123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967 |
- import sys
- import gc
- from hypothesis import given
- from hypothesis.extra import numpy as hynp
- import pytest
- import numpy as np
- from numpy.testing import (
- assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT,
- assert_raises_regex,
- )
- import textwrap
- class TestArrayRepr:
- def test_nan_inf(self):
- x = np.array([np.nan, np.inf])
- assert_equal(repr(x), 'array([nan, inf])')
- def test_subclass(self):
- class sub(np.ndarray): pass
- # one dimensional
- x1d = np.array([1, 2]).view(sub)
- assert_equal(repr(x1d), 'sub([1, 2])')
- # two dimensional
- x2d = np.array([[1, 2], [3, 4]]).view(sub)
- assert_equal(repr(x2d),
- 'sub([[1, 2],\n'
- ' [3, 4]])')
- # two dimensional with flexible dtype
- xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub)
- assert_equal(repr(xstruct),
- "sub([[(1,), (1,)],\n"
- " [(1,), (1,)]], dtype=[('a', '<i4')])"
- )
- @pytest.mark.xfail(reason="See gh-10544")
- def test_object_subclass(self):
- class sub(np.ndarray):
- def __new__(cls, inp):
- obj = np.asarray(inp).view(cls)
- return obj
- def __getitem__(self, ind):
- ret = super().__getitem__(ind)
- return sub(ret)
- # test that object + subclass is OK:
- x = sub([None, None])
- assert_equal(repr(x), 'sub([None, None], dtype=object)')
- assert_equal(str(x), '[None None]')
- x = sub([None, sub([None, None])])
- assert_equal(repr(x),
- 'sub([None, sub([None, None], dtype=object)], dtype=object)')
- assert_equal(str(x), '[None sub([None, None], dtype=object)]')
- def test_0d_object_subclass(self):
- # make sure that subclasses which return 0ds instead
- # of scalars don't cause infinite recursion in str
- class sub(np.ndarray):
- def __new__(cls, inp):
- obj = np.asarray(inp).view(cls)
- return obj
- def __getitem__(self, ind):
- ret = super().__getitem__(ind)
- return sub(ret)
- x = sub(1)
- assert_equal(repr(x), 'sub(1)')
- assert_equal(str(x), '1')
- x = sub([1, 1])
- assert_equal(repr(x), 'sub([1, 1])')
- assert_equal(str(x), '[1 1]')
- # check it works properly with object arrays too
- x = sub(None)
- assert_equal(repr(x), 'sub(None, dtype=object)')
- assert_equal(str(x), 'None')
- # plus recursive object arrays (even depth > 1)
- y = sub(None)
- x[()] = y
- y[()] = x
- assert_equal(repr(x),
- 'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
- assert_equal(str(x), '...')
- x[()] = 0 # resolve circular references for garbage collector
- # nested 0d-subclass-object
- x = sub(None)
- x[()] = sub(None)
- assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
- assert_equal(str(x), 'None')
- # gh-10663
- class DuckCounter(np.ndarray):
- def __getitem__(self, item):
- result = super().__getitem__(item)
- if not isinstance(result, DuckCounter):
- result = result[...].view(DuckCounter)
- return result
- def to_string(self):
- return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')
- def __str__(self):
- if self.shape == ():
- return self.to_string()
- else:
- fmt = {'all': lambda x: x.to_string()}
- return np.array2string(self, formatter=fmt)
- dc = np.arange(5).view(DuckCounter)
- assert_equal(str(dc), "[zero one two many many]")
- assert_equal(str(dc[0]), "zero")
- def test_self_containing(self):
- arr0d = np.array(None)
- arr0d[()] = arr0d
- assert_equal(repr(arr0d),
- 'array(array(..., dtype=object), dtype=object)')
- arr0d[()] = 0 # resolve recursion for garbage collector
- arr1d = np.array([None, None])
- arr1d[1] = arr1d
- assert_equal(repr(arr1d),
- 'array([None, array(..., dtype=object)], dtype=object)')
- arr1d[1] = 0 # resolve recursion for garbage collector
- first = np.array(None)
- second = np.array(None)
- first[()] = second
- second[()] = first
- assert_equal(repr(first),
- 'array(array(array(..., dtype=object), dtype=object), dtype=object)')
- first[()] = 0 # resolve circular references for garbage collector
- def test_containing_list(self):
- # printing square brackets directly would be ambiguuous
- arr1d = np.array([None, None])
- arr1d[0] = [1, 2]
- arr1d[1] = [3]
- assert_equal(repr(arr1d),
- 'array([list([1, 2]), list([3])], dtype=object)')
- def test_void_scalar_recursion(self):
- # gh-9345
- repr(np.void(b'test')) # RecursionError ?
- def test_fieldless_structured(self):
- # gh-10366
- no_fields = np.dtype([])
- arr_no_fields = np.empty(4, dtype=no_fields)
- assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')
- class TestComplexArray:
- def test_str(self):
- rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
- cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
- dtypes = [np.complex64, np.cdouble, np.clongdouble]
- actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
- wanted = [
- '[0.+0.j]', '[0.+0.j]', '[0.+0.j]',
- '[0.+1.j]', '[0.+1.j]', '[0.+1.j]',
- '[0.-1.j]', '[0.-1.j]', '[0.-1.j]',
- '[0.+infj]', '[0.+infj]', '[0.+infj]',
- '[0.-infj]', '[0.-infj]', '[0.-infj]',
- '[0.+nanj]', '[0.+nanj]', '[0.+nanj]',
- '[1.+0.j]', '[1.+0.j]', '[1.+0.j]',
- '[1.+1.j]', '[1.+1.j]', '[1.+1.j]',
- '[1.-1.j]', '[1.-1.j]', '[1.-1.j]',
- '[1.+infj]', '[1.+infj]', '[1.+infj]',
- '[1.-infj]', '[1.-infj]', '[1.-infj]',
- '[1.+nanj]', '[1.+nanj]', '[1.+nanj]',
- '[-1.+0.j]', '[-1.+0.j]', '[-1.+0.j]',
- '[-1.+1.j]', '[-1.+1.j]', '[-1.+1.j]',
- '[-1.-1.j]', '[-1.-1.j]', '[-1.-1.j]',
- '[-1.+infj]', '[-1.+infj]', '[-1.+infj]',
- '[-1.-infj]', '[-1.-infj]', '[-1.-infj]',
- '[-1.+nanj]', '[-1.+nanj]', '[-1.+nanj]',
- '[inf+0.j]', '[inf+0.j]', '[inf+0.j]',
- '[inf+1.j]', '[inf+1.j]', '[inf+1.j]',
- '[inf-1.j]', '[inf-1.j]', '[inf-1.j]',
- '[inf+infj]', '[inf+infj]', '[inf+infj]',
- '[inf-infj]', '[inf-infj]', '[inf-infj]',
- '[inf+nanj]', '[inf+nanj]', '[inf+nanj]',
- '[-inf+0.j]', '[-inf+0.j]', '[-inf+0.j]',
- '[-inf+1.j]', '[-inf+1.j]', '[-inf+1.j]',
- '[-inf-1.j]', '[-inf-1.j]', '[-inf-1.j]',
- '[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
- '[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
- '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
- '[nan+0.j]', '[nan+0.j]', '[nan+0.j]',
- '[nan+1.j]', '[nan+1.j]', '[nan+1.j]',
- '[nan-1.j]', '[nan-1.j]', '[nan-1.j]',
- '[nan+infj]', '[nan+infj]', '[nan+infj]',
- '[nan-infj]', '[nan-infj]', '[nan-infj]',
- '[nan+nanj]', '[nan+nanj]', '[nan+nanj]']
- for res, val in zip(actual, wanted):
- assert_equal(res, val)
- class TestArray2String:
- def test_basic(self):
- """Basic test of array2string."""
- a = np.arange(3)
- assert_(np.array2string(a) == '[0 1 2]')
- assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
- assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')
- def test_unexpected_kwarg(self):
- # ensure than an appropriate TypeError
- # is raised when array2string receives
- # an unexpected kwarg
- with assert_raises_regex(TypeError, 'nonsense'):
- np.array2string(np.array([1, 2, 3]),
- nonsense=None)
- def test_format_function(self):
- """Test custom format function for each element in array."""
- def _format_function(x):
- if np.abs(x) < 1:
- return '.'
- elif np.abs(x) < 2:
- return 'o'
- else:
- return 'O'
- x = np.arange(3)
- x_hex = "[0x0 0x1 0x2]"
- x_oct = "[0o0 0o1 0o2]"
- assert_(np.array2string(x, formatter={'all':_format_function}) ==
- "[. o O]")
- assert_(np.array2string(x, formatter={'int_kind':_format_function}) ==
- "[. o O]")
- assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) ==
- "[0.0000 1.0000 2.0000]")
- assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}),
- x_hex)
- assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}),
- x_oct)
- x = np.arange(3.)
- assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) ==
- "[0.00 1.00 2.00]")
- assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) ==
- "[0.00 1.00 2.00]")
- s = np.array(['abc', 'def'])
- assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
- '[abcabc defdef]')
- def test_structure_format(self):
- dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
- x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
- assert_equal(np.array2string(x),
- "[('Sarah', [8., 7.]) ('John', [6., 7.])]")
- np.set_printoptions(legacy='1.13')
- try:
- # for issue #5692
- A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
- A[5:].fill(np.datetime64('NaT'))
- assert_equal(
- np.array2string(A),
- textwrap.dedent("""\
- [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
- ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
- ('NaT',) ('NaT',) ('NaT',)]""")
- )
- finally:
- np.set_printoptions(legacy=False)
- # same again, but with non-legacy behavior
- assert_equal(
- np.array2string(A),
- textwrap.dedent("""\
- [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
- ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
- ('1970-01-01T00:00:00',) ( 'NaT',)
- ( 'NaT',) ( 'NaT',)
- ( 'NaT',) ( 'NaT',)]""")
- )
- # and again, with timedeltas
- A = np.full(10, 123456, dtype=[("A", "m8[s]")])
- A[5:].fill(np.datetime64('NaT'))
- assert_equal(
- np.array2string(A),
- textwrap.dedent("""\
- [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
- ( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
- )
- # See #8160
- struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
- assert_equal(np.array2string(struct_int),
- "[([ 1, -1],) ([123, 1],)]")
- struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
- dtype=[('B', 'i4', (2, 2))])
- assert_equal(np.array2string(struct_2dint),
- "[([[ 0, 1], [ 2, 3]],) ([[12, 0], [ 0, 0]],)]")
- # See #8172
- array_scalar = np.array(
- (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
- assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")
- def test_unstructured_void_repr(self):
- a = np.array([27, 91, 50, 75, 7, 65, 10, 8,
- 27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8')
- assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
- assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
- assert_equal(repr(a),
- r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n"
- r" b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")
- assert_equal(eval(repr(a), vars(np)), a)
- assert_equal(eval(repr(a[0]), vars(np)), a[0])
- def test_edgeitems_kwarg(self):
- # previously the global print options would be taken over the kwarg
- arr = np.zeros(3, int)
- assert_equal(
- np.array2string(arr, edgeitems=1, threshold=0),
- "[0 ... 0]"
- )
- def test_summarize_1d(self):
- A = np.arange(1001)
- strA = '[ 0 1 2 ... 998 999 1000]'
- assert_equal(str(A), strA)
- reprA = 'array([ 0, 1, 2, ..., 998, 999, 1000])'
- assert_equal(repr(A), reprA)
- def test_summarize_2d(self):
- A = np.arange(1002).reshape(2, 501)
- strA = '[[ 0 1 2 ... 498 499 500]\n' \
- ' [ 501 502 503 ... 999 1000 1001]]'
- assert_equal(str(A), strA)
- reprA = 'array([[ 0, 1, 2, ..., 498, 499, 500],\n' \
- ' [ 501, 502, 503, ..., 999, 1000, 1001]])'
- assert_equal(repr(A), reprA)
- def test_linewidth(self):
- a = np.full(6, 1)
- def make_str(a, width, **kw):
- return np.array2string(a, separator="", max_line_width=width, **kw)
- assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
- assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
- assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
- ' 11]')
- assert_equal(make_str(a, 8), '[111111]')
- assert_equal(make_str(a, 7), '[11111\n'
- ' 1]')
- assert_equal(make_str(a, 5), '[111\n'
- ' 111]')
- b = a[None,None,:]
- assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
- assert_equal(make_str(b, 9, legacy='1.13'), '[[[111111]]]')
- assert_equal(make_str(b, 8, legacy='1.13'), '[[[11111\n'
- ' 1]]]')
- assert_equal(make_str(b, 12), '[[[111111]]]')
- assert_equal(make_str(b, 9), '[[[111\n'
- ' 111]]]')
- assert_equal(make_str(b, 8), '[[[11\n'
- ' 11\n'
- ' 11]]]')
- def test_wide_element(self):
- a = np.array(['xxxxx'])
- assert_equal(
- np.array2string(a, max_line_width=5),
- "['xxxxx']"
- )
- assert_equal(
- np.array2string(a, max_line_width=5, legacy='1.13'),
- "[ 'xxxxx']"
- )
- def test_multiline_repr(self):
- class MultiLine:
- def __repr__(self):
- return "Line 1\nLine 2"
- a = np.array([[None, MultiLine()], [MultiLine(), None]])
- assert_equal(
- np.array2string(a),
- '[[None Line 1\n'
- ' Line 2]\n'
- ' [Line 1\n'
- ' Line 2 None]]'
- )
- assert_equal(
- np.array2string(a, max_line_width=5),
- '[[None\n'
- ' Line 1\n'
- ' Line 2]\n'
- ' [Line 1\n'
- ' Line 2\n'
- ' None]]'
- )
- assert_equal(
- repr(a),
- 'array([[None, Line 1\n'
- ' Line 2],\n'
- ' [Line 1\n'
- ' Line 2, None]], dtype=object)'
- )
- class MultiLineLong:
- def __repr__(self):
- return "Line 1\nLooooooooooongestLine2\nLongerLine 3"
- a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]])
- assert_equal(
- repr(a),
- 'array([[None, Line 1\n'
- ' LooooooooooongestLine2\n'
- ' LongerLine 3 ],\n'
- ' [Line 1\n'
- ' LooooooooooongestLine2\n'
- ' LongerLine 3 , None]], dtype=object)'
- )
- assert_equal(
- np.array_repr(a, 20),
- 'array([[None,\n'
- ' Line 1\n'
- ' LooooooooooongestLine2\n'
- ' LongerLine 3 ],\n'
- ' [Line 1\n'
- ' LooooooooooongestLine2\n'
- ' LongerLine 3 ,\n'
- ' None]],\n'
- ' dtype=object)'
- )
- def test_nested_array_repr(self):
- a = np.empty((2, 2), dtype=object)
- a[0, 0] = np.eye(2)
- a[0, 1] = np.eye(3)
- a[1, 0] = None
- a[1, 1] = np.ones((3, 1))
- assert_equal(
- repr(a),
- 'array([[array([[1., 0.],\n'
- ' [0., 1.]]), array([[1., 0., 0.],\n'
- ' [0., 1., 0.],\n'
- ' [0., 0., 1.]])],\n'
- ' [None, array([[1.],\n'
- ' [1.],\n'
- ' [1.]])]], dtype=object)'
- )
- @given(hynp.from_dtype(np.dtype("U")))
- def test_any_text(self, text):
- # This test checks that, given any value that can be represented in an
- # array of dtype("U") (i.e. unicode string), ...
- a = np.array([text, text, text])
- # casting a list of them to an array does not e.g. truncate the value
- assert_equal(a[0], text)
- # and that np.array2string puts a newline in the expected location
- expected_repr = "[{0!r} {0!r}\n {0!r}]".format(text)
- result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3)
- assert_equal(result, expected_repr)
- @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
- def test_refcount(self):
- # make sure we do not hold references to the array due to a recursive
- # closure (gh-10620)
- gc.disable()
- a = np.arange(2)
- r1 = sys.getrefcount(a)
- np.array2string(a)
- np.array2string(a)
- r2 = sys.getrefcount(a)
- gc.collect()
- gc.enable()
- assert_(r1 == r2)
- class TestPrintOptions:
- """Test getting and setting global print options."""
- def setup_method(self):
- self.oldopts = np.get_printoptions()
- def teardown_method(self):
- np.set_printoptions(**self.oldopts)
- def test_basic(self):
- x = np.array([1.5, 0, 1.234567890])
- assert_equal(repr(x), "array([1.5 , 0. , 1.23456789])")
- np.set_printoptions(precision=4)
- assert_equal(repr(x), "array([1.5 , 0. , 1.2346])")
- def test_precision_zero(self):
- np.set_printoptions(precision=0)
- for values, string in (
- ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
- ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
- ([100.], "100."), ([.2, -1, 122.51], " 0., -1., 123."),
- ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
- x = np.array(values)
- assert_equal(repr(x), "array([%s])" % string)
- def test_formatter(self):
- x = np.arange(3)
- np.set_printoptions(formatter={'all':lambda x: str(x-1)})
- assert_equal(repr(x), "array([-1, 0, 1])")
- def test_formatter_reset(self):
- x = np.arange(3)
- np.set_printoptions(formatter={'all':lambda x: str(x-1)})
- assert_equal(repr(x), "array([-1, 0, 1])")
- np.set_printoptions(formatter={'int':None})
- assert_equal(repr(x), "array([0, 1, 2])")
- np.set_printoptions(formatter={'all':lambda x: str(x-1)})
- assert_equal(repr(x), "array([-1, 0, 1])")
- np.set_printoptions(formatter={'all':None})
- assert_equal(repr(x), "array([0, 1, 2])")
- np.set_printoptions(formatter={'int':lambda x: str(x-1)})
- assert_equal(repr(x), "array([-1, 0, 1])")
- np.set_printoptions(formatter={'int_kind':None})
- assert_equal(repr(x), "array([0, 1, 2])")
- x = np.arange(3.)
- np.set_printoptions(formatter={'float':lambda x: str(x-1)})
- assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
- np.set_printoptions(formatter={'float_kind':None})
- assert_equal(repr(x), "array([0., 1., 2.])")
- def test_0d_arrays(self):
- assert_equal(str(np.array('café', '<U4')), 'café')
- assert_equal(repr(np.array('café', '<U4')),
- "array('café', dtype='<U4')")
- assert_equal(str(np.array('test', np.str_)), 'test')
- a = np.zeros(1, dtype=[('a', '<i4', (3,))])
- assert_equal(str(a[0]), '([0, 0, 0],)')
- assert_equal(repr(np.datetime64('2005-02-25')[...]),
- "array('2005-02-25', dtype='datetime64[D]')")
- assert_equal(repr(np.timedelta64('10', 'Y')[...]),
- "array(10, dtype='timedelta64[Y]')")
- # repr of 0d arrays is affected by printoptions
- x = np.array(1)
- np.set_printoptions(formatter={'all':lambda x: "test"})
- assert_equal(repr(x), "array(test)")
- # str is unaffected
- assert_equal(str(x), "1")
- # check `style` arg raises
- assert_warns(DeprecationWarning, np.array2string,
- np.array(1.), style=repr)
- # but not in legacy mode
- np.array2string(np.array(1.), style=repr, legacy='1.13')
- # gh-10934 style was broken in legacy mode, check it works
- np.array2string(np.array(1.), legacy='1.13')
- def test_float_spacing(self):
- x = np.array([1., 2., 3.])
- y = np.array([1., 2., -10.])
- z = np.array([100., 2., -1.])
- w = np.array([-100., 2., 1.])
- assert_equal(repr(x), 'array([1., 2., 3.])')
- assert_equal(repr(y), 'array([ 1., 2., -10.])')
- assert_equal(repr(np.array(y[0])), 'array(1.)')
- assert_equal(repr(np.array(y[-1])), 'array(-10.)')
- assert_equal(repr(z), 'array([100., 2., -1.])')
- assert_equal(repr(w), 'array([-100., 2., 1.])')
- assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
- assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')
- x = np.array([np.inf, 100000, 1.1234])
- y = np.array([np.inf, 100000, -1.1234])
- z = np.array([np.inf, 1.1234, -1e120])
- np.set_printoptions(precision=2)
- assert_equal(repr(x), 'array([ inf, 1.00e+05, 1.12e+00])')
- assert_equal(repr(y), 'array([ inf, 1.00e+05, -1.12e+00])')
- assert_equal(repr(z), 'array([ inf, 1.12e+000, -1.00e+120])')
- def test_bool_spacing(self):
- assert_equal(repr(np.array([True, True])),
- 'array([ True, True])')
- assert_equal(repr(np.array([True, False])),
- 'array([ True, False])')
- assert_equal(repr(np.array([True])),
- 'array([ True])')
- assert_equal(repr(np.array(True)),
- 'array(True)')
- assert_equal(repr(np.array(False)),
- 'array(False)')
- def test_sign_spacing(self):
- a = np.arange(4.)
- b = np.array([1.234e9])
- c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
- assert_equal(repr(a), 'array([0., 1., 2., 3.])')
- assert_equal(repr(np.array(1.)), 'array(1.)')
- assert_equal(repr(b), 'array([1.234e+09])')
- assert_equal(repr(np.array([0.])), 'array([0.])')
- assert_equal(repr(c),
- "array([1. +1.j , 1.12345679+1.12345679j])")
- assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
- np.set_printoptions(sign=' ')
- assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
- assert_equal(repr(np.array(1.)), 'array( 1.)')
- assert_equal(repr(b), 'array([ 1.234e+09])')
- assert_equal(repr(c),
- "array([ 1. +1.j , 1.12345679+1.12345679j])")
- assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')
- np.set_printoptions(sign='+')
- assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
- assert_equal(repr(np.array(1.)), 'array(+1.)')
- assert_equal(repr(b), 'array([+1.234e+09])')
- assert_equal(repr(c),
- "array([+1. +1.j , +1.12345679+1.12345679j])")
- np.set_printoptions(legacy='1.13')
- assert_equal(repr(a), 'array([ 0., 1., 2., 3.])')
- assert_equal(repr(b), 'array([ 1.23400000e+09])')
- assert_equal(repr(-b), 'array([ -1.23400000e+09])')
- assert_equal(repr(np.array(1.)), 'array(1.0)')
- assert_equal(repr(np.array([0.])), 'array([ 0.])')
- assert_equal(repr(c),
- "array([ 1.00000000+1.j , 1.12345679+1.12345679j])")
- # gh-10383
- assert_equal(str(np.array([-1., 10])), "[ -1. 10.]")
- assert_raises(TypeError, np.set_printoptions, wrongarg=True)
- def test_float_overflow_nowarn(self):
- # make sure internal computations in FloatingFormat don't
- # warn about overflow
- repr(np.array([1e4, 0.1], dtype='f2'))
- def test_sign_spacing_structured(self):
- a = np.ones(2, dtype='<f,<f')
- assert_equal(repr(a),
- "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
- assert_equal(repr(a[0]), "(1., 1.)")
- def test_floatmode(self):
- x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
- 0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
- y = np.array([0.2918820979355541, 0.5064172631089138,
- 0.2848750619642916, 0.4342965294660567,
- 0.7326538397312751, 0.3459503329096204,
- 0.0862072768214508, 0.39112753029631175],
- dtype=np.float64)
- z = np.arange(6, dtype=np.float16)/10
- c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')
- # also make sure 1e23 is right (is between two fp numbers)
- w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64)
- # note: we construct w from the strings `1eXX` instead of doing
- # `10.**arange(24)` because it turns out the two are not equivalent in
- # python. On some architectures `1e23 != 10.**23`.
- wp = np.array([1.234e1, 1e2, 1e123])
- # unique mode
- np.set_printoptions(floatmode='unique')
- assert_equal(repr(x),
- "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
- " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
- assert_equal(repr(y),
- "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
- " 0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
- " 0.0862072768214508 , 0.39112753029631175])")
- assert_equal(repr(z),
- "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
- assert_equal(repr(w),
- "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
- " 1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
- " 1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
- " 1.e+24])")
- assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
- assert_equal(repr(c),
- "array([1. +1.j , 1.123456789+1.123456789j])")
- # maxprec mode, precision=8
- np.set_printoptions(floatmode='maxprec', precision=8)
- assert_equal(repr(x),
- "array([0.6104 , 0.922 , 0.457 , 0.0906 , 0.3733 , 0.007244,\n"
- " 0.5933 , 0.947 , 0.2383 , 0.4226 ], dtype=float16)")
- assert_equal(repr(y),
- "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
- " 0.34595033, 0.08620728, 0.39112753])")
- assert_equal(repr(z),
- "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
- assert_equal(repr(w[::5]),
- "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
- assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
- assert_equal(repr(c),
- "array([1. +1.j , 1.12345679+1.12345679j])")
- # fixed mode, precision=4
- np.set_printoptions(floatmode='fixed', precision=4)
- assert_equal(repr(x),
- "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
- " 0.2383, 0.4226], dtype=float16)")
- assert_equal(repr(y),
- "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
- assert_equal(repr(z),
- "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
- assert_equal(repr(w[::5]),
- "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
- assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
- assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
- assert_equal(repr(c),
- "array([1.0000+1.0000j, 1.1235+1.1235j])")
- # for larger precision, representation error becomes more apparent:
- np.set_printoptions(floatmode='fixed', precision=8)
- assert_equal(repr(z),
- "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
- " 0.50000000], dtype=float16)")
- # maxprec_equal mode, precision=8
- np.set_printoptions(floatmode='maxprec_equal', precision=8)
- assert_equal(repr(x),
- "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
- " 0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
- assert_equal(repr(y),
- "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
- " 0.34595033, 0.08620728, 0.39112753])")
- assert_equal(repr(z),
- "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
- assert_equal(repr(w[::5]),
- "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
- assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
- assert_equal(repr(c),
- "array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")
- # test unique special case (gh-18609)
- a = np.float64.fromhex('-1p-97')
- assert_equal(np.float64(np.array2string(a, floatmode='unique')), a)
- def test_legacy_mode_scalars(self):
- # in legacy mode, str of floats get truncated, and complex scalars
- # use * for non-finite imaginary part
- np.set_printoptions(legacy='1.13')
- assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
- assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')
- np.set_printoptions(legacy=False)
- assert_equal(str(np.float64(1.123456789123456789)),
- '1.1234567891234568')
- assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')
- def test_legacy_stray_comma(self):
- np.set_printoptions(legacy='1.13')
- assert_equal(str(np.arange(10000)), '[ 0 1 2 ..., 9997 9998 9999]')
- np.set_printoptions(legacy=False)
- assert_equal(str(np.arange(10000)), '[ 0 1 2 ... 9997 9998 9999]')
- def test_dtype_linewidth_wrapping(self):
- np.set_printoptions(linewidth=75)
- assert_equal(repr(np.arange(10,20., dtype='f4')),
- "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
- assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\
- array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
- dtype=float32)"""))
- styp = '<U4'
- assert_equal(repr(np.ones(3, dtype=styp)),
- "array(['1', '1', '1'], dtype='{}')".format(styp))
- assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\
- array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
- dtype='{}')""".format(styp)))
- def test_linewidth_repr(self):
- a = np.full(7, fill_value=2)
- np.set_printoptions(linewidth=17)
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([2, 2, 2,
- 2, 2, 2,
- 2])""")
- )
- np.set_printoptions(linewidth=17, legacy='1.13')
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([2, 2, 2,
- 2, 2, 2, 2])""")
- )
- a = np.full(8, fill_value=2)
- np.set_printoptions(linewidth=18, legacy=False)
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([2, 2, 2,
- 2, 2, 2,
- 2, 2])""")
- )
- np.set_printoptions(linewidth=18, legacy='1.13')
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([2, 2, 2, 2,
- 2, 2, 2, 2])""")
- )
- def test_linewidth_str(self):
- a = np.full(18, fill_value=2)
- np.set_printoptions(linewidth=18)
- assert_equal(
- str(a),
- textwrap.dedent("""\
- [2 2 2 2 2 2 2 2
- 2 2 2 2 2 2 2 2
- 2 2]""")
- )
- np.set_printoptions(linewidth=18, legacy='1.13')
- assert_equal(
- str(a),
- textwrap.dedent("""\
- [2 2 2 2 2 2 2 2 2
- 2 2 2 2 2 2 2 2 2]""")
- )
- def test_edgeitems(self):
- np.set_printoptions(edgeitems=1, threshold=1)
- a = np.arange(27).reshape((3, 3, 3))
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([[[ 0, ..., 2],
- ...,
- [ 6, ..., 8]],
- ...,
- [[18, ..., 20],
- ...,
- [24, ..., 26]]])""")
- )
- b = np.zeros((3, 3, 1, 1))
- assert_equal(
- repr(b),
- textwrap.dedent("""\
- array([[[[0.]],
- ...,
- [[0.]]],
- ...,
- [[[0.]],
- ...,
- [[0.]]]])""")
- )
- # 1.13 had extra trailing spaces, and was missing newlines
- np.set_printoptions(legacy='1.13')
- assert_equal(
- repr(a),
- textwrap.dedent("""\
- array([[[ 0, ..., 2],
- ...,
- [ 6, ..., 8]],
- ...,
- [[18, ..., 20],
- ...,
- [24, ..., 26]]])""")
- )
- assert_equal(
- repr(b),
- textwrap.dedent("""\
- array([[[[ 0.]],
- ...,
- [[ 0.]]],
- ...,
- [[[ 0.]],
- ...,
- [[ 0.]]]])""")
- )
- def test_bad_args(self):
- assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
- assert_raises(TypeError, np.set_printoptions, threshold='1')
- assert_raises(TypeError, np.set_printoptions, threshold=b'1')
- assert_raises(TypeError, np.set_printoptions, precision='1')
- assert_raises(TypeError, np.set_printoptions, precision=1.5)
- def test_unicode_object_array():
- expected = "array(['é'], dtype=object)"
- x = np.array(['\xe9'], dtype=object)
- assert_equal(repr(x), expected)
- class TestContextManager:
- def test_ctx_mgr(self):
- # test that context manager actually works
- with np.printoptions(precision=2):
- s = str(np.array([2.0]) / 3)
- assert_equal(s, '[0.67]')
- def test_ctx_mgr_restores(self):
- # test that print options are actually restrored
- opts = np.get_printoptions()
- with np.printoptions(precision=opts['precision'] - 1,
- linewidth=opts['linewidth'] - 4):
- pass
- assert_equal(np.get_printoptions(), opts)
- def test_ctx_mgr_exceptions(self):
- # test that print options are restored even if an exception is raised
- opts = np.get_printoptions()
- try:
- with np.printoptions(precision=2, linewidth=11):
- raise ValueError
- except ValueError:
- pass
- assert_equal(np.get_printoptions(), opts)
- def test_ctx_mgr_as_smth(self):
- opts = {"precision": 2}
- with np.printoptions(**opts) as ctx:
- saved_opts = ctx.copy()
- assert_equal({k: saved_opts[k] for k in opts}, opts)
|