123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- import sys
- import numpy as np
- from numpy.core._rational_tests import rational
- import pytest
- from numpy.testing import (
- assert_, assert_equal, assert_array_equal, assert_raises, assert_warns,
- HAS_REFCOUNT
- )
- def test_array_array():
- tobj = type(object)
- ones11 = np.ones((1, 1), np.float64)
- tndarray = type(ones11)
- # Test is_ndarray
- assert_equal(np.array(ones11, dtype=np.float64), ones11)
- if HAS_REFCOUNT:
- old_refcount = sys.getrefcount(tndarray)
- np.array(ones11)
- assert_equal(old_refcount, sys.getrefcount(tndarray))
- # test None
- assert_equal(np.array(None, dtype=np.float64),
- np.array(np.nan, dtype=np.float64))
- if HAS_REFCOUNT:
- old_refcount = sys.getrefcount(tobj)
- np.array(None, dtype=np.float64)
- assert_equal(old_refcount, sys.getrefcount(tobj))
- # test scalar
- assert_equal(np.array(1.0, dtype=np.float64),
- np.ones((), dtype=np.float64))
- if HAS_REFCOUNT:
- old_refcount = sys.getrefcount(np.float64)
- np.array(np.array(1.0, dtype=np.float64), dtype=np.float64)
- assert_equal(old_refcount, sys.getrefcount(np.float64))
- # test string
- S2 = np.dtype((bytes, 2))
- S3 = np.dtype((bytes, 3))
- S5 = np.dtype((bytes, 5))
- assert_equal(np.array(b"1.0", dtype=np.float64),
- np.ones((), dtype=np.float64))
- assert_equal(np.array(b"1.0").dtype, S3)
- assert_equal(np.array(b"1.0", dtype=bytes).dtype, S3)
- assert_equal(np.array(b"1.0", dtype=S2), np.array(b"1."))
- assert_equal(np.array(b"1", dtype=S5), np.ones((), dtype=S5))
- # test string
- U2 = np.dtype((str, 2))
- U3 = np.dtype((str, 3))
- U5 = np.dtype((str, 5))
- assert_equal(np.array("1.0", dtype=np.float64),
- np.ones((), dtype=np.float64))
- assert_equal(np.array("1.0").dtype, U3)
- assert_equal(np.array("1.0", dtype=str).dtype, U3)
- assert_equal(np.array("1.0", dtype=U2), np.array(str("1.")))
- assert_equal(np.array("1", dtype=U5), np.ones((), dtype=U5))
- builtins = getattr(__builtins__, '__dict__', __builtins__)
- assert_(hasattr(builtins, 'get'))
- # test memoryview
- dat = np.array(memoryview(b'1.0'), dtype=np.float64)
- assert_equal(dat, [49.0, 46.0, 48.0])
- assert_(dat.dtype.type is np.float64)
- dat = np.array(memoryview(b'1.0'))
- assert_equal(dat, [49, 46, 48])
- assert_(dat.dtype.type is np.uint8)
- # test array interface
- a = np.array(100.0, dtype=np.float64)
- o = type("o", (object,),
- dict(__array_interface__=a.__array_interface__))
- assert_equal(np.array(o, dtype=np.float64), a)
- # test array_struct interface
- a = np.array([(1, 4.0, 'Hello'), (2, 6.0, 'World')],
- dtype=[('f0', int), ('f1', float), ('f2', str)])
- o = type("o", (object,),
- dict(__array_struct__=a.__array_struct__))
- ## wasn't what I expected... is np.array(o) supposed to equal a ?
- ## instead we get a array([...], dtype=">V18")
- assert_equal(bytes(np.array(o).data), bytes(a.data))
- # test array
- o = type("o", (object,),
- dict(__array__=lambda *x: np.array(100.0, dtype=np.float64)))()
- assert_equal(np.array(o, dtype=np.float64), np.array(100.0, np.float64))
- # test recursion
- nested = 1.5
- for i in range(np.MAXDIMS):
- nested = [nested]
- # no error
- np.array(nested)
- # Exceeds recursion limit
- assert_raises(ValueError, np.array, [nested], dtype=np.float64)
- # Try with lists...
- assert_equal(np.array([None] * 10, dtype=np.float64),
- np.full((10,), np.nan, dtype=np.float64))
- assert_equal(np.array([[None]] * 10, dtype=np.float64),
- np.full((10, 1), np.nan, dtype=np.float64))
- assert_equal(np.array([[None] * 10], dtype=np.float64),
- np.full((1, 10), np.nan, dtype=np.float64))
- assert_equal(np.array([[None] * 10] * 10, dtype=np.float64),
- np.full((10, 10), np.nan, dtype=np.float64))
- assert_equal(np.array([1.0] * 10, dtype=np.float64),
- np.ones((10,), dtype=np.float64))
- assert_equal(np.array([[1.0]] * 10, dtype=np.float64),
- np.ones((10, 1), dtype=np.float64))
- assert_equal(np.array([[1.0] * 10], dtype=np.float64),
- np.ones((1, 10), dtype=np.float64))
- assert_equal(np.array([[1.0] * 10] * 10, dtype=np.float64),
- np.ones((10, 10), dtype=np.float64))
- # Try with tuples
- assert_equal(np.array((None,) * 10, dtype=np.float64),
- np.full((10,), np.nan, dtype=np.float64))
- assert_equal(np.array([(None,)] * 10, dtype=np.float64),
- np.full((10, 1), np.nan, dtype=np.float64))
- assert_equal(np.array([(None,) * 10], dtype=np.float64),
- np.full((1, 10), np.nan, dtype=np.float64))
- assert_equal(np.array([(None,) * 10] * 10, dtype=np.float64),
- np.full((10, 10), np.nan, dtype=np.float64))
- assert_equal(np.array((1.0,) * 10, dtype=np.float64),
- np.ones((10,), dtype=np.float64))
- assert_equal(np.array([(1.0,)] * 10, dtype=np.float64),
- np.ones((10, 1), dtype=np.float64))
- assert_equal(np.array([(1.0,) * 10], dtype=np.float64),
- np.ones((1, 10), dtype=np.float64))
- assert_equal(np.array([(1.0,) * 10] * 10, dtype=np.float64),
- np.ones((10, 10), dtype=np.float64))
- @pytest.mark.parametrize("array", [True, False])
- def test_array_impossible_casts(array):
- # All builtin types can be forcibly cast, at least theoretically,
- # but user dtypes cannot necessarily.
- rt = rational(1, 2)
- if array:
- rt = np.array(rt)
- with assert_raises(TypeError):
- np.array(rt, dtype="M8")
- # TODO: remove when fastCopyAndTranspose deprecation expires
- @pytest.mark.parametrize("a",
- (
- np.array(2), # 0D array
- np.array([3, 2, 7, 0]), # 1D array
- np.arange(6).reshape(2, 3) # 2D array
- ),
- )
- def test_fastCopyAndTranspose(a):
- with pytest.deprecated_call():
- b = np.fastCopyAndTranspose(a)
- assert_equal(b, a.T)
- assert b.flags.owndata
- def test_array_astype():
- a = np.arange(6, dtype='f4').reshape(2, 3)
- # Default behavior: allows unsafe casts, keeps memory layout,
- # always copies.
- b = a.astype('i4')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('i4'))
- assert_equal(a.strides, b.strides)
- b = a.T.astype('i4')
- assert_equal(a.T, b)
- assert_equal(b.dtype, np.dtype('i4'))
- assert_equal(a.T.strides, b.strides)
- b = a.astype('f4')
- assert_equal(a, b)
- assert_(not (a is b))
- # copy=False parameter can sometimes skip a copy
- b = a.astype('f4', copy=False)
- assert_(a is b)
- # order parameter allows overriding of the memory layout,
- # forcing a copy if the layout is wrong
- b = a.astype('f4', order='F', copy=False)
- assert_equal(a, b)
- assert_(not (a is b))
- assert_(b.flags.f_contiguous)
- b = a.astype('f4', order='C', copy=False)
- assert_equal(a, b)
- assert_(a is b)
- assert_(b.flags.c_contiguous)
- # casting parameter allows catching bad casts
- b = a.astype('c8', casting='safe')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('c8'))
- assert_raises(TypeError, a.astype, 'i4', casting='safe')
- # subok=False passes through a non-subclassed array
- b = a.astype('f4', subok=0, copy=False)
- assert_(a is b)
- class MyNDArray(np.ndarray):
- pass
- a = np.array([[0, 1, 2], [3, 4, 5]], dtype='f4').view(MyNDArray)
- # subok=True passes through a subclass
- b = a.astype('f4', subok=True, copy=False)
- assert_(a is b)
- # subok=True is default, and creates a subtype on a cast
- b = a.astype('i4', copy=False)
- assert_equal(a, b)
- assert_equal(type(b), MyNDArray)
- # subok=False never returns a subclass
- b = a.astype('f4', subok=False, copy=False)
- assert_equal(a, b)
- assert_(not (a is b))
- assert_(type(b) is not MyNDArray)
- # Make sure converting from string object to fixed length string
- # does not truncate.
- a = np.array([b'a'*100], dtype='O')
- b = a.astype('S')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('S100'))
- a = np.array(['a'*100], dtype='O')
- b = a.astype('U')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('U100'))
- # Same test as above but for strings shorter than 64 characters
- a = np.array([b'a'*10], dtype='O')
- b = a.astype('S')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('S10'))
- a = np.array(['a'*10], dtype='O')
- b = a.astype('U')
- assert_equal(a, b)
- assert_equal(b.dtype, np.dtype('U10'))
- a = np.array(123456789012345678901234567890, dtype='O').astype('S')
- assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
- a = np.array(123456789012345678901234567890, dtype='O').astype('U')
- assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
- a = np.array([123456789012345678901234567890], dtype='O').astype('S')
- assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
- a = np.array([123456789012345678901234567890], dtype='O').astype('U')
- assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
- a = np.array(123456789012345678901234567890, dtype='S')
- assert_array_equal(a, np.array(b'1234567890' * 3, dtype='S30'))
- a = np.array(123456789012345678901234567890, dtype='U')
- assert_array_equal(a, np.array('1234567890' * 3, dtype='U30'))
- a = np.array('a\u0140', dtype='U')
- b = np.ndarray(buffer=a, dtype='uint32', shape=2)
- assert_(b.size == 2)
- a = np.array([1000], dtype='i4')
- assert_raises(TypeError, a.astype, 'S1', casting='safe')
- a = np.array(1000, dtype='i4')
- assert_raises(TypeError, a.astype, 'U1', casting='safe')
- @pytest.mark.parametrize("dt", ["S", "U"])
- def test_array_astype_to_string_discovery_empty(dt):
- # See also gh-19085
- arr = np.array([""], dtype=object)
- # Note, the itemsize is the `0 -> 1` logic, which should change.
- # The important part the test is rather that it does not error.
- assert arr.astype(dt).dtype.itemsize == np.dtype(f"{dt}1").itemsize
- # check the same thing for `np.can_cast` (since it accepts arrays)
- assert np.can_cast(arr, dt, casting="unsafe")
- assert not np.can_cast(arr, dt, casting="same_kind")
- # as well as for the object as a descriptor:
- assert np.can_cast("O", dt, casting="unsafe")
- @pytest.mark.parametrize("dt", ["d", "f", "S13", "U32"])
- def test_array_astype_to_void(dt):
- dt = np.dtype(dt)
- arr = np.array([], dtype=dt)
- assert arr.astype("V").dtype.itemsize == dt.itemsize
- def test_object_array_astype_to_void():
- # This is different to `test_array_astype_to_void` as object arrays
- # are inspected. The default void is "V8" (8 is the length of double)
- arr = np.array([], dtype="O").astype("V")
- assert arr.dtype == "V8"
- @pytest.mark.parametrize("t",
- np.sctypes['uint'] + np.sctypes['int'] + np.sctypes['float']
- )
- def test_array_astype_warning(t):
- # test ComplexWarning when casting from complex to float or int
- a = np.array(10, dtype=np.complex_)
- assert_warns(np.ComplexWarning, a.astype, t)
- @pytest.mark.parametrize(["dtype", "out_dtype"],
- [(np.bytes_, np.bool_),
- (np.unicode_, np.bool_),
- (np.dtype("S10,S9"), np.dtype("?,?"))])
- def test_string_to_boolean_cast(dtype, out_dtype):
- """
- Currently, for `astype` strings are cast to booleans effectively by
- calling `bool(int(string)`. This is not consistent (see gh-9875) and
- will eventually be deprecated.
- """
- arr = np.array(["10", "10\0\0\0", "0\0\0", "0"], dtype=dtype)
- expected = np.array([True, True, False, False], dtype=out_dtype)
- assert_array_equal(arr.astype(out_dtype), expected)
- @pytest.mark.parametrize(["dtype", "out_dtype"],
- [(np.bytes_, np.bool_),
- (np.unicode_, np.bool_),
- (np.dtype("S10,S9"), np.dtype("?,?"))])
- def test_string_to_boolean_cast_errors(dtype, out_dtype):
- """
- These currently error out, since cast to integers fails, but should not
- error out in the future.
- """
- for invalid in ["False", "True", "", "\0", "non-empty"]:
- arr = np.array([invalid], dtype=dtype)
- with assert_raises(ValueError):
- arr.astype(out_dtype)
- @pytest.mark.parametrize("str_type", [str, bytes, np.str_, np.unicode_])
- @pytest.mark.parametrize("scalar_type",
- [np.complex64, np.complex128, np.clongdouble])
- def test_string_to_complex_cast(str_type, scalar_type):
- value = scalar_type(b"1+3j")
- assert scalar_type(value) == 1+3j
- assert np.array([value], dtype=object).astype(scalar_type)[()] == 1+3j
- assert np.array(value).astype(scalar_type)[()] == 1+3j
- arr = np.zeros(1, dtype=scalar_type)
- arr[0] = value
- assert arr[0] == 1+3j
- @pytest.mark.parametrize("dtype", np.typecodes["AllFloat"])
- def test_none_to_nan_cast(dtype):
- # Note that at the time of writing this test, the scalar constructors
- # reject None
- arr = np.zeros(1, dtype=dtype)
- arr[0] = None
- assert np.isnan(arr)[0]
- assert np.isnan(np.array(None, dtype=dtype))[()]
- assert np.isnan(np.array([None], dtype=dtype))[0]
- assert np.isnan(np.array(None).astype(dtype))[()]
- def test_copyto_fromscalar():
- a = np.arange(6, dtype='f4').reshape(2, 3)
- # Simple copy
- np.copyto(a, 1.5)
- assert_equal(a, 1.5)
- np.copyto(a.T, 2.5)
- assert_equal(a, 2.5)
- # Where-masked copy
- mask = np.array([[0, 1, 0], [0, 0, 1]], dtype='?')
- np.copyto(a, 3.5, where=mask)
- assert_equal(a, [[2.5, 3.5, 2.5], [2.5, 2.5, 3.5]])
- mask = np.array([[0, 1], [1, 1], [1, 0]], dtype='?')
- np.copyto(a.T, 4.5, where=mask)
- assert_equal(a, [[2.5, 4.5, 4.5], [4.5, 4.5, 3.5]])
- def test_copyto():
- a = np.arange(6, dtype='i4').reshape(2, 3)
- # Simple copy
- np.copyto(a, [[3, 1, 5], [6, 2, 1]])
- assert_equal(a, [[3, 1, 5], [6, 2, 1]])
- # Overlapping copy should work
- np.copyto(a[:, :2], a[::-1, 1::-1])
- assert_equal(a, [[2, 6, 5], [1, 3, 1]])
- # Defaults to 'same_kind' casting
- assert_raises(TypeError, np.copyto, a, 1.5)
- # Force a copy with 'unsafe' casting, truncating 1.5 to 1
- np.copyto(a, 1.5, casting='unsafe')
- assert_equal(a, 1)
- # Copying with a mask
- np.copyto(a, 3, where=[True, False, True])
- assert_equal(a, [[3, 1, 3], [3, 1, 3]])
- # Casting rule still applies with a mask
- assert_raises(TypeError, np.copyto, a, 3.5, where=[True, False, True])
- # Lists of integer 0's and 1's is ok too
- np.copyto(a, 4.0, casting='unsafe', where=[[0, 1, 1], [1, 0, 0]])
- assert_equal(a, [[3, 4, 4], [4, 1, 3]])
- # Overlapping copy with mask should work
- np.copyto(a[:, :2], a[::-1, 1::-1], where=[[0, 1], [1, 1]])
- assert_equal(a, [[3, 4, 4], [4, 3, 3]])
- # 'dst' must be an array
- assert_raises(TypeError, np.copyto, [1, 2, 3], [2, 3, 4])
- def test_copyto_permut():
- # test explicit overflow case
- pad = 500
- l = [True] * pad + [True, True, True, True]
- r = np.zeros(len(l)-pad)
- d = np.ones(len(l)-pad)
- mask = np.array(l)[pad:]
- np.copyto(r, d, where=mask[::-1])
- # test all permutation of possible masks, 9 should be sufficient for
- # current 4 byte unrolled code
- power = 9
- d = np.ones(power)
- for i in range(2**power):
- r = np.zeros(power)
- l = [(i & x) != 0 for x in range(power)]
- mask = np.array(l)
- np.copyto(r, d, where=mask)
- assert_array_equal(r == 1, l)
- assert_equal(r.sum(), sum(l))
- r = np.zeros(power)
- np.copyto(r, d, where=mask[::-1])
- assert_array_equal(r == 1, l[::-1])
- assert_equal(r.sum(), sum(l))
- r = np.zeros(power)
- np.copyto(r[::2], d[::2], where=mask[::2])
- assert_array_equal(r[::2] == 1, l[::2])
- assert_equal(r[::2].sum(), sum(l[::2]))
- r = np.zeros(power)
- np.copyto(r[::2], d[::2], where=mask[::-2])
- assert_array_equal(r[::2] == 1, l[::-2])
- assert_equal(r[::2].sum(), sum(l[::-2]))
- for c in [0xFF, 0x7F, 0x02, 0x10]:
- r = np.zeros(power)
- mask = np.array(l)
- imask = np.array(l).view(np.uint8)
- imask[mask != 0] = c
- np.copyto(r, d, where=mask)
- assert_array_equal(r == 1, l)
- assert_equal(r.sum(), sum(l))
- r = np.zeros(power)
- np.copyto(r, d, where=True)
- assert_equal(r.sum(), r.size)
- r = np.ones(power)
- d = np.zeros(power)
- np.copyto(r, d, where=False)
- assert_equal(r.sum(), r.size)
- def test_copy_order():
- a = np.arange(24).reshape(2, 1, 3, 4)
- b = a.copy(order='F')
- c = np.arange(24).reshape(2, 1, 4, 3).swapaxes(2, 3)
- def check_copy_result(x, y, ccontig, fcontig, strides=False):
- assert_(not (x is y))
- assert_equal(x, y)
- assert_equal(res.flags.c_contiguous, ccontig)
- assert_equal(res.flags.f_contiguous, fcontig)
- # Validate the initial state of a, b, and c
- assert_(a.flags.c_contiguous)
- assert_(not a.flags.f_contiguous)
- assert_(not b.flags.c_contiguous)
- assert_(b.flags.f_contiguous)
- assert_(not c.flags.c_contiguous)
- assert_(not c.flags.f_contiguous)
- # Copy with order='C'
- res = a.copy(order='C')
- check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
- res = b.copy(order='C')
- check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
- res = c.copy(order='C')
- check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
- res = np.copy(a, order='C')
- check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
- res = np.copy(b, order='C')
- check_copy_result(res, b, ccontig=True, fcontig=False, strides=False)
- res = np.copy(c, order='C')
- check_copy_result(res, c, ccontig=True, fcontig=False, strides=False)
- # Copy with order='F'
- res = a.copy(order='F')
- check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
- res = b.copy(order='F')
- check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
- res = c.copy(order='F')
- check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
- res = np.copy(a, order='F')
- check_copy_result(res, a, ccontig=False, fcontig=True, strides=False)
- res = np.copy(b, order='F')
- check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
- res = np.copy(c, order='F')
- check_copy_result(res, c, ccontig=False, fcontig=True, strides=False)
- # Copy with order='K'
- res = a.copy(order='K')
- check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
- res = b.copy(order='K')
- check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
- res = c.copy(order='K')
- check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
- res = np.copy(a, order='K')
- check_copy_result(res, a, ccontig=True, fcontig=False, strides=True)
- res = np.copy(b, order='K')
- check_copy_result(res, b, ccontig=False, fcontig=True, strides=True)
- res = np.copy(c, order='K')
- check_copy_result(res, c, ccontig=False, fcontig=False, strides=True)
- def test_contiguous_flags():
- a = np.ones((4, 4, 1))[::2,:,:]
- a.strides = a.strides[:2] + (-123,)
- b = np.ones((2, 2, 1, 2, 2)).swapaxes(3, 4)
- def check_contig(a, ccontig, fcontig):
- assert_(a.flags.c_contiguous == ccontig)
- assert_(a.flags.f_contiguous == fcontig)
- # Check if new arrays are correct:
- check_contig(a, False, False)
- check_contig(b, False, False)
- check_contig(np.empty((2, 2, 0, 2, 2)), True, True)
- check_contig(np.array([[[1], [2]]], order='F'), True, True)
- check_contig(np.empty((2, 2)), True, False)
- check_contig(np.empty((2, 2), order='F'), False, True)
- # Check that np.array creates correct contiguous flags:
- check_contig(np.array(a, copy=False), False, False)
- check_contig(np.array(a, copy=False, order='C'), True, False)
- check_contig(np.array(a, ndmin=4, copy=False, order='F'), False, True)
- # Check slicing update of flags and :
- check_contig(a[0], True, True)
- check_contig(a[None, ::4, ..., None], True, True)
- check_contig(b[0, 0, ...], False, True)
- check_contig(b[:, :, 0:0, :, :], True, True)
- # Test ravel and squeeze.
- check_contig(a.ravel(), True, True)
- check_contig(np.ones((1, 3, 1)).squeeze(), True, True)
- def test_broadcast_arrays():
- # Test user defined dtypes
- a = np.array([(1, 2, 3)], dtype='u4,u4,u4')
- b = np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4')
- result = np.broadcast_arrays(a, b)
- assert_equal(result[0], np.array([(1, 2, 3), (1, 2, 3), (1, 2, 3)], dtype='u4,u4,u4'))
- assert_equal(result[1], np.array([(1, 2, 3), (4, 5, 6), (7, 8, 9)], dtype='u4,u4,u4'))
- @pytest.mark.parametrize(["shape", "fill_value", "expected_output"],
- [((2, 2), [5.0, 6.0], np.array([[5.0, 6.0], [5.0, 6.0]])),
- ((3, 2), [1.0, 2.0], np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]))])
- def test_full_from_list(shape, fill_value, expected_output):
- output = np.full(shape, fill_value)
- assert_equal(output, expected_output)
- def test_astype_copyflag():
- # test the various copyflag options
- arr = np.arange(10, dtype=np.intp)
- res_true = arr.astype(np.intp, copy=True)
- assert not np.may_share_memory(arr, res_true)
- res_always = arr.astype(np.intp, copy=np._CopyMode.ALWAYS)
- assert not np.may_share_memory(arr, res_always)
- res_false = arr.astype(np.intp, copy=False)
- # `res_false is arr` currently, but check `may_share_memory`.
- assert np.may_share_memory(arr, res_false)
- res_if_needed = arr.astype(np.intp, copy=np._CopyMode.IF_NEEDED)
- # `res_if_needed is arr` currently, but check `may_share_memory`.
- assert np.may_share_memory(arr, res_if_needed)
- res_never = arr.astype(np.intp, copy=np._CopyMode.NEVER)
- assert np.may_share_memory(arr, res_never)
- # Simple tests for when a copy is necessary:
- res_false = arr.astype(np.float64, copy=False)
- assert_array_equal(res_false, arr)
- res_if_needed = arr.astype(np.float64,
- copy=np._CopyMode.IF_NEEDED)
- assert_array_equal(res_if_needed, arr)
- assert_raises(ValueError, arr.astype, np.float64,
- copy=np._CopyMode.NEVER)
|