123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642 |
- import inspect
- import sys
- import os
- import tempfile
- from io import StringIO
- from unittest import mock
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_raises, assert_raises_regex)
- from numpy.core.overrides import (
- _get_implementing_args, array_function_dispatch,
- verify_matching_signatures, ARRAY_FUNCTION_ENABLED)
- from numpy.compat import pickle
- import pytest
- requires_array_function = pytest.mark.skipif(
- not ARRAY_FUNCTION_ENABLED,
- reason="__array_function__ dispatch not enabled.")
- def _return_not_implemented(self, *args, **kwargs):
- return NotImplemented
- # need to define this at the top level to test pickling
- @array_function_dispatch(lambda array: (array,))
- def dispatched_one_arg(array):
- """Docstring."""
- return 'original'
- @array_function_dispatch(lambda array1, array2: (array1, array2))
- def dispatched_two_arg(array1, array2):
- """Docstring."""
- return 'original'
- class TestGetImplementingArgs:
- def test_ndarray(self):
- array = np.array(1)
- args = _get_implementing_args([array])
- assert_equal(list(args), [array])
- args = _get_implementing_args([array, array])
- assert_equal(list(args), [array])
- args = _get_implementing_args([array, 1])
- assert_equal(list(args), [array])
- args = _get_implementing_args([1, array])
- assert_equal(list(args), [array])
- def test_ndarray_subclasses(self):
- class OverrideSub(np.ndarray):
- __array_function__ = _return_not_implemented
- class NoOverrideSub(np.ndarray):
- pass
- array = np.array(1).view(np.ndarray)
- override_sub = np.array(1).view(OverrideSub)
- no_override_sub = np.array(1).view(NoOverrideSub)
- args = _get_implementing_args([array, override_sub])
- assert_equal(list(args), [override_sub, array])
- args = _get_implementing_args([array, no_override_sub])
- assert_equal(list(args), [no_override_sub, array])
- args = _get_implementing_args(
- [override_sub, no_override_sub])
- assert_equal(list(args), [override_sub, no_override_sub])
- def test_ndarray_and_duck_array(self):
- class Other:
- __array_function__ = _return_not_implemented
- array = np.array(1)
- other = Other()
- args = _get_implementing_args([other, array])
- assert_equal(list(args), [other, array])
- args = _get_implementing_args([array, other])
- assert_equal(list(args), [array, other])
- def test_ndarray_subclass_and_duck_array(self):
- class OverrideSub(np.ndarray):
- __array_function__ = _return_not_implemented
- class Other:
- __array_function__ = _return_not_implemented
- array = np.array(1)
- subarray = np.array(1).view(OverrideSub)
- other = Other()
- assert_equal(_get_implementing_args([array, subarray, other]),
- [subarray, array, other])
- assert_equal(_get_implementing_args([array, other, subarray]),
- [subarray, array, other])
- def test_many_duck_arrays(self):
- class A:
- __array_function__ = _return_not_implemented
- class B(A):
- __array_function__ = _return_not_implemented
- class C(A):
- __array_function__ = _return_not_implemented
- class D:
- __array_function__ = _return_not_implemented
- a = A()
- b = B()
- c = C()
- d = D()
- assert_equal(_get_implementing_args([1]), [])
- assert_equal(_get_implementing_args([a]), [a])
- assert_equal(_get_implementing_args([a, 1]), [a])
- assert_equal(_get_implementing_args([a, a, a]), [a])
- assert_equal(_get_implementing_args([a, d, a]), [a, d])
- assert_equal(_get_implementing_args([a, b]), [b, a])
- assert_equal(_get_implementing_args([b, a]), [b, a])
- assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
- assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
- def test_too_many_duck_arrays(self):
- namespace = dict(__array_function__=_return_not_implemented)
- types = [type('A' + str(i), (object,), namespace) for i in range(33)]
- relevant_args = [t() for t in types]
- actual = _get_implementing_args(relevant_args[:32])
- assert_equal(actual, relevant_args[:32])
- with assert_raises_regex(TypeError, 'distinct argument types'):
- _get_implementing_args(relevant_args)
- class TestNDArrayArrayFunction:
- @requires_array_function
- def test_method(self):
- class Other:
- __array_function__ = _return_not_implemented
- class NoOverrideSub(np.ndarray):
- pass
- class OverrideSub(np.ndarray):
- __array_function__ = _return_not_implemented
- array = np.array([1])
- other = Other()
- no_override_sub = array.view(NoOverrideSub)
- override_sub = array.view(OverrideSub)
- result = array.__array_function__(func=dispatched_two_arg,
- types=(np.ndarray,),
- args=(array, 1.), kwargs={})
- assert_equal(result, 'original')
- result = array.__array_function__(func=dispatched_two_arg,
- types=(np.ndarray, Other),
- args=(array, other), kwargs={})
- assert_(result is NotImplemented)
- result = array.__array_function__(func=dispatched_two_arg,
- types=(np.ndarray, NoOverrideSub),
- args=(array, no_override_sub),
- kwargs={})
- assert_equal(result, 'original')
- result = array.__array_function__(func=dispatched_two_arg,
- types=(np.ndarray, OverrideSub),
- args=(array, override_sub),
- kwargs={})
- assert_equal(result, 'original')
- with assert_raises_regex(TypeError, 'no implementation found'):
- np.concatenate((array, other))
- expected = np.concatenate((array, array))
- result = np.concatenate((array, no_override_sub))
- assert_equal(result, expected.view(NoOverrideSub))
- result = np.concatenate((array, override_sub))
- assert_equal(result, expected.view(OverrideSub))
- def test_no_wrapper(self):
- # This shouldn't happen unless a user intentionally calls
- # __array_function__ with invalid arguments, but check that we raise
- # an appropriate error all the same.
- array = np.array(1)
- func = lambda x: x
- with assert_raises_regex(AttributeError, '_implementation'):
- array.__array_function__(func=func, types=(np.ndarray,),
- args=(array,), kwargs={})
- @requires_array_function
- class TestArrayFunctionDispatch:
- def test_pickle(self):
- for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
- roundtripped = pickle.loads(
- pickle.dumps(dispatched_one_arg, protocol=proto))
- assert_(roundtripped is dispatched_one_arg)
- def test_name_and_docstring(self):
- assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
- if sys.flags.optimize < 2:
- assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
- def test_interface(self):
- class MyArray:
- def __array_function__(self, func, types, args, kwargs):
- return (self, func, types, args, kwargs)
- original = MyArray()
- (obj, func, types, args, kwargs) = dispatched_one_arg(original)
- assert_(obj is original)
- assert_(func is dispatched_one_arg)
- assert_equal(set(types), {MyArray})
- # assert_equal uses the overloaded np.iscomplexobj() internally
- assert_(args == (original,))
- assert_equal(kwargs, {})
- def test_not_implemented(self):
- class MyArray:
- def __array_function__(self, func, types, args, kwargs):
- return NotImplemented
- array = MyArray()
- with assert_raises_regex(TypeError, 'no implementation found'):
- dispatched_one_arg(array)
- @requires_array_function
- class TestVerifyMatchingSignatures:
- def test_verify_matching_signatures(self):
- verify_matching_signatures(lambda x: 0, lambda x: 0)
- verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
- verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
- with assert_raises(RuntimeError):
- verify_matching_signatures(lambda a: 0, lambda b: 0)
- with assert_raises(RuntimeError):
- verify_matching_signatures(lambda x: 0, lambda x=None: 0)
- with assert_raises(RuntimeError):
- verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
- with assert_raises(RuntimeError):
- verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
- def test_array_function_dispatch(self):
- with assert_raises(RuntimeError):
- @array_function_dispatch(lambda x: (x,))
- def f(y):
- pass
- # should not raise
- @array_function_dispatch(lambda x: (x,), verify=False)
- def f(y):
- pass
- def _new_duck_type_and_implements():
- """Create a duck array type and implements functions."""
- HANDLED_FUNCTIONS = {}
- class MyArray:
- def __array_function__(self, func, types, args, kwargs):
- if func not in HANDLED_FUNCTIONS:
- return NotImplemented
- if not all(issubclass(t, MyArray) for t in types):
- return NotImplemented
- return HANDLED_FUNCTIONS[func](*args, **kwargs)
- def implements(numpy_function):
- """Register an __array_function__ implementations."""
- def decorator(func):
- HANDLED_FUNCTIONS[numpy_function] = func
- return func
- return decorator
- return (MyArray, implements)
- @requires_array_function
- class TestArrayFunctionImplementation:
- def test_one_arg(self):
- MyArray, implements = _new_duck_type_and_implements()
- @implements(dispatched_one_arg)
- def _(array):
- return 'myarray'
- assert_equal(dispatched_one_arg(1), 'original')
- assert_equal(dispatched_one_arg(MyArray()), 'myarray')
- def test_optional_args(self):
- MyArray, implements = _new_duck_type_and_implements()
- @array_function_dispatch(lambda array, option=None: (array,))
- def func_with_option(array, option='default'):
- return option
- @implements(func_with_option)
- def my_array_func_with_option(array, new_option='myarray'):
- return new_option
- # we don't need to implement every option on __array_function__
- # implementations
- assert_equal(func_with_option(1), 'default')
- assert_equal(func_with_option(1, option='extra'), 'extra')
- assert_equal(func_with_option(MyArray()), 'myarray')
- with assert_raises(TypeError):
- func_with_option(MyArray(), option='extra')
- # but new options on implementations can't be used
- result = my_array_func_with_option(MyArray(), new_option='yes')
- assert_equal(result, 'yes')
- with assert_raises(TypeError):
- func_with_option(MyArray(), new_option='no')
- def test_not_implemented(self):
- MyArray, implements = _new_duck_type_and_implements()
- @array_function_dispatch(lambda array: (array,), module='my')
- def func(array):
- return array
- array = np.array(1)
- assert_(func(array) is array)
- assert_equal(func.__module__, 'my')
- with assert_raises_regex(
- TypeError, "no implementation found for 'my.func'"):
- func(MyArray())
- def test_signature_error_message(self):
- # The lambda function will be named "<lambda>", but the TypeError
- # should show the name as "func"
- def _dispatcher():
- return ()
- @array_function_dispatch(_dispatcher)
- def func():
- pass
- try:
- func(bad_arg=3)
- except TypeError as e:
- expected_exception = e
- try:
- func(bad_arg=3)
- raise AssertionError("must fail")
- except TypeError as exc:
- assert exc.args == expected_exception.args
- @pytest.mark.parametrize("value", [234, "this func is not replaced"])
- def test_dispatcher_error(self, value):
- # If the dispatcher raises an error, we must not attempt to mutate it
- error = TypeError(value)
- def dispatcher():
- raise error
- @array_function_dispatch(dispatcher)
- def func():
- return 3
- try:
- func()
- raise AssertionError("must fail")
- except TypeError as exc:
- assert exc is error # unmodified exception
- class TestNDArrayMethods:
- def test_repr(self):
- # gh-12162: should still be defined even if __array_function__ doesn't
- # implement np.array_repr()
- class MyArray(np.ndarray):
- def __array_function__(*args, **kwargs):
- return NotImplemented
- array = np.array(1).view(MyArray)
- assert_equal(repr(array), 'MyArray(1)')
- assert_equal(str(array), '1')
- class TestNumPyFunctions:
- def test_set_module(self):
- assert_equal(np.sum.__module__, 'numpy')
- assert_equal(np.char.equal.__module__, 'numpy.char')
- assert_equal(np.fft.fft.__module__, 'numpy.fft')
- assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
- def test_inspect_sum(self):
- signature = inspect.signature(np.sum)
- assert_('axis' in signature.parameters)
- @requires_array_function
- def test_override_sum(self):
- MyArray, implements = _new_duck_type_and_implements()
- @implements(np.sum)
- def _(array):
- return 'yes'
- assert_equal(np.sum(MyArray()), 'yes')
- @requires_array_function
- def test_sum_on_mock_array(self):
- # We need a proxy for mocks because __array_function__ is only looked
- # up in the class dict
- class ArrayProxy:
- def __init__(self, value):
- self.value = value
- def __array_function__(self, *args, **kwargs):
- return self.value.__array_function__(*args, **kwargs)
- def __array__(self, *args, **kwargs):
- return self.value.__array__(*args, **kwargs)
- proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
- proxy.value.__array_function__.return_value = 1
- result = np.sum(proxy)
- assert_equal(result, 1)
- proxy.value.__array_function__.assert_called_once_with(
- np.sum, (ArrayProxy,), (proxy,), {})
- proxy.value.__array__.assert_not_called()
- @requires_array_function
- def test_sum_forwarding_implementation(self):
- class MyArray(np.ndarray):
- def sum(self, axis, out):
- return 'summed'
- def __array_function__(self, func, types, args, kwargs):
- return super().__array_function__(func, types, args, kwargs)
- # note: the internal implementation of np.sum() calls the .sum() method
- array = np.array(1).view(MyArray)
- assert_equal(np.sum(array), 'summed')
- class TestArrayLike:
- def setup_method(self):
- class MyArray():
- def __init__(self, function=None):
- self.function = function
- def __array_function__(self, func, types, args, kwargs):
- assert func is getattr(np, func.__name__)
- try:
- my_func = getattr(self, func.__name__)
- except AttributeError:
- return NotImplemented
- return my_func(*args, **kwargs)
- self.MyArray = MyArray
- class MyNoArrayFunctionArray():
- def __init__(self, function=None):
- self.function = function
- self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
- def add_method(self, name, arr_class, enable_value_error=False):
- def _definition(*args, **kwargs):
- # Check that `like=` isn't propagated downstream
- assert 'like' not in kwargs
- if enable_value_error and 'value_error' in kwargs:
- raise ValueError
- return arr_class(getattr(arr_class, name))
- setattr(arr_class, name, _definition)
- def func_args(*args, **kwargs):
- return args, kwargs
- @requires_array_function
- def test_array_like_not_implemented(self):
- self.add_method('array', self.MyArray)
- ref = self.MyArray.array()
- with assert_raises_regex(TypeError, 'no implementation found'):
- array_like = np.asarray(1, like=ref)
- _array_tests = [
- ('array', *func_args((1,))),
- ('asarray', *func_args((1,))),
- ('asanyarray', *func_args((1,))),
- ('ascontiguousarray', *func_args((2, 3))),
- ('asfortranarray', *func_args((2, 3))),
- ('require', *func_args((np.arange(6).reshape(2, 3),),
- requirements=['A', 'F'])),
- ('empty', *func_args((1,))),
- ('full', *func_args((1,), 2)),
- ('ones', *func_args((1,))),
- ('zeros', *func_args((1,))),
- ('arange', *func_args(3)),
- ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
- ('fromiter', *func_args(range(3), dtype=int)),
- ('fromstring', *func_args('1,2', dtype=int, sep=',')),
- ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
- ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
- dtype=[('int', 'i8'), ('float', 'f8')],
- delimiter=',')),
- ]
- @pytest.mark.parametrize('function, args, kwargs', _array_tests)
- @pytest.mark.parametrize('numpy_ref', [True, False])
- @requires_array_function
- def test_array_like(self, function, args, kwargs, numpy_ref):
- self.add_method('array', self.MyArray)
- self.add_method(function, self.MyArray)
- np_func = getattr(np, function)
- my_func = getattr(self.MyArray, function)
- if numpy_ref is True:
- ref = np.array(1)
- else:
- ref = self.MyArray.array()
- like_args = tuple(a() if callable(a) else a for a in args)
- array_like = np_func(*like_args, **kwargs, like=ref)
- if numpy_ref is True:
- assert type(array_like) is np.ndarray
- np_args = tuple(a() if callable(a) else a for a in args)
- np_arr = np_func(*np_args, **kwargs)
- # Special-case np.empty to ensure values match
- if function == "empty":
- np_arr.fill(1)
- array_like.fill(1)
- assert_equal(array_like, np_arr)
- else:
- assert type(array_like) is self.MyArray
- assert array_like.function is my_func
- @pytest.mark.parametrize('function, args, kwargs', _array_tests)
- @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
- @requires_array_function
- def test_no_array_function_like(self, function, args, kwargs, ref):
- self.add_method('array', self.MyNoArrayFunctionArray)
- self.add_method(function, self.MyNoArrayFunctionArray)
- np_func = getattr(np, function)
- # Instantiate ref if it's the MyNoArrayFunctionArray class
- if ref == "MyNoArrayFunctionArray":
- ref = self.MyNoArrayFunctionArray.array()
- like_args = tuple(a() if callable(a) else a for a in args)
- with assert_raises_regex(TypeError,
- 'The `like` argument must be an array-like that implements'):
- np_func(*like_args, **kwargs, like=ref)
- @pytest.mark.parametrize('numpy_ref', [True, False])
- def test_array_like_fromfile(self, numpy_ref):
- self.add_method('array', self.MyArray)
- self.add_method("fromfile", self.MyArray)
- if numpy_ref is True:
- ref = np.array(1)
- else:
- ref = self.MyArray.array()
- data = np.random.random(5)
- with tempfile.TemporaryDirectory() as tmpdir:
- fname = os.path.join(tmpdir, "testfile")
- data.tofile(fname)
- array_like = np.fromfile(fname, like=ref)
- if numpy_ref is True:
- assert type(array_like) is np.ndarray
- np_res = np.fromfile(fname, like=ref)
- assert_equal(np_res, data)
- assert_equal(array_like, np_res)
- else:
- assert type(array_like) is self.MyArray
- assert array_like.function is self.MyArray.fromfile
- @requires_array_function
- def test_exception_handling(self):
- self.add_method('array', self.MyArray, enable_value_error=True)
- ref = self.MyArray.array()
- with assert_raises(TypeError):
- # Raises the error about `value_error` being invalid first
- np.array(1, value_error=True, like=ref)
- @pytest.mark.parametrize('function, args, kwargs', _array_tests)
- def test_like_as_none(self, function, args, kwargs):
- self.add_method('array', self.MyArray)
- self.add_method(function, self.MyArray)
- np_func = getattr(np, function)
- like_args = tuple(a() if callable(a) else a for a in args)
- # required for loadtxt and genfromtxt to init w/o error.
- like_args_exp = tuple(a() if callable(a) else a for a in args)
- array_like = np_func(*like_args, **kwargs, like=None)
- expected = np_func(*like_args_exp, **kwargs)
- # Special-case np.empty to ensure values match
- if function == "empty":
- array_like.fill(1)
- expected.fill(1)
- assert_equal(array_like, expected)
|