test_pocketfft.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. import numpy as np
  2. import pytest
  3. from numpy.random import random
  4. from numpy.testing import (
  5. assert_array_equal, assert_raises, assert_allclose, IS_WASM
  6. )
  7. import threading
  8. import queue
  9. def fft1(x):
  10. L = len(x)
  11. phase = -2j * np.pi * (np.arange(L) / L)
  12. phase = np.arange(L).reshape(-1, 1) * phase
  13. return np.sum(x*np.exp(phase), axis=1)
  14. class TestFFTShift:
  15. def test_fft_n(self):
  16. assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
  17. class TestFFT1D:
  18. def test_identity(self):
  19. maxlen = 512
  20. x = random(maxlen) + 1j*random(maxlen)
  21. xr = random(maxlen)
  22. for i in range(1, maxlen):
  23. assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
  24. atol=1e-12)
  25. assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i),
  26. xr[0:i], atol=1e-12)
  27. def test_fft(self):
  28. x = random(30) + 1j*random(30)
  29. assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
  30. assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=1e-6)
  31. assert_allclose(fft1(x) / np.sqrt(30),
  32. np.fft.fft(x, norm="ortho"), atol=1e-6)
  33. assert_allclose(fft1(x) / 30.,
  34. np.fft.fft(x, norm="forward"), atol=1e-6)
  35. @pytest.mark.parametrize('norm', (None, 'backward', 'ortho', 'forward'))
  36. def test_ifft(self, norm):
  37. x = random(30) + 1j*random(30)
  38. assert_allclose(
  39. x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
  40. atol=1e-6)
  41. # Ensure we get the correct error message
  42. with pytest.raises(ValueError,
  43. match='Invalid number of FFT data points'):
  44. np.fft.ifft([], norm=norm)
  45. def test_fft2(self):
  46. x = random((30, 20)) + 1j*random((30, 20))
  47. assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
  48. np.fft.fft2(x), atol=1e-6)
  49. assert_allclose(np.fft.fft2(x),
  50. np.fft.fft2(x, norm="backward"), atol=1e-6)
  51. assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
  52. np.fft.fft2(x, norm="ortho"), atol=1e-6)
  53. assert_allclose(np.fft.fft2(x) / (30. * 20.),
  54. np.fft.fft2(x, norm="forward"), atol=1e-6)
  55. def test_ifft2(self):
  56. x = random((30, 20)) + 1j*random((30, 20))
  57. assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
  58. np.fft.ifft2(x), atol=1e-6)
  59. assert_allclose(np.fft.ifft2(x),
  60. np.fft.ifft2(x, norm="backward"), atol=1e-6)
  61. assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
  62. np.fft.ifft2(x, norm="ortho"), atol=1e-6)
  63. assert_allclose(np.fft.ifft2(x) * (30. * 20.),
  64. np.fft.ifft2(x, norm="forward"), atol=1e-6)
  65. def test_fftn(self):
  66. x = random((30, 20, 10)) + 1j*random((30, 20, 10))
  67. assert_allclose(
  68. np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
  69. np.fft.fftn(x), atol=1e-6)
  70. assert_allclose(np.fft.fftn(x),
  71. np.fft.fftn(x, norm="backward"), atol=1e-6)
  72. assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
  73. np.fft.fftn(x, norm="ortho"), atol=1e-6)
  74. assert_allclose(np.fft.fftn(x) / (30. * 20. * 10.),
  75. np.fft.fftn(x, norm="forward"), atol=1e-6)
  76. def test_ifftn(self):
  77. x = random((30, 20, 10)) + 1j*random((30, 20, 10))
  78. assert_allclose(
  79. np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
  80. np.fft.ifftn(x), atol=1e-6)
  81. assert_allclose(np.fft.ifftn(x),
  82. np.fft.ifftn(x, norm="backward"), atol=1e-6)
  83. assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
  84. np.fft.ifftn(x, norm="ortho"), atol=1e-6)
  85. assert_allclose(np.fft.ifftn(x) * (30. * 20. * 10.),
  86. np.fft.ifftn(x, norm="forward"), atol=1e-6)
  87. def test_rfft(self):
  88. x = random(30)
  89. for n in [x.size, 2*x.size]:
  90. for norm in [None, 'backward', 'ortho', 'forward']:
  91. assert_allclose(
  92. np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
  93. np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
  94. assert_allclose(
  95. np.fft.rfft(x, n=n),
  96. np.fft.rfft(x, n=n, norm="backward"), atol=1e-6)
  97. assert_allclose(
  98. np.fft.rfft(x, n=n) / np.sqrt(n),
  99. np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)
  100. assert_allclose(
  101. np.fft.rfft(x, n=n) / n,
  102. np.fft.rfft(x, n=n, norm="forward"), atol=1e-6)
  103. def test_irfft(self):
  104. x = random(30)
  105. assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
  106. assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="backward"),
  107. norm="backward"), atol=1e-6)
  108. assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="ortho"),
  109. norm="ortho"), atol=1e-6)
  110. assert_allclose(x, np.fft.irfft(np.fft.rfft(x, norm="forward"),
  111. norm="forward"), atol=1e-6)
  112. def test_rfft2(self):
  113. x = random((30, 20))
  114. assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
  115. assert_allclose(np.fft.rfft2(x),
  116. np.fft.rfft2(x, norm="backward"), atol=1e-6)
  117. assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
  118. np.fft.rfft2(x, norm="ortho"), atol=1e-6)
  119. assert_allclose(np.fft.rfft2(x) / (30. * 20.),
  120. np.fft.rfft2(x, norm="forward"), atol=1e-6)
  121. def test_irfft2(self):
  122. x = random((30, 20))
  123. assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
  124. assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="backward"),
  125. norm="backward"), atol=1e-6)
  126. assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"),
  127. norm="ortho"), atol=1e-6)
  128. assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"),
  129. norm="forward"), atol=1e-6)
  130. def test_rfftn(self):
  131. x = random((30, 20, 10))
  132. assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
  133. assert_allclose(np.fft.rfftn(x),
  134. np.fft.rfftn(x, norm="backward"), atol=1e-6)
  135. assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
  136. np.fft.rfftn(x, norm="ortho"), atol=1e-6)
  137. assert_allclose(np.fft.rfftn(x) / (30. * 20. * 10.),
  138. np.fft.rfftn(x, norm="forward"), atol=1e-6)
  139. def test_irfftn(self):
  140. x = random((30, 20, 10))
  141. assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
  142. assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="backward"),
  143. norm="backward"), atol=1e-6)
  144. assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
  145. norm="ortho"), atol=1e-6)
  146. assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"),
  147. norm="forward"), atol=1e-6)
  148. def test_hfft(self):
  149. x = random(14) + 1j*random(14)
  150. x_herm = np.concatenate((random(1), x, random(1)))
  151. x = np.concatenate((x_herm, x[::-1].conj()))
  152. assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
  153. assert_allclose(np.fft.hfft(x_herm),
  154. np.fft.hfft(x_herm, norm="backward"), atol=1e-6)
  155. assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
  156. np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)
  157. assert_allclose(np.fft.hfft(x_herm) / 30.,
  158. np.fft.hfft(x_herm, norm="forward"), atol=1e-6)
  159. def test_ihfft(self):
  160. x = random(14) + 1j*random(14)
  161. x_herm = np.concatenate((random(1), x, random(1)))
  162. x = np.concatenate((x_herm, x[::-1].conj()))
  163. assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
  164. assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
  165. norm="backward"), norm="backward"), atol=1e-6)
  166. assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
  167. norm="ortho"), norm="ortho"), atol=1e-6)
  168. assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm,
  169. norm="forward"), norm="forward"), atol=1e-6)
  170. @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
  171. np.fft.rfftn, np.fft.irfftn])
  172. def test_axes(self, op):
  173. x = random((30, 20, 10))
  174. axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
  175. for a in axes:
  176. op_tr = op(np.transpose(x, a))
  177. tr_op = np.transpose(op(x, axes=a), a)
  178. assert_allclose(op_tr, tr_op, atol=1e-6)
  179. def test_all_1d_norm_preserving(self):
  180. # verify that round-trip transforms are norm-preserving
  181. x = random(30)
  182. x_norm = np.linalg.norm(x)
  183. n = x.size * 2
  184. func_pairs = [(np.fft.fft, np.fft.ifft),
  185. (np.fft.rfft, np.fft.irfft),
  186. # hfft: order so the first function takes x.size samples
  187. # (necessary for comparison to x_norm above)
  188. (np.fft.ihfft, np.fft.hfft),
  189. ]
  190. for forw, back in func_pairs:
  191. for n in [x.size, 2*x.size]:
  192. for norm in [None, 'backward', 'ortho', 'forward']:
  193. tmp = forw(x, n=n, norm=norm)
  194. tmp = back(tmp, n=n, norm=norm)
  195. assert_allclose(x_norm,
  196. np.linalg.norm(tmp), atol=1e-6)
  197. @pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
  198. np.longdouble])
  199. def test_dtypes(self, dtype):
  200. # make sure that all input precisions are accepted and internally
  201. # converted to 64bit
  202. x = random(30).astype(dtype)
  203. assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
  204. assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)
  205. @pytest.mark.parametrize(
  206. "dtype",
  207. [np.float32, np.float64, np.complex64, np.complex128])
  208. @pytest.mark.parametrize("order", ["F", 'non-contiguous'])
  209. @pytest.mark.parametrize(
  210. "fft",
  211. [np.fft.fft, np.fft.fft2, np.fft.fftn,
  212. np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
  213. def test_fft_with_order(dtype, order, fft):
  214. # Check that FFT/IFFT produces identical results for C, Fortran and
  215. # non contiguous arrays
  216. rng = np.random.RandomState(42)
  217. X = rng.rand(8, 7, 13).astype(dtype, copy=False)
  218. # See discussion in pull/14178
  219. _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
  220. if order == 'F':
  221. Y = np.asfortranarray(X)
  222. else:
  223. # Make a non contiguous array
  224. Y = X[::-1]
  225. X = np.ascontiguousarray(X[::-1])
  226. if fft.__name__.endswith('fft'):
  227. for axis in range(3):
  228. X_res = fft(X, axis=axis)
  229. Y_res = fft(Y, axis=axis)
  230. assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
  231. elif fft.__name__.endswith(('fft2', 'fftn')):
  232. axes = [(0, 1), (1, 2), (0, 2)]
  233. if fft.__name__.endswith('fftn'):
  234. axes.extend([(0,), (1,), (2,), None])
  235. for ax in axes:
  236. X_res = fft(X, axes=ax)
  237. Y_res = fft(Y, axes=ax)
  238. assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
  239. else:
  240. raise ValueError()
  241. @pytest.mark.skipif(IS_WASM, reason="Cannot start thread")
  242. class TestFFTThreadSafe:
  243. threads = 16
  244. input_shape = (800, 200)
  245. def _test_mtsame(self, func, *args):
  246. def worker(args, q):
  247. q.put(func(*args))
  248. q = queue.Queue()
  249. expected = func(*args)
  250. # Spin off a bunch of threads to call the same function simultaneously
  251. t = [threading.Thread(target=worker, args=(args, q))
  252. for i in range(self.threads)]
  253. [x.start() for x in t]
  254. [x.join() for x in t]
  255. # Make sure all threads returned the correct value
  256. for i in range(self.threads):
  257. assert_array_equal(q.get(timeout=5), expected,
  258. 'Function returned wrong value in multithreaded context')
  259. def test_fft(self):
  260. a = np.ones(self.input_shape) * 1+0j
  261. self._test_mtsame(np.fft.fft, a)
  262. def test_ifft(self):
  263. a = np.ones(self.input_shape) * 1+0j
  264. self._test_mtsame(np.fft.ifft, a)
  265. def test_rfft(self):
  266. a = np.ones(self.input_shape)
  267. self._test_mtsame(np.fft.rfft, a)
  268. def test_irfft(self):
  269. a = np.ones(self.input_shape) * 1+0j
  270. self._test_mtsame(np.fft.irfft, a)