing.assert_equal(np.asarray(actual).dtype, np.float64)
- else:
- np.testing.assert_equal(np.asarray(actual).dtype,
- np.dtype(input_dtype))
- else:
- np.testing.assert_equal(np.asarray(actual).dtype,
- np.dtype(expected_dtype))
- TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O"
- @pytest.mark.parametrize("dtype", TYPE_CODES)
- def test_lower_higher(self, dtype):
- assert_equal(np.percentile(np.arange(10, dtype=dtype), 50,
- method='lower'), 4)
- assert_equal(np.percentile(np.arange(10, dtype=dtype), 50,
- method='higher'), 5)
- @pytest.mark.parametrize("dtype", TYPE_CODES)
- def test_midpoint(self, dtype):
- assert_equal(np.percentile(np.arange(10, dtype=dtype), 51,
- method='midpoint'), 4.5)
- assert_equal(np.percentile(np.arange(9, dtype=dtype) + 1, 50,
- method='midpoint'), 5)
- assert_equal(np.percentile(np.arange(11, dtype=dtype), 51,
- method='midpoint'), 5.5)
- assert_equal(np.percentile(np.arange(11, dtype=dtype), 50,
- method='midpoint'), 5)
- @pytest.mark.parametrize("dtype", TYPE_CODES)
- def test_nearest(self, dtype):
- assert_equal(np.percentile(np.arange(10, dtype=dtype), 51,
- method='nearest'), 5)
- assert_equal(np.percentile(np.arange(10, dtype=dtype), 49,
- method='nearest'), 4)
- def test_linear_interpolation_extrapolation(self):
- arr = np.random.rand(5)
- actual = np.percentile(arr, 100)
- np.testing.assert_equal(actual, arr.max())
- actual = np.percentile(arr, 0)
- np.testing.assert_equal(actual, arr.min())
- def test_sequence(self):
- x = np.arange(8) * 0.5
- assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75])
- def test_axis(self):
- x = np.arange(12).reshape(3, 4)
- assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0])
- r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]]
- assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0)
- r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]]
- assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T)
- # ensure qth axis is always first as with np.array(old_percentile(..))
- x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6)
- assert_equal(np.percentile(x, (25, 50)).shape, (2,))
- assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,))
- assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6))
- assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6))
- assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6))
- assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5))
- assert_equal(
- np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6))
- assert_equal(np.percentile(x, (25, 50),
- method="higher").shape, (2,))
- assert_equal(np.percentile(x, (25, 50, 75),
- method="higher").shape, (3,))
- assert_equal(np.percentile(x, (25, 50), axis=0,
- method="higher").shape, (2, 4, 5, 6))
- assert_equal(np.percentile(x, (25, 50), axis=1,
- method="higher").shape, (2, 3, 5, 6))
- assert_equal(np.percentile(x, (25, 50), axis=2,
- method="higher").shape, (2, 3, 4, 6))
- assert_equal(np.percentile(x, (25, 50), axis=3,
- method="higher").shape, (2, 3, 4, 5))
- assert_equal(np.percentile(x, (25, 50, 75), axis=1,
- method="higher").shape, (3, 3, 5, 6))
- def test_scalar_q(self):
- # test for no empty dimensions for compatibility with old percentile
- x = np.arange(12).reshape(3, 4)
- assert_equal(np.percentile(x, 50), 5.5)
- assert_(np.isscalar(np.percentile(x, 50)))
- r0 = np.array([4., 5., 6., 7.])
- assert_equal(np.percentile(x, 50, axis=0), r0)
- assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape)
- r1 = np.array([1.5, 5.5, 9.5])
- assert_almost_equal(np.percentile(x, 50, axis=1), r1)
- assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape)
- out = np.empty(1)
- assert_equal(np.percentile(x, 50, out=out), 5.5)
- assert_equal(out, 5.5)
- out = np.empty(4)
- assert_equal(np.percentile(x, 50, axis=0, out=out), r0)
- assert_equal(out, r0)
- out = np.empty(3)
- assert_equal(np.percentile(x, 50, axis=1, out=out), r1)
- assert_equal(out, r1)
- # test for no empty dimensions for compatibility with old percentile
- x = np.arange(12).reshape(3, 4)
- assert_equal(np.percentile(x, 50, method='lower'), 5.)
- assert_(np.isscalar(np.percentile(x, 50)))
- r0 = np.array([4., 5., 6., 7.])
- c0 = np.percentile(x, 50, method='lower', axis=0)
- assert_equal(c0, r0)
- assert_equal(c0.shape, r0.shape)
- r1 = np.array([1., 5., 9.])
- c1 = np.percentile(x, 50, method='lower', axis=1)
- assert_almost_equal(c1, r1)
- assert_equal(c1.shape, r1.shape)
- out = np.empty((), dtype=x.dtype)
- c = np.percentile(x, 50, method='lower', out=out)
- assert_equal(c, 5)
- assert_equal(out, 5)
- out = np.empty(4, dtype=x.dtype)
- c = np.percentile(x, 50, method='lower', axis=0, out=out)
- assert_equal(c, r0)
- assert_equal(out, r0)
- out = np.empty(3, dtype=x.dtype)
- c = np.percentile(x, 50, method='lower', axis=1, out=out)
- assert_equal(c, r1)
- assert_equal(out, r1)
- def test_exception(self):
- assert_raises(ValueError, np.percentile, [1, 2], 56,
- method='foobar')
- assert_raises(ValueError, np.percentile, [1], 101)
- assert_raises(ValueError, np.percentile, [1], -1)
- assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101])
- assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1])
- def test_percentile_list(self):
- assert_equal(np.percentile([1, 2, 3], 0), 1)
- def test_percentile_out(self):
- x = np.array([1, 2, 3])
- y = np.zeros((3,))
- p = (1, 2, 3)
- np.percentile(x, p, out=y)
- assert_equal(np.percentile(x, p), y)
- x = np.array([[1, 2, 3],
- [4, 5, 6]])
- y = np.zeros((3, 3))
- np.percentile(x, p, axis=0, out=y)
- assert_equal(np.percentile(x, p, axis=0), y)
- y = np.zeros((3, 2))
- np.percentile(x, p, axis=1, out=y)
- assert_equal(np.percentile(x, p, axis=1), y)
- x = np.arange(12).reshape(3, 4)
- # q.dim > 1, float
- r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]])
- out = np.empty((2, 4))
- assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0)
- assert_equal(out, r0)
- r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]])
- out = np.empty((2, 3))
- assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1)
- assert_equal(out, r1)
- # q.dim > 1, int
- r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]])
- out = np.empty((2, 4), dtype=x.dtype)
- c = np.percentile(x, (25, 50), method='lower', axis=0, out=out)
- assert_equal(c, r0)
- assert_equal(out, r0)
- r1 = np.array([[0, 4, 8], [1, 5, 9]])
- out = np.empty((2, 3), dtype=x.dtype)
- c = np.percentile(x, (25, 50), method='lower', axis=1, out=out)
- assert_equal(c, r1)
- assert_equal(out, r1)
- def test_percentile_empty_dim(self):
- # empty dims are preserved
- d = np.arange(11 * 2).reshape(11, 1, 2, 1)
- assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1))
- assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1))
- assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1))
- assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2))
- assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2))
- assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1))
- assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1))
- assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1))
- assert_array_equal(np.percentile(d, 50, axis=2,
- method='midpoint').shape,
- (11, 1, 1))
- assert_array_equal(np.percentile(d, 50, axis=-2,
- method='midpoint').shape,
- (11, 1, 1))
- assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape,
- (2, 1, 2, 1))
- assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape,
- (2, 11, 2, 1))
- assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape,
- (2, 11, 1, 1))
- assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape,
- (2, 11, 1, 2))
- def test_percentile_no_overwrite(self):
- a = np.array([2, 3, 4, 1])
- np.percentile(a, [50], overwrite_input=False)
- assert_equal(a, np.array([2, 3, 4, 1]))
- a = np.array([2, 3, 4, 1])
- np.percentile(a, [50])
- assert_equal(a, np.array([2, 3, 4, 1]))
- def test_no_p_overwrite(self):
- p = np.linspace(0., 100., num=5)
- np.percentile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, np.linspace(0., 100., num=5))
- p = np.linspace(0., 100., num=5).tolist()
- np.percentile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, np.linspace(0., 100., num=5).tolist())
- def test_percentile_overwrite(self):
- a = np.array([2, 3, 4, 1])
- b = np.percentile(a, [50], overwrite_input=True)
- assert_equal(b, np.array([2.5]))
- b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True)
- assert_equal(b, np.array([2.5]))
- def test_extended_axis(self):
- o = np.random.normal(size=(71, 23))
- x = np.dstack([o] * 10)
- assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30))
- x = np.moveaxis(x, -1, 0)
- assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30))
- x = x.swapaxes(0, 1).copy()
- assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30))
- x = x.swapaxes(0, 1).copy()
- assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)),
- np.percentile(x, [25, 60], axis=None))
- assert_equal(np.percentile(x, [25, 60], axis=(0,)),
- np.percentile(x, [25, 60], axis=0))
- d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11))
- np.random.shuffle(d.ravel())
- assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0],
- np.percentile(d[:,:,:, 0].flatten(), 25))
- assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1],
- np.percentile(d[:,:, 1,:].flatten(), [10, 90]))
- assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2],
- np.percentile(d[:,:, 2,:].flatten(), 25))
- assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2],
- np.percentile(d[2,:,:,:].flatten(), 25))
- assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1],
- np.percentile(d[2, 1,:,:].flatten(), 25))
- assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1],
- np.percentile(d[2,:,:, 1].flatten(), 25))
- assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2],
- np.percentile(d[2,:, 2,:].flatten(), 25))
- def test_extended_axis_invalid(self):
- d = np.ones((3, 5, 7, 11))
- assert_raises(np.AxisError, np.percentile, d, axis=-5, q=25)
- assert_raises(np.AxisError, np.percentile, d, axis=(0, -5), q=25)
- assert_raises(np.AxisError, np.percentile, d, axis=4, q=25)
- assert_raises(np.AxisError, np.percentile, d, axis=(0, 4), q=25)
- # each of these refers to the same axis twice
- assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25)
- assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25)
- assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25)
- def test_keepdims(self):
- d = np.ones((3, 5, 7, 11))
- assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape,
- (1, 1, 1, 1))
- assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape,
- (1, 1, 7, 11))
- assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape,
- (1, 5, 7, 1))
- assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape,
- (3, 1, 7, 11))
- assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape,
- (1, 1, 1, 1))
- assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape,
- (1, 1, 7, 1))
- assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3),
- keepdims=True).shape, (2, 1, 1, 7, 1))
- assert_equal(np.percentile(d, [1, 7], axis=(0, 3),
- keepdims=True).shape, (2, 1, 5, 7, 1))
- @pytest.mark.parametrize('q', [7, [1, 7]])
- @pytest.mark.parametrize(
- argnames='axis',
- argvalues=[
- None,
- 1,
- (1,),
- (0, 1),
- (-3, -1),
- ]
- )
- def test_keepdims_out(self, q, axis):
- d = np.ones((3, 5, 7, 11))
- if axis is None:
- shape_out = (1,) * d.ndim
- else:
- axis_norm = normalize_axis_tuple(axis, d.ndim)
- shape_out = tuple(
- 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
- shape_out = np.shape(q) + shape_out
- out = np.empty(shape_out)
- result = np.percentile(d, q, axis=axis, keepdims=True, out=out)
- assert result is out
- assert_equal(result.shape, shape_out)
- def test_out(self):
- o = np.zeros((4,))
- d = np.ones((3, 4))
- assert_equal(np.percentile(d, 0, 0, out=o), o)
- assert_equal(np.percentile(d, 0, 0, method='nearest', out=o), o)
- o = np.zeros((3,))
- assert_equal(np.percentile(d, 1, 1, out=o), o)
- assert_equal(np.percentile(d, 1, 1, method='nearest', out=o), o)
- o = np.zeros(())
- assert_equal(np.percentile(d, 2, out=o), o)
- assert_equal(np.percentile(d, 2, method='nearest', out=o), o)
- def test_out_nan(self):
- with warnings.catch_warnings(record=True):
- warnings.filterwarnings('always', '', RuntimeWarning)
- o = np.zeros((4,))
- d = np.ones((3, 4))
- d[2, 1] = np.nan
- assert_equal(np.percentile(d, 0, 0, out=o), o)
- assert_equal(
- np.percentile(d, 0, 0, method='nearest', out=o), o)
- o = np.zeros((3,))
- assert_equal(np.percentile(d, 1, 1, out=o), o)
- assert_equal(
- np.percentile(d, 1, 1, method='nearest', out=o), o)
- o = np.zeros(())
- assert_equal(np.percentile(d, 1, out=o), o)
- assert_equal(
- np.percentile(d, 1, method='nearest', out=o), o)
- def test_nan_behavior(self):
- a = np.arange(24, dtype=float)
- a[2] = np.nan
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
- assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
- np.array([np.nan] * 2))
- a = np.arange(24, dtype=float).reshape(2, 3, 4)
- a[1, 2, 3] = np.nan
- a[1, 1, 2] = np.nan
- # no axis
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3).ndim, 0)
- # axis0 zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0)
- b[2, 3] = np.nan
- b[1, 2] = np.nan
- assert_equal(np.percentile(a, 0.3, 0), b)
- # axis0 not zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
- [0.3, 0.6], 0)
- b[:, 2, 3] = np.nan
- b[:, 1, 2] = np.nan
- assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
- # axis1 zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1)
- b[1, 3] = np.nan
- b[1, 2] = np.nan
- assert_equal(np.percentile(a, 0.3, 1), b)
- # axis1 not zerod
- b = np.percentile(
- np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
- b[:, 1, 3] = np.nan
- b[:, 1, 2] = np.nan
- assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
- # axis02 zerod
- b = np.percentile(
- np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
- b[1] = np.nan
- b[2] = np.nan
- assert_equal(np.percentile(a, 0.3, (0, 2)), b)
- # axis02 not zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
- [0.3, 0.6], (0, 2))
- b[:, 1] = np.nan
- b[:, 2] = np.nan
- assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
- # axis02 not zerod with method='nearest'
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
- [0.3, 0.6], (0, 2), method='nearest')
- b[:, 1] = np.nan
- b[:, 2] = np.nan
- assert_equal(np.percentile(
- a, [0.3, 0.6], (0, 2), method='nearest'), b)
- def test_nan_q(self):
- # GH18830
- with pytest.raises(ValueError, match="Percentiles must be in"):
- np.percentile([1, 2, 3, 4.0], np.nan)
- with pytest.raises(ValueError, match="Percentiles must be in"):
- np.percentile([1, 2, 3, 4.0], [np.nan])
- q = np.linspace(1.0, 99.0, 16)
- q[0] = np.nan
- with pytest.raises(ValueError, match="Percentiles must be in"):
- np.percentile([1, 2, 3, 4.0], q)
- class TestQuantile:
- # most of this is already tested by TestPercentile
- def test_max_ulp(self):
- x = [0.0, 0.2, 0.4]
- a = np.quantile(x, 0.45)
- # The default linear method would result in 0 + 0.2 * (0.45/2) = 0.18.
- # 0.18 is not exactly representable and the formula leads to a 1 ULP
- # different result. Ensure it is this exact within 1 ULP, see gh-20331.
- np.testing.assert_array_max_ulp(a, 0.18, maxulp=1)
- def test_basic(self):
- x = np.arange(8) * 0.5
- assert_equal(np.quantile(x, 0), 0.)
- assert_equal(np.quantile(x, 1), 3.5)
- assert_equal(np.quantile(x, 0.5), 1.75)
- @pytest.mark.xfail(reason="See gh-19154")
- def test_correct_quantile_value(self):
- a = np.array([True])
- tf_quant = np.quantile(True, False)
- assert_equal(tf_quant, a[0])
- assert_equal(type(tf_quant), a.dtype)
- a = np.array([False, True, True])
- quant_res = np.quantile(a, a)
- assert_array_equal(quant_res, a)
- assert_equal(quant_res.dtype, a.dtype)
- def test_fraction(self):
- # fractional input, integral quantile
- x = [Fraction(i, 2) for i in range(8)]
- q = np.quantile(x, 0)
- assert_equal(q, 0)
- assert_equal(type(q), Fraction)
- q = np.quantile(x, 1)
- assert_equal(q, Fraction(7, 2))
- assert_equal(type(q), Fraction)
- q = np.quantile(x, Fraction(1, 2))
- assert_equal(q, Fraction(7, 4))
- assert_equal(type(q), Fraction)
- q = np.quantile(x, [Fraction(1, 2)])
- assert_equal(q, np.array([Fraction(7, 4)]))
- assert_equal(type(q), np.ndarray)
- q = np.quantile(x, [[Fraction(1, 2)]])
- assert_equal(q, np.array([[Fraction(7, 4)]]))
- assert_equal(type(q), np.ndarray)
- # repeat with integral input but fractional quantile
- x = np.arange(8)
- assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2))
- def test_no_p_overwrite(self):
- # this is worth retesting, because quantile does not make a copy
- p0 = np.array([0, 0.75, 0.25, 0.5, 1.0])
- p = p0.copy()
- np.quantile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, p0)
- p0 = p0.tolist()
- p = p.tolist()
- np.quantile(np.arange(100.), p, method="midpoint")
- assert_array_equal(p, p0)
- @pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
- def test_quantile_preserve_int_type(self, dtype):
- res = np.quantile(np.array([1, 2], dtype=dtype), [0.5],
- method="nearest")
- assert res.dtype == dtype
- @pytest.mark.parametrize("method",
- ['inverted_cdf', 'averaged_inverted_cdf', 'closest_observation',
- 'interpolated_inverted_cdf', 'hazen', 'weibull', 'linear',
- 'median_unbiased', 'normal_unbiased',
- 'nearest', 'lower', 'higher', 'midpoint'])
- def test_quantile_monotonic(self, method):
- # GH 14685
- # test that the return value of quantile is monotonic if p0 is ordered
- # Also tests that the boundary values are not mishandled.
- p0 = np.linspace(0, 1, 101)
- quantile = np.quantile(np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9,
- 8, 8, 7]) * 0.1, p0, method=method)
- assert_equal(np.sort(quantile), quantile)
- # Also test one where the number of data points is clearly divisible:
- quantile = np.quantile([0., 1., 2., 3.], p0, method=method)
- assert_equal(np.sort(quantile), quantile)
- @hypothesis.given(
- arr=arrays(dtype=np.float64,
- shape=st.integers(min_value=3, max_value=1000),
- elements=st.floats(allow_infinity=False, allow_nan=False,
- min_value=-1e300, max_value=1e300)))
- def test_quantile_monotonic_hypo(self, arr):
- p0 = np.arange(0, 1, 0.01)
- quantile = np.quantile(arr, p0)
- assert_equal(np.sort(quantile), quantile)
- def test_quantile_scalar_nan(self):
- a = np.array([[10., 7., 4.], [3., 2., 1.]])
- a[0][1] = np.nan
- actual = np.quantile(a, 0.5)
- assert np.isscalar(actual)
- assert_equal(np.quantile(a, 0.5), np.nan)
- class TestLerp:
- @hypothesis.given(t0=st.floats(allow_nan=False, allow_infinity=False,
- min_value=0, max_value=1),
- t1=st.floats(allow_nan=False, allow_infinity=False,
- min_value=0, max_value=1),
- a = st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300),
- b = st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300))
- def test_linear_interpolation_formula_monotonic(self, t0, t1, a, b):
- l0 = nfb._lerp(a, b, t0)
- l1 = nfb._lerp(a, b, t1)
- if t0 == t1 or a == b:
- assert l0 == l1 # uninteresting
- elif (t0 < t1) == (a < b):
- assert l0 <= l1
- else:
- assert l0 >= l1
- @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False,
- min_value=0, max_value=1),
- a=st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300),
- b=st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300))
- def test_linear_interpolation_formula_bounded(self, t, a, b):
- if a <= b:
- assert a <= nfb._lerp(a, b, t) <= b
- else:
- assert b <= nfb._lerp(a, b, t) <= a
- @hypothesis.given(t=st.floats(allow_nan=False, allow_infinity=False,
- min_value=0, max_value=1),
- a=st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300),
- b=st.floats(allow_nan=False, allow_infinity=False,
- min_value=-1e300, max_value=1e300))
- def test_linear_interpolation_formula_symmetric(self, t, a, b):
- # double subtraction is needed to remove the extra precision of t < 0.5
- left = nfb._lerp(a, b, 1 - (1 - t))
- right = nfb._lerp(b, a, 1 - t)
- assert_allclose(left, right)
- def test_linear_interpolation_formula_0d_inputs(self):
- a = np.array(2)
- b = np.array(5)
- t = np.array(0.2)
- assert nfb._lerp(a, b, t) == 2.6
- class TestMedian:
- def test_basic(self):
- a0 = np.array(1)
- a1 = np.arange(2)
- a2 = np.arange(6).reshape(2, 3)
- assert_equal(np.median(a0), 1)
- assert_allclose(np.median(a1), 0.5)
- assert_allclose(np.median(a2), 2.5)
- assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5])
- assert_equal(np.median(a2, axis=1), [1, 4])
- assert_allclose(np.median(a2, axis=None), 2.5)
- a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775])
- assert_almost_equal((a[1] + a[3]) / 2., np.median(a))
- a = np.array([0.0463301, 0.0444502, 0.141249])
- assert_equal(a[0], np.median(a))
- a = np.array([0.0444502, 0.141249, 0.0463301])
- assert_equal(a[-1], np.median(a))
- # check array scalar result
- assert_equal(np.median(a).ndim, 0)
- a[1] = np.nan
- assert_equal(np.median(a).ndim, 0)
- def test_axis_keyword(self):
- a3 = np.array([[2, 3],
- [0, 1],
- [6, 7],
- [4, 5]])
- for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]:
- orig = a.copy()
- np.median(a, axis=None)
- for ax in range(a.ndim):
- np.median(a, axis=ax)
- assert_array_equal(a, orig)
- assert_allclose(np.median(a3, axis=0), [3, 4])
- assert_allclose(np.median(a3.T, axis=1), [3, 4])
- assert_allclose(np.median(a3), 3.5)
- assert_allclose(np.median(a3, axis=None), 3.5)
- assert_allclose(np.median(a3.T), 3.5)
- def test_overwrite_keyword(self):
- a3 = np.array([[2, 3],
- [0, 1],
- [6, 7],
- [4, 5]])
- a0 = np.array(1)
- a1 = np.arange(2)
- a2 = np.arange(6).reshape(2, 3)
- assert_allclose(np.median(a0.copy(), overwrite_input=True), 1)
- assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5)
- assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5)
- assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0),
- [1.5, 2.5, 3.5])
- assert_allclose(
- np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4])
- assert_allclose(
- np.median(a2.copy(), overwrite_input=True, axis=None), 2.5)
- assert_allclose(
- np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4])
- assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1),
- [3, 4])
- a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5))
- np.random.shuffle(a4.ravel())
- assert_allclose(np.median(a4, axis=None),
- np.median(a4.copy(), axis=None, overwrite_input=True))
- assert_allclose(np.median(a4, axis=0),
- np.median(a4.copy(), axis=0, overwrite_input=True))
- assert_allclose(np.median(a4, axis=1),
- np.median(a4.copy(), axis=1, overwrite_input=True))
- assert_allclose(np.median(a4, axis=2),
- np.median(a4.copy(), axis=2, overwrite_input=True))
- def test_array_like(self):
- x = [1, 2, 3]
- assert_almost_equal(np.median(x), 2)
- x2 = [x]
- assert_almost_equal(np.median(x2), 2)
- assert_allclose(np.median(x2, axis=0), x)
- def test_subclass(self):
- # gh-3846
- class MySubClass(np.ndarray):
- def __new__(cls, input_array, info=None):
- obj = np.asarray(input_array).view(cls)
- obj.info = info
- return obj
- def mean(self, axis=None, dtype=None, out=None):
- return -7
- a = MySubClass([1, 2, 3])
- assert_equal(np.median(a), -7)
- @pytest.mark.parametrize('arr',
- ([1., 2., 3.], [1., np.nan, 3.], np.nan, 0.))
- def test_subclass2(self, arr):
- """Check that we return subclasses, even if a NaN scalar."""
- class MySubclass(np.ndarray):
- pass
- m = np.median(np.array(arr).view(MySubclass))
- assert isinstance(m, MySubclass)
- def test_out(self):
- o = np.zeros((4,))
- d = np.ones((3, 4))
- assert_equal(np.median(d, 0, out=o), o)
- o = np.zeros((3,))
- assert_equal(np.median(d, 1, out=o), o)
- o = np.zeros(())
- assert_equal(np.median(d, out=o), o)
- def test_out_nan(self):
- with warnings.catch_warnings(record=True):
- warnings.filterwarnings('always', '', RuntimeWarning)
- o = np.zeros((4,))
- d = np.ones((3, 4))
- d[2, 1] = np.nan
- assert_equal(np.median(d, 0, out=o), o)
- o = np.zeros((3,))
- assert_equal(np.median(d, 1, out=o), o)
- o = np.zeros(())
- assert_equal(np.median(d, out=o), o)
- def test_nan_behavior(self):
- a = np.arange(24, dtype=float)
- a[2] = np.nan
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a, axis=0), np.nan)
- a = np.arange(24, dtype=float).reshape(2, 3, 4)
- a[1, 2, 3] = np.nan
- a[1, 1, 2] = np.nan
- # no axis
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a).ndim, 0)
- # axis0
- b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0)
- b[2, 3] = np.nan
- b[1, 2] = np.nan
- assert_equal(np.median(a, 0), b)
- # axis1
- b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1)
- b[1, 3] = np.nan
- b[1, 2] = np.nan
- assert_equal(np.median(a, 1), b)
- # axis02
- b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2))
- b[1] = np.nan
- b[2] = np.nan
- assert_equal(np.median(a, (0, 2)), b)
- @pytest.mark.skipif(IS_WASM, reason="fp errors don't work correctly")
- def test_empty(self):
- # mean(empty array) emits two warnings: empty slice and divide by 0
- a = np.array([], dtype=float)
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_(w[0].category is RuntimeWarning)
- assert_equal(len(w), 2)
- # multiple dimensions
- a = np.array([], dtype=float, ndmin=3)
- # no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_(w[0].category is RuntimeWarning)
- # axis 0 and 1
- b = np.array([], dtype=float, ndmin=2)
- assert_equal(np.median(a, axis=0), b)
- assert_equal(np.median(a, axis=1), b)
- # axis 2
- b = np.array(np.nan, dtype=float, ndmin=2)
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, axis=2), b)
- assert_(w[0].category is RuntimeWarning)
- def test_object(self):
- o = np.arange(7.)
- assert_(type(np.median(o.astype(object))), float)
- o[2] = np.nan
- assert_(type(np.median(o.astype(object))), float)
- def test_extended_axis(self):
- o = np.random.normal(size=(71, 23))
- x = np.dstack([o] * 10)
- assert_equal(np.median(x, axis=(0, 1)), np.median(o))
- x = np.moveaxis(x, -1, 0)
- assert_equal(np.median(x, axis=(-2, -1)), np.median(o))
- x = x.swapaxes(0, 1).copy()
- assert_equal(np.median(x, axis=(0, -1)), np.median(o))
- assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None))
- assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0))
- assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1))
- d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11))
- np.random.shuffle(d.ravel())
- assert_equal(np.median(d, axis=(0, 1, 2))[0],
- np.median(d[:,:,:, 0].flatten()))
- assert_equal(np.median(d, axis=(0, 1, 3))[1],
- np.median(d[:,:, 1,:].flatten()))
- assert_equal(np.median(d, axis=(3, 1, -4))[2],
- np.median(d[:,:, 2,:].flatten()))
- assert_equal(np.median(d, axis=(3, 1, 2))[2],
- np.median(d[2,:,:,:].flatten()))
- assert_equal(np.median(d, axis=(3, 2))[2, 1],
- np.median(d[2, 1,:,:].flatten()))
- assert_equal(np.median(d, axis=(1, -2))[2, 1],
- np.median(d[2,:,:, 1].flatten()))
- assert_equal(np.median(d, axis=(1, 3))[2, 2],
- np.median(d[2,:, 2,:].flatten()))
- def test_extended_axis_invalid(self):
- d = np.ones((3, 5, 7, 11))
- assert_raises(np.AxisError, np.median, d, axis=-5)
- assert_raises(np.AxisError, np.median, d, axis=(0, -5))
- assert_raises(np.AxisError, np.median, d, axis=4)
- assert_raises(np.AxisError, np.median, d, axis=(0, 4))
- assert_raises(ValueError, np.median, d, axis=(1, 1))
- def test_keepdims(self):
- d = np.ones((3, 5, 7, 11))
- assert_equal(np.median(d, axis=None, keepdims=True).shape,
- (1, 1, 1, 1))
- assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape,
- (1, 1, 7, 11))
- assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape,
- (1, 5, 7, 1))
- assert_equal(np.median(d, axis=(1,), keepdims=True).shape,
- (3, 1, 7, 11))
- assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape,
- (1, 1, 1, 1))
- assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape,
- (1, 1, 7, 1))
- @pytest.mark.parametrize(
- argnames='axis',
- argvalues=[
- None,
- 1,
- (1, ),
- (0, 1),
- (-3, -1),
- ]
- )
- def test_keepdims_out(self, axis):
- d = np.ones((3, 5, 7, 11))
- if axis is None:
- shape_out = (1,) * d.ndim
- else:
- axis_norm = normalize_axis_tuple(axis, d.ndim)
- shape_out = tuple(
- 1 if i in axis_norm else d.shape[i] for i in range(d.ndim))
- out = np.empty(shape_out)
- result = np.median(d, axis=axis, keepdims=True, out=out)
- assert result is out
- assert_equal(result.shape, shape_out)
- class TestAdd_newdoc_ufunc:
- def test_ufunc_arg(self):
- assert_raises(TypeError, add_newdoc_ufunc, 2, "blah")
- assert_raises(ValueError, add_newdoc_ufunc, np.add, "blah")
- def test_string_arg(self):
- assert_raises(TypeError, add_newdoc_ufunc, np.add, 3)
- class TestAdd_newdoc:
- @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
- @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc")
- def test_add_doc(self):
- # test that np.add_newdoc did attach a docstring successfully:
- tgt = "Current flat index into the array."
- assert_equal(np.core.flatiter.index.__doc__[:len(tgt)], tgt)
- assert_(len(np.core.ufunc.identity.__doc__) > 300)
- assert_(len(np.lib.index_tricks.mgrid.__doc__) > 300)
- @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
- def test_errors_are_ignored(self):
- prev_doc = np.core.flatiter.index.__doc__
- # nothing changed, but error ignored, this should probably
- # give a warning (or even error) in the future.
- np.add_newdoc("numpy.core", "flatiter", ("index", "bad docstring"))
- assert prev_doc == np.core.flatiter.index.__doc__
- class TestAddDocstring():
- # Test should possibly be moved, but it also fits to be close to
- # the newdoc tests...
- @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
- @pytest.mark.skipif(IS_PYPY, reason="PyPy does not modify tp_doc")
- def test_add_same_docstring(self):
- # test for attributes (which are C-level defined)
- np.add_docstring(np.ndarray.flat, np.ndarray.flat.__doc__)
- # And typical functions:
- def func():
- """docstring"""
- return
- np.add_docstring(func, func.__doc__)
- @pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
- def test_different_docstring_fails(self):
- # test for attributes (which are C-level defined)
- with assert_raises(RuntimeError):
- np.add_docstring(np.ndarray.flat, "different docstring")
- # And typical functions:
- def func():
- """docstring"""
- return
- with assert_raises(RuntimeError):
- np.add_docstring(func, "different docstring")
- class TestSortComplex:
- @pytest.mark.parametrize("type_in, type_out", [
- ('l', 'D'),
- ('h', 'F'),
- ('H', 'F'),
- ('b', 'F'),
- ('B', 'F'),
- ('g', 'G'),
- ])
- def test_sort_real(self, type_in, type_out):
- # sort_complex() type casting for real input types
- a = np.array([5, 3, 6, 2, 1], dtype=type_in)
- actual = np.sort_complex(a)
- expected = np.sort(a).astype(type_out)
- assert_equal(actual, expected)
- assert_equal(actual.dtype, expected.dtype)
- def test_sort_complex(self):
- # sort_complex() handling of complex input
- a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D')
- expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D')
- actual = np.sort_complex(a)
- assert_equal(actual, expected)
- assert_equal(actual.dtype, expected.dtype)
|